概率加法公式的简单推导
概率的加法法则

解 设事件A2,A3表示3个球中有2,3个白 球,显然A2与A3互不相容,有
2 1 3 C4 C3 C4 18 4 22 P( A2 A3 ) P( A2 ) P( A3 ) 3 3 C7 C7 35 35 35
首页
上页
返回
下页
结束
铃
例5 50个产品中有46个合格品与4个废品,从中一 次抽取3个,求其中有废品的概率。
解 令事件A表示产品的合格品,A1、A2分别 表示一、二等品。显然A1与A2互不相容,并且 A=A1+A2,有 P(A)=P(A1+A2)=P(A1)+P(A2)=0.98
P ( A) 1 P ( A) 0.02
首页
上页
返回
ቤተ መጻሕፍቲ ባይዱ
下页
结束
铃
例4 一个袋内装有大小相同的7个球,4个白球,3个 为黑球。从中一次抽取3个,计算至少有两个是白 球的概率。
首页
上页
返回
下页
结束
铃
公理1 0 P(A) 1 公理2 P(S)=1
(1) (2)
公理3 若事件A1, A2 ,… 两两互不相容,则有 P ( A1 A2 ) P ( A1 ) P ( A2 ) (3) 这里事件个数可以是有限或无限的 .
首页 上页 返回 下页 结束 铃
作业
习题13,14,15,16. P(27)
§13 概率的加法法则
一、概率的加法法则 二、概率的广义加法法则
首页
上页
返回
下页
结束
铃
一、概率的加法法则
例1 100个产品中有60个一等品,30个二等品,10个发品。 规定一、二等品都为合格品,考虑这批产品的合格率与一、 二等品率之间的关系。
概率运算公式

概率运算公式
概率运算公式是计算事件发生概率的重要工具,包括以下几个公式:
1. 加法公式:P(A ∪ B) = P(A) + P(B) P(A ∩ B),其中A、B为两个事件,∪表示并集,∩表示交集。
2. 乘法公式:P(A ∩ B) = P(A) × P(B|A),其中A、B为两个事件,|表示在A发生的条件下B发生的概率。
3. 条件概率公式:P(A|B) = P(A ∩ B) / P(B),其中A、B为两个事件,|表示在B发生的条件下A发生的概率。
4. 全概率公式:P(A) = ∑ P(A ∩ Bi),其中B1、B2、B3…Bn 为互不相交的事件,并且每个Bi都有非零概率。
5. 贝叶斯公式:P(Bi|A) = P(A|Bi) × P(Bi) / ∑ P(A|Bj) ×P(Bj),其中Bi为一系列互不相交的事件,A为某个事件。
掌握这些概率运算公式可以帮助我们更好地理解和计算概率,应用于统计学、数据分析、机器学习等领域。
- 1 -。
归纳法证明概率加法公式

