解直角三角形(方位角、坡度角)
2024年解直角三角形方位角、坡度角讲课精彩教案

2024年解直角三角形方位角、坡度角讲课精彩教案一、教学内容1. 利用直角三角形的性质,解决实际生活中的方位角问题;2. 利用直角三角形计算坡度角,并应用于地形、建筑设计等领域。
二、教学目标1. 理解并掌握方位角与坡度角的概念及计算方法;2. 能够运用直角三角形的性质解决实际问题,如确定物体方位和计算坡度;3. 培养学生的空间想象能力和解决实际问题的能力。
三、教学难点与重点教学难点:理解方位角和坡度角的实际应用,以及计算方法的灵活运用。
教学重点:掌握直角三角形的性质,以及如何利用这些性质解决方位角和坡度角问题。
四、教具与学具准备1. 教具:直角三角形模型、地球仪、坡度计算器;2. 学具:三角板、量角器、计算器。
五、教学过程1. 实践情景引入(5分钟)利用地球仪展示不同地点的方位角,引导学生思考如何计算和确定方位角。
2. 知识讲解(15分钟)(1)回顾直角三角形的性质;(2)介绍方位角的概念及计算方法;(3)介绍坡度角的概念及计算方法。
3. 例题讲解(15分钟)(1)计算给定地点的方位角;(2)计算给定地形的坡度角。
4. 随堂练习(10分钟)(1)学生独立完成练习题,计算给定地点的方位角;(2)学生分组讨论,计算给定地形的坡度角。
六、板书设计1. 方位角的定义及计算方法;2. 坡度角的定义及计算方法;3. 例题及解答过程。
七、作业设计1. 作业题目:(1)给定一点,求该点的方位角;(2)给定一个斜面,求其坡度角。
2. 答案:(1)方位角的计算结果为:度;(2)坡度角的计算结果为:度。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角和坡度角的概念理解较为顺利,但在计算过程中仍存在一些问题,如计算方法不熟练、单位换算错误等,需要在课后加强练习。
2. 拓展延伸:引导学生思考在实际生活中,还有哪些问题可以利用直角三角形的性质来解决,鼓励学生进行探索和研究。
重点和难点解析1. 实践情景引入的理解和应用;2. 知识讲解中方位角和坡度角计算方法的掌握;3. 例题讲解中解题步骤的详细解释;4. 随堂练习的设计与实施;5. 作业设计中题目难度的把握及答案的准确性;6. 课后反思与拓展延伸的有效性。
解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。
具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。
二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。
2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。
三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。
教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。
四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。
学具:直角三角形模型、计算器、练习本。
五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。
2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。
3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。
(2)通过例题讲解,让学生掌握解直角三角形的方法。
(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。
4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。
5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。
六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。
利用方位角、坡角解直角三角形课件

解直角三角形
24.4 解直角三角形
第3课时 利用方位角、坡角解直角三角形
知识点❶:坡角在解直角三角形中的应用 1.如图,某水库堤坝横断面迎水坡 AB 的坡比是 1∶ 3,堤坝高 BC=50 m,则迎水坡面 AB 的长度是( A ) A.100 m C.150 m D.200 m 2.如图,某村准备在坡角为α的山坡上栽树,要求相邻两树之间 的水平距离为 5 米,那么两树的坡面距离 AB=( B ) A.5cosα 米 C.5sinα 米 5 B. 米 cosα D. 5 米 sinα B.100 3 m
解:(1)由题意,得∠BAC=90°,∴BC= 402+(8 3)2=16 7(km), 4 ∴轮船航行的速度为:16 7÷ =12 7(km/h) 3 (2)能,理由如下:作 BD
⊥l 于点 D,CE⊥l 于点 E,设直线 BC 交 l 于点 F,则 AD=AB·cos∠ BAD=40×cos60°=20(km), BD=AB· sin∠BAD=40×sin60°=20 3 (km),CE=AC·sin∠CAE=8 3×sin30°=4 3(km),AE=AC·cos ∠CAE=8 3×cos30°=12(km).∵BD⊥l,CE⊥l,∴∠BDF=∠CEF EF+32 DF BD =90°.又∵∠BFD=∠CFE, ∴△BDF∽△CEF, ∴ = , ∴ EF CE EF = 20 3 ,∴EF=8 km.∴AF=AE+EF=12+8=20(km).∵AM<AF< 4 3
知识点❷:方位角在解直角三角形中的应用 3.如图,小雅家(图中点 O 处)门前有一条东西走向的公路,测得 有一水塔(图中点 A 处)在她家北偏东 60°的 500 m 处,那么水塔所在 的位置到公路的距离 AB 是( A ) A.250 m B.250 3 m C. 500 3 m D.250 2 m 3
28.2.5+用解直角三角形解方位角、坡角的应用[1]
![28.2.5+用解直角三角形解方位角、坡角的应用[1]](https://img.taocdn.com/s3/m/2503b06052ea551810a68789.png)
知识点 2 用解直角三角形解坡角问题
知2-讲
探究
B
C
一、如图是某一大坝的横断面:
坡面AB的垂直高度与
水平宽度AE的长度之 A α
D
E
比是α的什么三角函数?
