解直角三角形的应用-坡度坡角问题.

合集下载

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案解直角三角形的应用﹣坡度坡角问题解答题专训1、(2018徐州.中考真卷) 如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据: 1.414, 1.7322、(2019绍兴.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)3、(2011金华.中考真卷) 生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)4、(2019宁津.中考模拟) 数学活动课,老师和同学一起去测量校内某处的大树AB 的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF为8m处的D点,测得大树顶端A的仰角为30°,已知BE=2m,此学生身高CD=1.7m,求大树的高度AB的值.(结果保留根号)5、(2019十堰.中考真卷) 如图,拦水坝的横断面为梯形,坝高,坡角,,求的长.6、(2017娄底.中考模拟) 如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB 的高度吗?7、(2017娄底.中考真卷) 数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)8、(2016深圳.中考模拟) 2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)9、(2016泸州.中考真卷) 如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).10、(2017贵州.中考模拟) 为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供了该地下停车库的设计示意图如图所示,已知该坡道的水平距离AB的长为9m,坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)11、(2016贵阳.中考真卷) “蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)12、(2020启东.中考模拟) 如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)13、(2020湘潭.中考真卷) 为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形为矩形,,其坡度为,将步梯改造为斜坡,其坡度为,求斜坡的长度.(结果精确到,参考数据:,)14、(2020河南.中考模拟) 如图,是垂直于水平面的一座大楼,离大楼30米(米)远的地方有一段斜坡(坡度为),且坡长米.某时刻,在太阳光的照射下,大楼的影子落在了水平面、斜坡、以及坡顶上的水平面处(均在同一个平面内).若米,且此时太阳光与水平面所夹锐角为(),试求出大楼的高.(参考数据:)15、(2021静安.中考模拟) 如图,一处地铁出入口的无障碍通道是转折的斜坡,沿着坡度相同的斜坡BC、CD共走7米可到出入口,出入口点D距离地面的高DA 为0.8米,求无障碍通道斜坡的坡度与坡角(角度精确到1',其他近似数取四个有效数字).解直角三角形的应用﹣坡度坡角问题解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

解直角三角形的应用-坡度坡角问题

解直角三角形的应用-坡度坡角问题

利用三角函数测高导学案
姓名:
一、相关定义
二、典型题型
1、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈,cos53°≈,tan53°≈,计算结果用根号表示,不取近似值).
2、某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
3、如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
4、5、
6、同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽12m,坝高23m,斜坡AB的坡度i=3
1:,斜坡CD的坡度i=1∶3,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到参考数据:3≈)
7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?。

解直角三角形应用—坡度坡角问题

解直角三角形应用—坡度坡角问题
• A、5米 B、6米 C、7米 D、8米
2021/4/8
4
直逼中考:
• (2005•泰州)一人乘雪橇沿坡比1: 3 的
斜坡笔直滑下,滑下的距离s(米)与时间t (秒)间的关系为s=10t+2t2,若滑到坡底 的时间为4秒,则此人下降的高度为( B ) • A、72米 B、36米 • C、1 8 3 米 D、36 3 米
2021/4/8
5
直逼中考:
• (2012•包头)如图,拦水坝的横断面为梯形ABCD, 坝顶宽AD=5米,斜坡AB的坡度i=1:3(指坡面的铅直 高度AE与水平宽度BE的比),斜坡DC的坡度i=1:1.5, 已知该拦水坝的高为6米. (1)求斜坡AB的长; (2)求拦水坝的横断面梯形ABCD的周长. (注意:本题中的计算过程和结果均保留根号)
tan32°≈0.6249.
2021/4/8
8
感谢您的阅读收藏,谢谢!
2021/4/8
9
2021/4/8
3
直逼中考:
• (2010•宿迁)小明沿着坡度为1:2的山坡向上走 了1000m,则他升高了( )米。
• (2009•兰州)如图,在平地上种植树木时,要 求株距(相邻两树间的水平距离)为4m.如果在 坡度为0.75的山坡上种树,也要求株距为4m,那 么相邻两树间的坡面距离为( A )
解直角三角形应用
——坡角坡度问题
2021/4/8
1
直逼中考:
(2012•广安)如图,某水库堤坝横 断面迎水坡AB的坡比是1:3 ,堤 坝高BC=50m,则迎水坡面AB的长 度是1(00米 )
2021/4/8
2
直逼中考:
• (2012•咸宁)如图,某公园入口处原有三 级台阶,每级台阶高为18cm,深为30cm, 为方便残疾人士,拟将台阶改为斜坡,设台 阶的起点为A,斜坡的起始点为C,现设计斜 坡BC的坡度i=1:5,则AC的长度是 ( )cm.