归纳法证明概率加法公式好的,以下是为您生成的文章:在咱们数学的奇妙世界里,概率这玩意儿就像个神秘的小精灵,时不时跳出来给咱们来点挑战。
今儿个,咱们就来好好聊聊概率加法公式,还得用归纳法来给它证明一番。
咱们先从简单的例子说起。
比如说,咱班里搞个抽奖活动,盒子里有红、蓝、绿三种颜色的球,抽到红球算中奖。
第一次抽奖,抽到红球的概率是 1/3;第二次抽奖,还是 1/3。
那要是问两次抽奖至少抽到一次红球的概率是多少呢?这就是概率加法公式要解决的问题啦。
咱先看看啥是归纳法。
归纳法就像爬楼梯,先从第一层开始,证明它行得通,然后假设第 n 层行得通,再去证明第 n + 1 层也没问题,这样一层一层爬上去,就能证明整个楼梯都没问题。
那咋用归纳法来证明概率加法公式呢?咱们先从最简单的情况开始。
当只有两个事件 A 和 B 时,它们互斥,就是说这俩事儿不会同时发生。
那 A 或者 B 发生的概率,就是 A 的概率加上 B 的概率,这很好理解吧?假设当有 n 个互斥事件 A1、A2、……、An 时,它们中至少一个发生的概率等于各自概率之和,这就是咱们的假设啦。
接下来,咱们看 n + 1 个互斥事件 A1、A2、……、An、An+1 。
咱们把前面 n 个事件看成一个整体,叫 C 吧。
那 C 或者 An+1 发生的概率,不就是 C 的概率加上 An+1 的概率嘛。
而 C 的概率,根据咱们的假设,就是前面 n 个事件概率之和。
所以这 n + 1 个事件中至少一个发生的概率,就是前 n 个事件概率之和加上 An+1 的概率,这不就证明出来啦!我记得有一次给学生们讲这个知识点,有个小家伙瞪着大眼睛一脸迷茫地问我:“老师,这概率咋这么难啊?”我笑着跟他说:“别着急,就像搭积木,一块一块来,总能搭出漂亮的城堡。
”然后我又给他举了好多生活中的例子,他才慢慢有点开窍。
其实啊,数学里很多东西都来源于生活。
像概率加法公式,咱们买彩票中奖的概率、投篮命中的概率,都能用到。
概率加法公式的简单推导

( 二) 三个 事件的概率加法公式 设 A、 B、 C 为任 意三个 事件 ,则A、 B、 C 的事 件概率
可作 如下推导 :
P ( AUBUC) = P [ ( AU( B ) UC 】 ( 2 )
( A B C ) + P ( A B D) + P ( A C D) + P ( B c D) 一 P ( A B C D) ,( 9 ) ( 四) 五个事件 的概率加法计算公式 设A、 B 、 C 、 D 、 E 为任 意三个事件 , 则A、 B 、 C 、 D、 E 的 事件概率可作如下推导 :
P ( AuBuC ) = P ( A) + P ( B ) + P ( C ) 一 P ( A B ) 一 P ( A C )
P ( B C) + P ( AB C) 通过对具体 例题 的讲解 , 对 加 法公 式在使用 过程 中的一些技 巧 给 出了详细 的说
P ( AUBUCUDUE ) = e l ( AUB UCUD) UE 1 = P ( AuB uC uD) + P ( E) 一 P [ ( AUBUC UD ) E 】 ( 1 0 ) 又 因为P 『 ( AUB UCUD) E ] = P ( A E UB E UC EU D E ) , 利用公式 ( 9 ) 得:
芜湖
2 4 1 0 0 0 )
摘要 : 基 于两个事件的概 率加法公式 , 推 导 出了3  ̄ 5 个事件 的概 率加 法计算公式。通过 总结 多个事件概率 加 法公式 的一般规律 , 得到n 个事件的概率加法公式。
关键词 : 概率 ; 加法公式 ; 归 纳 法
中图分类号 : G 6 4 2 . 4 1
明 。本 文将 利用简单 的两个事件概率 加法公式 , 推 导 出3 ~ 5 个事件 的概率加法计算 公式 ,通过总结 归纳 多个 事件概率 加法公式 的一般规律 ,给出n 个事 件的
概率的加法定理与乘法定理