tan
BE 坡面AB与水平面的夹角叫做坡角.
AE
坡度的定义:
坡面的垂直高度与水平宽度之比 叫做坡度,记作 i .
ih l
Aα l
知2-讲
B h
答:木箱端点E距地面AC的高度EF为3 m.
总结
知2-讲
(1)坡角是水平线与斜边的夹角,不要误解为铅垂线与 斜边的夹角;
(2)坡比是坡角的正切值.
知2-练
1 【2017·天门】为加强防汛工作,某市对一拦水坝 进行加固.如图,加固前拦水坝的横断面是梯形 ABCD. 已知迎水坡面AB=12米,背水坡面CD= 123米,∠B=60°,加固后拦水坝的横断面为梯 形ABED,tan E= 3 3 ,则CE的长为____8____ 13 米.
c
c
b
知1-讲
知识点 1 用解直角三角形解方位角问题
方位角的定义:指北或指南方向线与目标方向所成的 小于90°的角叫做方位角.
认识方位角
北 D E
45° 45°
西
C
O
F
B南
知1-讲
H (1)正东,正南,正西,正北 射线OA OB OC OD
东 A (2)西北方向:__射__线__O_E__
西南方向:__射__线__O_F___ 东南方向:__射__线__O_G___ G 东北方向:_射__线__O__H___
知2-练
2 【中考·济宁】如图,斜面AC的坡度(CD与AD的比) 为1:2,AC=3 5 米,坡顶有一旗杆BC,旗杆顶 端B点与A点有一条彩带相连.若AB=10米,则旗 杆BC的高度为( A ) A.5米 B.6米 C.8米 D.(3+ 5 )米
2024年解直角三角形方位角、坡度角讲课教案

2024年解直角三角形方位角、坡度角讲课教案一、教学内容本节课我们将学习教材第十章“解直角三角形的应用”中的方位角与坡度角。
具体内容包括:理解方位角的概念,掌握利用正切值计算方位角;理解坡度角的概念,掌握利用正弦值和余弦值计算坡度角。
二、教学目标1. 理解并掌握方位角与坡度角的概念。
2. 学会使用正切、正弦和余弦值计算方位角与坡度角。
3. 能够在实际问题中运用所学的知识,解决有关方位角与坡度角的问题。
三、教学难点与重点重点:方位角与坡度角的概念及其计算方法。
难点:在实际问题中运用所学的知识,解决有关方位角与坡度角的问题。
四、教具与学具准备1. 教具:三角板、量角器、多媒体课件。
2. 学具:直角三角形模型、计算器。
五、教学过程1. 实践情景引入:通过展示实际生活中的方位角与坡度角问题,引导学生思考如何解决这些问题。
2. 知识讲解:a. 讲解方位角的概念,引导学生通过观察三角板理解方位角的含义。
b. 讲解正切值在计算方位角中的应用,通过例题进行演示。
c. 讲解坡度角的概念,引导学生通过观察直角三角形模型理解坡度角的含义。
d. 讲解正弦值和余弦值在计算坡度角中的应用,通过例题进行演示。
3. 随堂练习:让学生完成教材中的相关习题,巩固所学知识。
4. 解题方法与技巧讲解:针对学生在随堂练习中遇到的问题,进行讲解和指导。
六、板书设计1. 方位角与坡度角的概念。
2. 正切、正弦和余弦值在计算方位角与坡度角中的应用。
3. 例题解答步骤。
七、作业设计1. 作业题目:a. 计算给定直角三角形的方位角。
b. 计算给定直角三角形的坡度角。
2. 答案:见附页。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角与坡度角的概念掌握情况,以及计算方法的运用。
2. 拓展延伸:引导学生思考方位角与坡度角在实际生活中的应用,如建筑设计、地形测量等。
重点和难点解析1. 教学内容的针对性及深度。
2. 教学目标的明确性与可衡量性。
3. 教学难点与重点的识别。
《用解直角三角形解方位角、坡角的应用》PPT课件

4.4 解直角三角形的应用
第2课时 用解直角三角形解方 位角、坡角的应用
1 课堂讲解 用解直角三角形解方位角问题
用解直角三角形解坡角问题