解直角三角形的应用——坡度、坡角

解直角三角形的应用——坡度、坡角

3.坡度与坡角的关系:
i=h:l=tanα
坡度越大,坡角就越 大 ,坡面 就越陡
自学检测:
知识点一 坡度与坡角
1.以下对坡度的描述正确的是( B )
A.坡度是指斜坡与水平线夹角的度数
B.斜坡是指斜坡的铅垂高度与水平宽度的比
C.斜坡式指斜坡的水平宽度与铅垂高度的比
D.坡度是指倾斜角度的度数
2、若斜坡的坡角为 5 6 ∘ 1 9 、,坡度i=3:2,则( C )
x- 2
AF =
=
°=
ta n ∠ D A F
ta n 3 0
3 (x - 2 )
AF=BE=BC+CE
即 3 (x - 2) = 2 3 &6.
DE=6米
物体通过的路程为 3 5 .
再试牛刀:
知识点二 坡度、坡角及实际问题
1. 如图,河堤横切面迎水坡AB的坡比是1:
,堤
3
高BC=10m,则坡面AB的长度是( C )
A.15m
B. m 2 0 3
C.20m
D. 1 0 3 m
2、如图是拦水坝的横切面,斜坡AB的水平宽度为
12m,斜面坡度为1:2,则斜坡AB的长为( B )
拓展提升:
如图,某校综合实践活动小组的同学欲测量公园内 一颗树DE的高度,他们在这棵树正前方一座楼亭前 的台阶上A点处测得树顶端D的仰角为30度,朝着这 棵树的方向走到台阶下的点C处,测得树顶端D的仰 角为60,已知A点的高度AB为2米,台阶AC的坡度为 1: 3 ,且B、C、E三点在同一条直线上,请根据以上 条件求出树DE的高度(测角器的高度忽略不计)
A. 4 3 m
B.6 5 m
C. 1 2 5 m