概率的加法定理与乘法定理概率是数学中一个重要的概念,用于描述某个事件发生的可能性。
在概率的研究中,加法定理和乘法定理是两个基本的规则,它们可以帮助我们计算复杂事件的概率。
本文将详细介绍概率的加法定理和乘法定理的概念、公式及其应用。
一、概率的加法定理概率的加法定理是指当事件A和事件B互斥(即两个事件不可能同时发生)时,事件A或事件B发生的概率等于事件A发生的概率加上事件B发生的概率。
其数学表示为:P(A 或 B) = P(A) + P(B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A 或 B)表示事件A或事件B发生的概率。
应用概率的加法定理时,需要满足两个条件:事件A和事件B是互斥的,即两个事件不可能同时发生;事件A和事件B是独立的,即事件A的发生不会影响事件B的发生,反之亦然。
举例来说,假设某班级有30个男生和20个女生,如果从班级中随机选出一个学生,那么选中的学生是男生或女生的概率如何计算呢?解答:由于男生和女生是互斥的,即一个学生不可能既是男生又是女生,因此可以使用概率的加法定理来计算。
设事件A为选中的学生是男生,事件B为选中的学生是女生。
根据题目给出的信息,我们可以得到P(A) = 30/50,P(B) = 20/50。
根据概率的加法定理,我们有P(A 或 B) = P(A) + P(B) = 30/50 +20/50 = 50/50 = 1。
所以,选中的学生是男生或女生的概率为1,即100%。
二、概率的乘法定理概率的乘法定理是指当事件A和事件B是独立事件(即事件A的发生不会影响事件B的发生,反之亦然)时,事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
其数学表示为:P(A 且 B) = P(A) × P(B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A 且 B)表示事件A和事件B同时发生的概率。
应用概率的乘法定理时,需要满足两个条件:事件A和事件B是独立的,即事件A的发生不会影响事件B的发生,反之亦然;事件A和事件B同时发生的可能性大于零,即事件A和事件B不能同时为不可能事件。
概率的一般加法公式

D.以上全不对
6.在20瓶墨水中,有5瓶已经变质不能使 用,从这20瓶墨水中任意选出1瓶,取出
1 的墨水是变质墨水的概率为_________. 4
7.从1,2,3,4,5五个数字中,任意有放
回地连续抽取三个数字,则三个数字完全
12 不同的概率是_________. 25
=0.96.
例3. 从1~100的整数中任取一个数,试求 取到的数能被5或9整除的概率。 解:设A={取到的整数能被5整除},B={取 到的整数能被9整除}。 A中含有20个基本事件;B中含有11个基 本事件; A∩B含有2个基本事件。 P(取到的整数能被5或9整除) =P(A)+P(B)-P(A∩B)
而甲跑第一棒,乙跑第四棒只有一种可能
1 (1, 4),故P(A∩B)= 12
所以,甲跑第一棒或乙跑第四棒的概率为:
P(A∪B)=P(A)+P(B)-P(A∩B) 1 1 1 5 4 4 12 12
例5.一个旅行社有30名翻译,其中英语 翻译12名,日语翻译10名,既会英语又 会日语的有3名,其余的人是其他语种的 翻译。 从中任意选出一名去带旅行团, 求以下事件的概率: 2 (1)是英语翻译; —— 1 5 —— (2)是日语翻译; 3 1 —— (3)既是英语翻译又是日语翻译;( 4) 10 19 是英语翻译或是日语翻译。 —— 30
解:作点集 Ω={(x,y)| x∈N, y∈N, 1≤x≤6, 1≤y≤6}.
第 二 次 抛 掷 后 向 上 的 点 数
6 5 4 3 2 1
······ ······ ······ ······ ······ ······
1 2 3 4 5 6
3-概率运算公式

