2012年中考数学试题(含答案)

合集下载

2012年安徽中考数学试卷(解析版)

2012年安徽中考数学试卷(解析版)

2012年安徽省初中毕业学业考试数 学 本试卷共8大题,计23小题,满分150分,考试时间120分钟。

题号 一 二 三 四 五 六 七 八 总分 得分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( ) A .3 B .-3 C .31D .31 考点解剖:本题考查了有理数的运算,解题的关键掌握有理数的加法法则。

解题思路:方法一:根据有理数的加法法则,互为相反的两个数的和为0,可以做出正确的选择。

方法二:也可以根据有理数的加法与减法互为逆运算来求解。

解答过程:(1)∵互为相反数的两个数的和为0,而-3的相反数是3,,∴这个数是3,故选A .(2)∵所求的数与-3的和为0,∴这个数是0-(-3)=0+3=3,故选A .答案:A .规律总结:有理数加法运算可以根据其法则先确定结果的符号,再确定结果的绝对值;也可以依据有理数加减法互为逆运算,先列出符合题意得算式,再运算。

关键词:相反数 有理数的加法 有理数的减法2. (2012安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B . C . D .考点解剖:本题考查了三视图的概念,正确理解主视图(正视图)的概念是解题的关键。

解题思路:根据三视图(主视图)的概念,找到各选项的主视图,从而正确选择主视图是三角形的选项。

解答过程:选项A 、B 、D 图形的主视图是矩形,只有选项C 图形的主视图是三角形,故选C . 答案:C .规律总结:我们从不同的方向观察同一个物体,可能看到不同的图形,其中把从正面看到的平面图形叫做主视图。

关键词:画三视图3.(2012安徽,3,4分)计算(-2x 2)3的结果是( )A.-2x 5 B .-8x 6 C .-2x 6 D .-8x 5考点解剖:本题考查了幂的运算性质中的积的乘方和幂的乘方的运算性质,正确掌握幂的运算性质是解题的关键。