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题

备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题解直角三角形的应用﹣坡度坡角问题专训单选题:1、(2016苏州.中考真卷) 如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A . 2 mB . 2 mC . (2 ﹣2)mD . (2 ﹣2)m2、(2019徐汇.中考模拟) 若斜坡的坡比为1:,则斜坡的坡角等于( ) A . 30° B . 45° C . 50° D . 60°3、(2017东莞.中考模拟) 河堤横断面如图所示,坝高BC=6米,迎水坡AB的坡长比为1:,则AB的长为()A . 5 米B . 4 米C . 12米D . 6 米4、(2014深圳.中考真卷) 小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A . 600﹣250 米B . 600 ﹣250米C . 350+350 米D . 500 米5、(2017江北.中考模拟) 如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A . 7B . 11C . 13D . 206、(2020南宁.中考模拟) 如图,小王在长江边某瞭望台D处,测得江面上的渔船A 的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A . 5.1米B . 6.3米C . 7.1米D . 9.2米7、(2017绵阳.中考模拟) 某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A . 8.1米B . 17.2米C . 19.7米D . 25.5米8、(2020黄浦.中考模拟) 如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A . 5 米B . 5 米C . 2 米D .4 米9、(2020宁德.中考模拟) 如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A .B .C .D .10、(2021巴南.中考模拟) 如图,某同学在山坡坡脚A处时,测得一座楼房的楼顶B 处的仰角为,沿山坡往上走到C处时,测得这座楼房的楼顶B处的仰角为.已知,且,点O、A、C、B在同一平面内,若此山坡的坡度为,则这座楼房的高的值是()A .B .C .D .填空题:11、(2018海陵.中考模拟) 某人沿着坡度为1:3的山坡向上走了200m,则他升高了________米.12、(2011义乌.中考真卷) 如图是市民广场到解百地下通道的手扶电梯示意图.其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是m,则乘电梯从点B到点C上升的高度h是________ m.13、(2018淮南.中考模拟) 坡角为α=60°,则坡度i=________.14、(2017天门.中考真卷) 为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE= ,则CE的长为________米.15、(2020长宁.中考模拟) 如图,传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程AB为________米.16、(2020罗平.中考模拟) 小明沿着坡度i为1∶的直路向上走了50 m,则小明沿垂直方向升高了________m.17、(2020涡阳.中考模拟) 如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC=________米.18、2022北京冬奥会延庆赛区正在筹建的高山滑雪速滑雪道的平均坡角约为,在此雪道向下滑行100米,高度大约下降了米.解答题:19、(2018安顺.中考模拟) 某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20、(2018平.中考模拟) 如图,某校八年级(1)班学生利用寒假期间到郊区进行社会实践活动,活动之余,同学们准备攀登附近的一个小山坡,从B点出发,沿坡脚15°的坡面以5千米/时的速度行至D点,用了10分钟,然后沿坡比为1:的坡面以3千米/时的速度达到山顶A点,用了5分钟,求小山坡的高(即AC的长度)(精确到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)21、(2018内江.中考真卷) 如图是某路灯在铅垂面内的示意图,灯柱的高为11米,灯杆与灯柱的夹角,路灯采用锥形灯罩,在地面上的照射区域长为18米,从、两处测得路灯的仰角分别为和,且,.求灯杆的长度.22、(2016广元.中考真卷) 某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)23、(2020梁子湖.中考模拟) 如图是某地下停车库入口的设计示意图,已知AB⊥BD,坡道AD的坡度i=1:2.4(指坡面的铅直高度BD与水平宽度AB的比),AB=7.2 m,点C在BD上,BC=0.4 m,CE⊥AD.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,请根据以上数据,求出该地下停车库限高CE的长.24、(2018奉贤.中考模拟) 如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造(参考数值:sin37°≈0.60,cos37°≈0.80,后传送带EF的长度.(精确到0.1米)tan37°≈0.75,≈1.41,≈2.24)25、(2018中.中考模拟) 如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米.(1)求点B到地面的距离;(2)求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)解直角三角形的应用﹣坡度坡角问题答案1.答案:B2.答案:D3.答案:C4.答案:B5.答案:C6.答案:A7.答案:A8.答案:C9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:。