P ( A1 A2 ⋯ An ) = P( A1 ) P ( A2 ) ⋯ P( An )
第一段 基本知识
例:甲、乙同时彼此独立地向一敌机开炮,已知甲击 中敌机的概率为0.6,乙击中敌机的概率 为0.5,求敌 机被击中的概率。 解:记A={甲中敌机},B={乙击中敌机} C={敌机被击中},则 C=A+B P(C)=P(A+B)=P(A)+P(B)-P(AB) =P(A)+P(B)-P(A)P(B) =0.6+0.5-0.6*0.5 =0.8
Ai = A1 A2 ⋯ Ai −1 Ai
P( A1 ⋯ Ai−1 Ai ) = P( A1 )P( A2 | A1 )P( A3 | A1 A2 )⋯P( Ai | A1 ⋯ Ai−1 )
n −1 n − 2 n − i +1 1 = ⋯ n n −1 n − i + 2 n − i +1 1 = n
第一段、 第一段、基本知识
在实际问题中,除了要知道事件 B的概率外,有时还需要知道在“在 事件A已发生的条件下,事件B发生的 概率”,这个概率称为条件概率 条件概率。记 条件概率 为P(B|A)。 在上面讨论中,如果已知取到的 是蓝球,那么该球是玻璃球的概率是 多少?也就是求事件A已发生的条件 下事件B发生的概率P(B|A).
2 3 3 P( AB) = × = 5 4 10
两种方法结果相同。 两种方法结果相同。
第一段 基本知识
例 设袋中有2个红球,3个白球,第一次取出一球,取 后放回,第二次再取一球,求“第一次取得红球,第二 次取得白球”的概率。 解:用概率乘法计算。记 A={第一次取得红球},B={第二次取得白球} 于是 而 P(A)=2/5,P(B)=3/5 P(B|A)=3/5=P(B),于是 P(AB)=P(A)P(B|A)=P(A)P(B) =(2/5)*(3/5)=6/25
高等数学概率的基本公式

例题4: 彩电使用10000小时无故障的概率 为95%,使用15000小时无故障的概率为60%; 现有一台彩电已使用了10000小时无故障,问 该彩电继续使用到15000小时无故障的概率?
解:设A={使用10000小时无故障};
B={使用15000小时无故障} 所求概率为:
P(B/A)= P( AB) P(B) P( A) P( A)
解:A={澄明度较差};B={标记不清}
求P(A B)
P(A B) 1 P(A B)
1 P(A) P(B) P(AB)
1 6 5 4 20 20 20
0.65
返回
二、概率的乘法公式
1.条件概率
定义:事件A和B,若P(A)≠0,则下式称为在事件A 发生的条件下B发生的概率
P(B A) P( AB) P( A)
解:设A:被诊断为结核病;B:确实患有结核病
P(B/A) P( AB)
P(B)P(A B)
P( A) P(B)P(A B) P(B)P(A B)
0.001 0.95
0.001 0.95 0.999 0.002
0.32225
返回
四、独立重复试验和伯努利(Bernoulli)概型 独立重复试验: 在相同条件下重复试验,各次试验的结 果相互独立的随机试验。
0.0050.12 0.0006
返回
条件概率的性质:
1. P(B/A) ≥0 2. P(U/A)=1 , P(V/A)=0 3. P(B/A)=1- P(B/A) 4. P(B1+B2/A)=P(B1/A)+P(B2/A)-P(B1B2/A)
特别地: 当条件A= U 时,条件概率就变成无条件概率了.
2 36
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率加法公式的简单推导
概率加法公式是指两个事件A和B的概率之和等于A和B同时发生的概率加上A和B中至少一个事件发生的概率。
其推导过程如下:
首先,考虑两个事件A和B。
那么,根据事件的定义,事件A可以表示为:A = A∩B + A∩B',其中A∩B表示A和B同时发生的概率,A∩B'表示A发生而B不发生的概率。
接下来,我们考虑事件A和事件B的并集,即A∪B。
根据事件的定义,A∪B可以表示为:A∪B = (A∩B) + (A∩B') +
(A'∩B),其中A'表示A不发生的概率,B'表示B不发生的概率。
而根据概率的加法规则,我们有A'∩B = B - A∩B,即B 事件且A不发生的概率等于事件B发生的概率减去A和B同时发生的概率。
将上述等式代入A∪B的表达式中,可以得到:A∪B = A + B - A∩B
将A∪B的表达式进一步转化,我们可以得到:A∩B = A + B - A∪B
因此,概率加法公式可以推导为:P(A∪B) = P(A) + P(B) -
P(A∩B)
这就是概率加法公式的简单推导过程。