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
观察下图中图形的方位,试着描述它们的位置.
知识点 1 用解直角三角形解方位角问题
知1-讲
1. 方向角的定义: 指北或指南的方向线与目标方向线所成的小于90°的 角叫作方向角. 特别警示:方向角和方位角不同,方位角是指从某点 的指北方向线起, 按顺时针方向到目标方向线之间 的水平夹角,变化范围为0 ~ 360°,而方向角的变 化范围是0 ~ 90° .
如图1,从山脚到山顶有两条路 AB 与 BD,问哪条
路比较陡?
B
A
D
图1
知2-讲
如何用数量来刻画哪条路陡呢? 如图2,从山坡脚下点 A 上坡走到点 B 时,升高的
高度 h ( 即线段 BC 的长度 ) 与水平前进的距离 l ( 即线 段 AC 的长度 ) 的比叫作坡度,用字母 i 表示,即
i h (坡度通常写成 1:m 的形式) . l
则在Rt △ ACE 中,CE= 3x ,AC=2x,
在Rt △BCE 中,BE=CE= 3x,
∴ BC= 6x.
∵ AB=AE+BE,∴ x + 3x=60( 6 + 2) ,
解得x = 60 2 海里.
∴ AC =120 2海里,BC = 120 3 海里.
知1-讲
解:(2) 如图,过点 D 作 DF ⊥ AC 于点 F,
俯角为 60°. 已知该山坡的坡度i 为1 ∶ 3 ,点P,H,
B,C,A 在同一个平面上,点H,B,C 在同一条直 线上,且PH ⊥ HC. (1) 山坡坡角的度数等于
人教版九年级数学下册22 第3课时 利用方位角、坡度角解直角三角形教案与反思

28.2.2应用举例满招损,谦受益。
《尚书》原创不容易,【关注】,不迷路!第3课时利用方位角、坡度解直角三角形1.知道测量中方位角、坡角、坡度的概念,掌握坡度与坡角的关系;(重点) 2.能够应用解直角三角形的知识解决与方位角、坡度有关的问题.(难点)一、情境导入在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图,坡面的铅垂高度(的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tanα.显然,坡度越大,坡角α就越大,坡面就越陡.我们这节课就解决这方面的问题.二、合作探究探究点一:利用方位角解直角三角形【类型一】利用方位角求垂直距离如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区(参考数据:3≈1.732,2≈1.414).解析:过点P作PC⊥AB,C是垂足.AC与BC都可以根据三角函数用PC表示出来.根据AB的长得到一个关于PC的方程,求出PC的长.从而可判断出这条高速公路会不会穿越保护区.解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC·tan30°,BC=PC·tan45°.∵AC+BC=AB,∴PC·tan30°+PC·tan45°=200,即33PC+PC=200,解得PC≈126.8km>100km.答:计划修筑的这条高速公路不会穿越保护区.方法总结:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.变式训练:见《学练优》本课时练习“课堂达标训练第1题【类型二】利用方位角求水平距离“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短.画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解析:作CD⊥AB于D在Rt△ACD中,据题意有∠CAD=30°,求得AD.在Rt △CBD中,据题意有∠CBD=60°,求得BD.