解直角三角形的应用-坡度坡角问题-初中数学习题集含答案

解直角三角形的应用-坡度坡角问题-初中数学习题集含答案

解直角三角形的应用-坡度坡角问题(北京习题集)(教师版)一.选择题(共2小题)1.(2019秋•石景山区期末)如图,某斜坡的长为,坡顶离水平地面的距离为,则这个斜坡的坡度为 A .B . CD . 2.(2016秋•丰台区期末)如果某个斜坡的坡度是,那么这个斜坡的坡角为 A .B .C .D .二.填空题(共3小题)3.(2019•朝阳区模拟)2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,一位同学乘滑雪板沿斜坡笔直滑下了200米,若斜坡与水平面的夹角为,则他下降的高度为 米.(用含的式子表示)4.(2018秋•通州区期中)一运动员乘雪橇沿坡比的斜坡笔直滑下,若下滑的垂直高度为1000米.则这名运动员滑到坡底的路程是 米.5.(2017秋•石景山区期末)“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面的坡度达到,那么立柱的长为 米.三.解答题(共4小题)6.(2017秋•昌平区校级期中)深圳市民中心广场上有旗杆如图1所示,某学校数学兴趣小组测量了该旗杆的高100m 50m ()30︒60︒12()30︒45︒60︒90︒ααBC 1:1.2AC度.如图2,某一时刻,旗杆的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长为16米,落在斜坡上的影长为8米,;同一时刻,太阳光线与水平面的夹角为,1米的标杆竖立在斜坡上的影长为2米,求旗杆的高度.7.(2017春•西城区校级期中)上海迪士尼乐园,是中国内地首座迪士尼主题乐园,于2016年6月16日正式开园.小明和妈妈在游玩迪士尼乐园的过程中,发现了一些娱乐设施中蕴含着数学问题,请你利用所学的知识帮助小明解答这些问题:(1)游乐园里的跷跷板(如图是深受大人和孩子青睐的娱乐设施之一,如图2是跷跷板示意图,横板绕其中点上下转动,立柱与地面垂直.若,那么点被跷起的最大高度为 .若将横板换成横板,且,仍为的中点,设点的最大高度为,则 (填“”、“ ”或“” (2)游乐园中的滑梯(如图是另一个备受小朋友喜爱的游戏.小朋友需从左侧攀爬上楼梯,再水平走至滑梯口,然后从右侧滑梯滑下,完成整个游戏过程.如图4为滑梯简图,已知左侧楼梯的倾斜角,右侧滑梯的倾斜角,整个过程中,小朋友运动的距离为,其中水平通道,那么楼梯 ,滑梯 .8.(2015秋•北京期末)北京联合张家口成功申办2022年冬奥会后,滑雪运动已成为人们喜爱的娱乐健身项目.如AB BC CD AB BC ⊥45︒EF FG 1)AB O OC 1OC m =B h m AB A B ''2A B AB ''=O A B ''B 'h 'h 'h ><=)3)45A ∠=︒30C ∠=︒5+1BD m =AB =m DC =m图是某滑雪场为初学者练习用的斜坡示意图,出于安全因素考虑,决定将斜坡的倾角由降为,已知原斜坡坡面长为200米,点,,在同一水平地面上,求改善后的斜坡坡角向前推进的距离.(结果保留整9.(2016•朝阳区校级模拟)如图,是某公园“六一”前新增设的一架滑梯,该滑梯高度,滑梯着地点与梯架之间的距离.(1)求滑梯的长.(2)若规定滑梯倾斜面不超过45度属于安全范围,通过计算说明这架滑梯的倾斜角是否符合要求?45︒30︒AB D B C BD 1.41≈ 1.73≈ 2.45)≈2AC cm =B 4BC cm =AB ()ABC ∠解直角三角形的应用-坡度坡角问题(北京习题集)(教师版)参考答案与试题解析一.选择题(共2小题)1.(2019秋•石景山区期末)如图,某斜坡的长为,坡顶离水平地面的距离为,则这个斜坡的坡度为 A .B . CD . 【分析】首先根据,求出,再求正切即可.【解答】解:,, , ,, 故选:.【点评】此题主要考查了解直角三角形的应用,关键是掌握特殊角的三角函数值.2.(2016秋•丰台区期末)如果某个斜坡的坡度是,那么这个斜坡的坡角为 A .B .C .D .【分析】根据坡角的正切坡度,列式可得结果.【解答】解:设这个斜坡的坡角为,由题意得:, ; 故选:.【点评】本题考查了解直角三角形的应用坡度坡角问题,明确坡度实际就是一锐角的正切值;在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.100m 50m ()30︒60︒12100AB m =50BC m =30α=︒100AB m =Q 50BC m =501sin 1002α∴==30α∴=︒tan 30∴︒=∴C ()30︒45︒60︒90︒=αtan α==30α∴=︒A -二.填空题(共3小题)3.(2019•朝阳区模拟)2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,一位同学乘滑雪板沿斜坡笔直滑下了200米,若斜坡与水平面的夹角为,则他下降的高度为 米.(用含的式子表示)【分析】如图,设下滑的距离为米,下降的高度为线段.解直角三角形求出即可;【解答】解:如图,设下滑的距离为米,下降的高度为线段.在中,(米,故答案为.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,属于中考常考题型.4.(2018秋•通州区期中)一运动员乘雪橇沿坡比的斜坡笔直滑下,若下滑的垂直高度为1000米.则这名运动员滑到坡底的路程是 2000 米.【分析】由坡比可得垂直高度与对应的水平宽度的比值,因而可求出垂直高度为1000米对应的水平宽度,再用勾股定理求出斜坡长即可.【解答】解:由坡比的定义得,坡面的铅直高度1000米与水平宽度之比为,所以水平宽度为(米,答:这名运动员滑到坡底的路程是2000米.故答案为:2000米.【点评】此题考查了解直角三角形坡度坡角问题,正确理解坡比的定义是解题的关键,注意坡比与坡角的区别.坡α200sin αg α200AB =AC AC 200AB =AC Rt ABC ∆sin 200sin AC AB αα==g g )200sin αg 2000=)-度是坡面的铅直高度和水平宽度的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用表示,常写成的形式.把坡面与水平面的夹角叫做坡角,坡度与坡角之间的关系为:.5.(2017秋•石景山区期末)“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面的坡度达到,那么立柱的长为 2.5 米.【分析】由坡度的概念得出,根据可得的长度. 【解答】解:根据题意知, ,, 解得:,故答案为:2.5.【点评】本题主要考查解直角三角形的应用坡度坡角问题,解题的关键是熟练掌握坡度的定义.三.解答题(共4小题)6.(2017秋•昌平区校级期中)深圳市民中心广场上有旗杆如图1所示,某学校数学兴趣小组测量了该旗杆的高度.如图2,某一时刻,旗杆的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长为16米,落在斜坡上的影长为8米,;同一时刻,太阳光线与水平面的夹角为,1米的标杆竖立在斜坡上的影长为2米,求旗杆的高度.【分析】由同一时间内,太阳光线照射的影长,都是成比例的,所以可过点作,交于点,则,则可求出的长;由太阳光线与水平面的夹角为,可过点作,可解得h l i 1:i m =αi α:tan i h l α==BC 1:1.2AC 11.2AC AB =3AB =AC 11.2AC AB =3AB =Q ∴13 1.2AC = 2.5AC =-AB BC CD AB BC ⊥45︒EF FG C PC BC ⊥AD P PCD EFG ∆∆∽PC 45︒P PQ AB ⊥米,从而解出答案.【解答】解:过点作,交于点,过点作,垂足为,,,, (米,四边形为矩形,(米,(米,在中,,(米,(米.答:旗杆的高度为 20 米.【点评】此题考查了解直角三角形的应用,用到的知识点是平行投影的性质、相似三角形的判定与性质以及解直角三角形,关键是根据题意画出辅助线,得出相似三角形.7.(2017春•西城区校级期中)上海迪士尼乐园,是中国内地首座迪士尼主题乐园,于2016年6月16日正式开园.