又由AD-BD=500,从而解得CD.解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,据题意有∠CAD =30°,∵tan ∠CAD =D AD ,∴AD =CD tan30°=3CD .在Rt △CBD 中,据题意有∠BD =60°,∵tan ∠CBD =CD BD ,∴BD =CD tan60°=33CD .又∵AD -BD =500,∴3CD -33CD =500,解得CD ≈433().答:所修公路长约为433m.方法总结:在解决有关方位角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方位角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.变式训练:见《学练优》本课时练习“课后巩固提升”第4题探究点二:利用坡角、坡度解直角三角形 【类型一】利用坡角、坡度解决梯形问题如图,某水库大坝的横截面为梯形ABCD ,坝顶宽BC =3米,坝高为2米,背水坡AB 的坡度i =1∶1,迎水坡CD 的坡角∠ADC 为30°.求坝底AD 的长度.解析:首先过B 、C 作BE ⊥AD 、CF ⊥AD ,可得四边形BEFC 是矩形,又由背水坡AB 的坡度i =1∶1,迎水坡CD 的坡角∠ADC 为30°,根据坡度的定义,即可求解.解:分别过B 、C 作BE ⊥AD 、CF ⊥AD ,垂足为E 、F ,可得BE ∥CF ,又∵BC ∥AD ,∴BC =EF ,BE =CF .由题意,得EF =BC =3,BE =CE =2.∵背水坡AB 的坡度i =1∶1,∴∠BAE =45°,∴AE =BEtan45°=2,DF =CFtan30°=23,∴AD =AE +EF +DF =2+3+23=5+23(m).答:坝底AD 的长度为(5+23)m.方法总结:解决此类问题一般要构造直角三角形,并借助于解直角三角形的知识求解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】利用坡角、坡度解决三角形问题如图,某地下车库的入口处有斜坡AB,它的坡度为i=1∶2,斜坡AB 的长为65m,斜坡的高度为A,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).解析:(1)利用坡度为i=1∶2,得出A;(2)∵A,∴B,∴C.在Rt△A.答:点B与点C之间的距离是12m.方法总结:本题考查了解直角三角形的应用中坡度、坡角问题,明确坡度等于坡角的正切值是解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计1.方位角的意义;2.坡度、坡比的意义;3.应用方位角、坡度、坡比解决实际问题.将解直角三角形应用到实际生活中,有利于培养学生的空间想象能力,即要求学生通过对实物的观察或根据文字语言中的某些条件,画出适合他们的图形.这一方面在教学过程应由学生展开,并留给学生思考的时间,给学生充分的自主思考空间和时间,让学生积极主动地学习.【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
数学解直角三角形(仰角俯角方位角坡度坡角)课件(人教新课标九级下)资料

B
2、(2012广安)如图2012年4月10日,中国渔民在中国南 海黄岩岛附近捕鱼作业,中国海监船在A地侦查发现,在南 偏东60°方向的B地,有一艘某国军舰正以每小时13海里的 速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国 渔民。此时,C地位于中国海监船的南偏东45 °方向的10 海里处,中国海监船以每小时30海里的速度赶往C地救援我 国渔民,能不能及时赶到?