小明和妈妈在游玩迪士尼乐园的过程中,发现了一些娱乐设施中蕴含着数学问题,请你利用所学的知识帮助小明解答这些问题:(1)游乐园里的跷跷板(如图是深受大人和孩子青睐的娱乐设施之一,如图2是跷跷板示意图,横板绕其中点上下转动,立柱与地面垂直.若,那么点被跷起的最大高度为 2 .若将横板换成横板,且,仍为的中点,设点的最大高度为,则 (填“”、“ ”或“”(2)游乐园中的滑梯(如图是另一个备受小朋友喜爱的游戏.小朋友需从左侧攀爬上楼梯,再水平走至滑梯口,16AQ PQ BC ===C PC BC ⊥AD P P PQ AB ⊥Q PCD EFG ∆∆Q ∽∴PC CD EF FG =∴812PC =4PC ∴=)Q PQBC 16PQ BC ∴==)4BQ PC ==)Q Rt APQ ∆45APQ ∠=︒16AQ PQ ∴==)16420AB AQ BQ ∴=+=+=)1)AB O OC 1OC m =B h m AB A B ''2A B AB ''=O A B ''B 'h 'h 'h ><=)3)然后从右侧滑梯滑下,完成整个游戏过程.如图4为滑梯简图,已知左侧楼梯的倾斜角,右侧滑梯的倾斜角,整个过程中,小朋友运动的距离为,其中水平通道,那么楼梯 ,滑梯 .【分析】(1)利用三角形的中位线定理即可解决问题.(2)如图4中,作于,于.则四边形是矩形,设,构建方程求出即可解决问题.【解答】解:(1)如图2中,作于.,,,,若将横板换成横板,且,仍为的中点,设点的最大高度为,同法可得, ,故答案为2,.(2)如图4中,作于,于.则四边形是矩形,,设,在中,,,,在中,,,45A ∠=︒30C ∠=︒5+1BD m =AB =m DC =m BE AC ⊥E DF AC ⊥F BEFD BE DF xm ==x BH AC ⊥H OA OB =Q OC BH ⊥AC CH ∴=22BH OC m ∴==AB A B ''2A B AB ''=O A B ''B 'h '2h m '=h h ∴='=BE AC ⊥E DF AC ⊥F BEFD BE DF ∴=BE DF xm ==Rt ABE ∆45A ∠=︒Q AE BE xm ∴==AB ∴=Rt DCF ∆30C ∠=︒Q 22CD DF xm ∴==,,,,故答案为4.【点评】本题考查解直角三角形的应用,三角形的中位线定理,梯形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(2015秋•北京期末)北京联合张家口成功申办2022年冬奥会后,滑雪运动已成为人们喜爱的娱乐健身项目.如图是某滑雪场为初学者练习用的斜坡示意图,出于安全因素考虑,决定将斜坡的倾角由降为,已知原斜坡坡面长为200米,点,,在同一水平地面上,求改善后的斜坡坡角向前推进的距离.(结果保留整【分析】根据题意和正切的概念分别求出、的长,计算即可.【解答】解:,,米,,5AB BD CD ++=+Q ∴125x ++=+2x ∴=AB ∴=24CD x m ==45︒30︒AB D B C BD 1.41≈ 1.73≈ 2.45)≈CB CD 90C ∠=︒Q 45ABC ∠=︒141AC BC ∴==≈tan AC D CD∠=米, 米,答:改善后的斜坡坡角向前推进的距离为104米.【点评】本题考查的是解直角三角形的应用坡度坡角问题,熟记锐角三角函数的定义是解题的关键.9.(2016•朝阳区校级模拟)如图,是某公园“六一”前新增设的一架滑梯,该滑梯高度,滑梯着地点与梯架之间的距离.(1)求滑梯的长.(2)若规定滑梯倾斜面不超过45度属于安全范围,通过计算说明这架滑梯的倾斜角是否符合要求?【分析】(1)直接利用勾股定理得出的长,进而得出答案;(2)直接利用特殊角的三角函数值,再结合,得出答案. 【解答】解:(1)由题意可得:在直角三角形中,,答:滑梯的长为;(2)因为:,, 所以,故符合要求.【点评】此题主要考查了解直角三角形的应用以及坡角问题,正确把握坡角的定义是解题关键.245tan 30AC CD ∴==≈︒104BD CD CB ∴=-=BD -2AC cm =B 4BC cm =AB ()ABC ∠AB 1tan 2AC B BC ==ABC )AB cm ==AB 1tan 2AC B BC ==tan 451︒=045B ︒<<︒。