塔楼AB的高. (参考数据:tan 40 21 , tan 55 7 )
25
5
答案:空中塔楼AB高
A 约为105米
濠
河 55° 40°
B
C 50m D
1.如图,某飞机于空中 A处探测到目标C,此时 飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`,求 飞机A到控制点B的距 离.(精确到1米)
tanA=
a b
A
bC
利用解直角三角形的知识解决实际问题的一般 过程是:
(1)将实际问题抽象为数学问题(画出平面图 形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形函 数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
爬坡图1
爬 坡 图
2
爬坡图1
解:由题意得,在Rt△PAO与Rt△PBO中
PAO 30, PBO 45
PO tan 30, PO tan 45 P
OA
OB
α β
OA 450 450 3, tan 30
450米
OB 450 450 tan 45
AB OA OB (450 3 450)(m)O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修路、挖河、开渠和筑坝时,设计图纸上都要注 明斜坡的倾斜程度.
坡面的铅垂高度(h)和水平长度(l)的比叫做 坡面坡度(或坡比). 记作i , 即 i = h .
l
坡面的度夹通角常叫写做成坡1∶角m,的记形作式a,,如有i=i=1h∶l 6=.坡tan面a与. 水平 显然,坡度越大,坡角a就越大,坡面就越陡.
65° A P
C
34°
B
例4.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
A
60°
B 12
30°
DF
解:由点A作BD的垂线
α
在每小段上,我们都构造出直角三角形,利用上面 的方法分别算出各段山坡的高度h1,h2,…,hn,然后我们再 “积零为整”,把h1,h2,…,hn相加,于是得到山高h.
以上解决问题中所用的“化整为零,积零为整”“化 曲为直,以直代曲”的做法,就是高等数学中微积分的 基本思想,它在数学中有重要地位,在今后的学习中, 你会更多地了解这方面的内容.
l
h
α,测山高的困难在于;坝坡是“直” 的,而山坡是“曲”的,怎样解决这样的问题呢?
我们设法“化曲为直,以直代曲”. 我们可以把 山坡“化整为零”地划分为一些小段,图表示其中一 部分小段,划分小段时,注意使每一小段上的山坡近 似是“直”的,可以量出这段坡长l1,测出相应的仰 角a1,这样就可以算出这段山坡的高度h1=l1sina1l. h
解直角三角形(3)
介绍:
方位角
• 指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角.
• 如图:点A在O的北偏东30°
• 点B在点O的南偏西45°(西南方向)
北
A
30°
西
东
O
45°
B
南
例1. 如图,一艘海轮位于灯塔P的北偏东65°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东34°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远? (精确到0.01海里)
交BD的延长线于点F,垂足为F, ∠AFD=90° 由题意图示可知∠DAF=30°
设DF= x , AD=2x 则在Rt△ADF中,根据勾股定理
A FA D 2D F 22x2x23 x
60° B
A DF
在Rt△ABF中,
30°
tanABF AF tan 30 3x
BF
12 x
解得x=6
AF6x6310.4 10.4 > 8没有触礁危险
tanDEi 1:3
CE
18.4
AD 6m FE
i=1:3 β C
知识小结
1.在解直角三角形及应用时经常接触到 的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化 (解直角三角形)
归纳
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角 三角形的问题); (2)根据条件的特点,适当选用锐角三角形函数等去解直角三角 形; (3)得到数学问题的答案; (4)得到实际问题的答案.
例5. 如图,拦水坝的横断面为梯形ABCD(图中 i=1:3是指坡面的铅直高度DE与水平宽度CE的比 ),根据图中数据求:(1)坡角a和β;
(2)坝顶宽AD和斜坡AB的长(精确到0.1m)
解:(1)在Rt△AFB中,∠AFB=90°
tanAFi1: 1.5
BF
i=1:1. 5
α B
33.7
在Rt△CDE中,∠CED=90°
如图
铅垂 高度
h
i h:l
i 坡度或坡比
坡角
l
l水平长度
化整为零,积零为整,化曲为直,以直代曲的解决问题 的策略
解直角三角形有广泛的应用,解决问题时,要根
据实际情况灵活运用相关知识,例如,当我们要测 量如图所示大坝的高度h时,只要测出仰角a和大坝 的坡面长度l,就能算出h=lsina,但是,当我们要测 量如图所示的山高h时,问题就不那么简单了,这 是由于不能很方便地得到仰角a和山坡长度l