人教版备考2023中考数学二轮复习 专题20 解直角三角形(教师版)

人教版备考2023中考数学二轮复习 专题20 解直角三角形(教师版)

人教版备考2023中考数学二轮复习 专题20 解直角三角形一、单选题1.(2021九上·莘县期中)河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比是1∶√3,则AC的长是( )A .6√2米B .12米C .3√3米D .6√3米【答案】D【知识点】解直角三角形的应用﹣坡度坡角问题 【解析】【解答】解:∵迎水坡AB 的坡比为1∶√3, ∴BC AC =1√3,∵堤高BC=6米,∴AC =√3BC =6√3(米). 故答案为:D.【分析】根据坡度比可得BC AC =√3,再将数据代入求出AC 的长即可。

2.(2021九上·莘县期中)如图,一艘海轮位于灯塔P 的北偏东55°方向的A 处,已知PA =6海里,如果海轮沿正南方向航行到灯塔的正东方向,则海轮航行的距离AB 的长是( )A .6海里B .6cos55°海里C .6sin55°海里D .6tan55°海里【答案】B【知识点】解直角三角形的应用﹣方向角问题【解析】【解答】由题意可知∠NPA =55°,PA =6海里,∠ABP =90°.∵AB ∥NP ,∴∠A =∠NPA =55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,PA=6海里,∴AB=AP•cosA=6cos55°海里.故答案为:B.【分析】先利用平行线的性质可得∠A=∠NPA=55°,再利用解直角三角形的方法求出AB=AP•cosA =6cos55°海里即可。

3.(2022九上·襄汾期中)一配电房示意图如图所示,它是一个轴对称图形,已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+3sinα)m D.(4+3tana)m【答案】B【知识点】解直角三角形的应用【解析】【解答】解:过点A作AD⊥BC于D,如图所示:∵它是一个轴对称图形,∴BD=DC=12BC=3m,∴tanα=ADBD=AD3,即AD=3tanα,∴房顶A离地面EF的高度为(4+3tanα)m,故答案为:B.【分析】过点A作AD⊥BC于D,根据tanα=ADBD=AD3,求出AD=3tanα,再求出EF的长即可。

备考2022年中考数学二轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2022年中考数学二轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案

备考2022年中考数学二轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案解直角三角形的应用﹣坡度坡角问题解答题专训1、(2018呼和浩特.中考真卷) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)2、(2019醴陵.中考模拟) 如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)3、(2018嘉兴.中考模拟) 如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=60°,坡长AB=20 m,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=45°,求AF的长度.4、(2012丽水.中考真卷) 学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1:3(即为CD与BC的长度之比).A,D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.5、(2017安徽.中考模拟) 某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度.如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).6、(2018驻马店.中考模拟) 如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)7、(2017唐河.中考模拟) 如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).8、(2021枣阳.中考模拟) 某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度,(结果精确到0.lm.温馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27)9、(2018梧州.中考真卷) 随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上 D 点处测得瀑布顶端 A 点的仰角是30°,测得瀑布底端 B 点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得 CG=27m, GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点 F).斜坡 CD=20m,坡角∠ECD=40°.求瀑布 AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)10、(2016贺州.中考真卷) 如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)11、(2019成都.中考真卷) 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼处,测得起点拱门的顶部的俯角为,底部的俯角为,如果处离地面的高度米,求起点拱门的高度.(结果精确到米;参考数据:,,)12、(2014遵义.中考真卷) 如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)13、(2020河南.中考模拟) 如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).14、(2020凤翔.中考模拟) 某公园有一座古塔,古塔前有一个斜坡坡角,斜坡高米,平行于水平地面的一个平台.小华想利用所学知识测量古塔的高度她在平台的点处水平放置--平面镜,并沿着方向移动,当移动到点N时,刚好在镜面中看到古塔顶端点的像,这时,测得小华眼睛与地面的距离米,米,米,米,已知请你根据题中提供的相关信息,求出古塔的高度.(参考数据:)15、(2021滨城.中考模拟) 某数学社团开展实践性研究,测量翠岛湖公园的信号塔.小明站在点处仰望塔顶,测得仰角为,小明沿着坡向下走了13米后,到达了处,坡的坡度为5:12,从到塔底的距离为75米,请帮助小明计算信号塔的高度.解直角三角形的应用﹣坡度坡角问题解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用三角函数测高导学案
姓名:
一、相关定义
二、典型题型
1、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
2、某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
3、如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
4、5、
6、同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽12m,坝高23m,斜坡AB的坡度i=3
1:,斜坡CD的坡度i=1∶3,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m参考数据:3≈1.732)
7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?。

相关文档
最新文档