2012年山西中考数学真题卷含答案解析

2012年山西中考数学真题卷含答案解析

山西省2012年高中阶段教育阶段学校招生统一考试数学10A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算-2-5的结果是( )A.-7B.-3C.3D.72.如图,直线AB ∥CD,AF 交CD 于点E,∠CEF=140°,则∠A 等于( )A.35°B.40°C.45°D.50° 3.下列运算正确的是( )A.√4=±2B.2+√3=2√3C.a 2·a 4=a 8D.(-a 3)2=a 64.为了实现街巷硬化工程高质量“全覆盖”,我省今年1~4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为( ) A.0.927×1010元 B.92.7×108元 C.9.27×1011元 D.9.27×109元5.如图,一次函数y=(m-1)x-3的图象分别与x 轴、y 轴的负半轴相交于点A 、B,则m 的取值范围是( )A.m>1B.m<1C.m<0D.m>06.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )A.14B.13C.12D.237.如图所示的工件的主视图是()8.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,且EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.13B.23C.12D.349.如图,AB是☉O的直径,C、D是☉O上的点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°10.已知直线y=ax(a≠0)与双曲线y=kx(k≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B.(-6,-2)C.(-2,-6)D.(6,2)11.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.5√3cmB.2√5cmC.485cm D.245cm12.如图是某公园的一角,∠AOB=90°,AB⏜的半径OA长是6米,C是OA的中点,点D在AB⏜上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.(12π-92√3)米2B.(π-92√3)米2 C.(6π-92√3)米2 D.(6π-9√3)米2第Ⅱ卷(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.不等式组{3-2x <5,x -2≤1的解集是 .14.化简x 2-1x 2-2x+1·x -1x 2+x +2x的结果是 . 15.某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 10 000 5 000 1 000 500 100 50 数量(个) 1 4 20 40 100 200如果花2元钱购买1张彩票,那么所得奖金不少于1 000元的概率是 .16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).17.图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本题共2个小题,第1小题5分,第2小题7分,共12分) (1)计算:(-5)0+√12cos 30°-(13)-1; (2)先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-√3.20.(本题7分)解方程:23x-1-1=36x-2.10B21.(本题6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形;(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.22.(本题8分)今年太原市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请分别把条形统计图和扇形统计图补充完整;(3)若该校共有3000名学生,请你估计全校对“诚信”最感兴趣的人数.23.(本题9分)如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D处测得端点B的俯角为45°,求岛屿两端A、B的距离.(结果精确到0.1米.参考数据:√3≈1.73,√2≈1.41)24.(本题10分)山西特产专卖店销售核桃,其进价为每千克40元.按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(本题12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC 于点N,试判断线段OM与ON的数量关系,并说明理由.图1探究展示:小宇同学展示出如下正确的解法:解:OM=ON.证明如下:连结CO,则CO是AB边上的中线.∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)你有与小宇不同的思考方法吗?请写出你的证明过程;拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连结OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.图226.(本题14分)综合与探究:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q.试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形.若存在,请直接写出....符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.山西省2012年高中阶段教育阶段学校招生统一考试一、选择题1.A将有理数的减法转化为有理数的加法,-2-5=-2+(-5)=-7,故选A.2.B本题考查平行线的性质.因为∠CEF=140°,所以∠FED=40°,又AB∥CD,所以∠A=40°,故选B.3.D根据运算法则进行判断,√4=2,故A错误;由于有理数与无理数不能合并,故B错误;a2·a4=a6,故C错误;(-a3)2=(-1)2·(a3)2=a6,D正确,故选D.评析熟练掌握运算法则是解决此类问题的关键.4.D92.7亿=92.7×108=9.27×109,故选D.评析本题主要考查用科学记数法表示一个较大数的方法.熟记科学记数法的表示形式即a×10n或a×10-n(其中1≤|a|<10,n为整数)是解题关键,注意数字后带有单位时不可忽略其单位.5.B本题考查一次函数的性质,由图象知一次函数y=(m-1)x-3经过二、三、四象限,得m-1<0,解得m<1,故选B.6.A本题考查概率的计算,将摸球情况列树状图或列表如下:第一次第二次白球黑球白球白球,白球白球,黑球黑球黑球,白球黑球,黑球从树状图或列表法分析可知随机摸出一球,摸两次共有四种情况,其中两次都摸到黑球的情况只有一种,所以两次都摸到黑球的概率是14,故选A.7.B主视图即为从正面看到的图形,主视图看到的是一个梯形与一个三角形,故选B.8.C根据三角形面积公式及矩形的面积公式得矩形ABFE的面积是三角形ABM面积的2倍,矩形EFCD的面积是三角形CDN面积的2倍,故阴影部分的面积等于矩形ABCD的面积的一半,所以飞镖落在阴影部分的概率是12,故选C.9.B连结OC,则∠OCE=90°,由同弧所对的圆周角相等得∠A=∠CDB=20°,所以∠COE=40°,所以∠E=90°-40°=50°,故选B.10.C正比例函数图象与双曲线的图象的交点关于原点中心对称,所以由一个交点坐标为(2,6),可以推得另一个交点坐标是(-2,-6),故选C.11.D由菱形的性质知菱形边长为√32+42=5(cm),所以S菱形=12×6×8=5AE,解得AE=245(cm),故选D.评析菱形面积的两种计算方法:一是对角线乘积的一半,二是底乘以高.12.C因为∠AOB=90°,CD∥OB,所以∠OCD=90°,又因为C为OA的中点,所以OD=OA=2OC,所以∠BOD=∠CDO=30°,所以∠DOC=60°,所以CD=sin60°·OD=sin60°·OA=3√3,S阴影=S扇形AOD -S△DOC=60×π×62360-12×3×3√3=(6π-92√3)米2,故此题选C.二、填空题13.答案-1<x≤3解析解不等式3-2x<5得x>-1,解不等式x-2≤1得x≤3,所以不等式组的解集是-1<x≤3.评析 本题主要考查确定不等式组的解集的两种方法:一是数轴法,即分别将两个不等式的解集表示在数轴上,然后通过观察数轴确定不等式组的解集;二是口诀法,即根据大大取大,小小取小,大小小大中间找,大大小小为空集的原则确定不等式组的解集. 14.答案 3x解析x 2-1x 2-2x+1·x -1x 2+x +2x=(x+1)(x -1)(x -1)2·x -1x(x+1)+2x =1x +2x =3x.15.答案 1 4 000(或0.000 25)解析 观察统计表可以知道所得奖金不少于1 000元的彩票有1+4+20=25张,所以所得奖金不少于1 000元的概率是25100 000=14 000(或0.000 25).16.答案 4n-2(或2+4(n-1))解析 第一个图案有正三角形2个;第二个图案有正三角形6个;第三个图案有正三角形10个;第四个图案有正三角形14个;……,即后面的每一个图案比前面一个图案多4个正三角形,所以第n 个图案中正三角形的个数用含有n 的代数式表示是4n-2(或2+4(n-1)). 17.答案 1 000解析 设长方体的高为x cm,则长方体的宽为2x cm,由题图可知x+2x+x+2x=30,解得x=5,所以长方体的宽为10 cm,故长方体的长为30-2×5=20(cm),故长方体的体积为5×10×20=1 000(cm 3).18.答案 (2,2√3)解析 作BE ⊥y 轴于E,BF ⊥AC 交AC 于F,设BC 交y 轴于点M,AC 交y 轴于点N,由于OA 与x 轴正半轴的夹角为30°,所以∠CON=30°,因为OC=2,所以CN=1,ON=√3,在△CNM 中,因为∠MCN=30°,所以MN=√33,由题意得BF=EN=ON=√3,所以EM=2√33,因为△CNM ∽△BEM,所以EM NM =EBCN ,所以2√33√33=EB1,解得BE=2,所以点B 的坐标是(2,2√3).评析 本题主要考查矩形的性质、相似三角形的判定和性质以及坐标系中点的坐标特征的综合应用,在填空题中,属于较难题.三、解答题19.解析(1)原式=1+2√3×√32-3(4分)=1+3-3=1.(5分)(2)原式=4x2-9-4x2+4x+x2-4x+4(8分)=x2-5.(10分)当x=-√3时,原式=(-√3)2-5=3-5=-2.(12分)20.解析方程两边同时乘以2(3x-1),得4-2(3x-1)=3.(2分)化简,得-6x=-3,解得x=12.(6分)检验:x=12时,2(3x-1)=2×(3×12-1)≠0.所以,x=12是原方程的解.(7分)评分说明:检验时,将x=12代入原方程检验或写“经检验……”,均可给分.21.解析(1)在题图3中设计出符合题目要求的图形.(2分)(2)在题图4中画出符合题目要求的图形.(6分)评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.22.解析(1)500.(2分)(2)补全条形统计图(如图1).图1(4分)补全扇形统计图(如图2).图2(6分)(3)3000×25%=750(人),或3000×125500=750(人).答:该校对“诚信”最感兴趣的学生约750人.(8分)23.解析过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,则四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100,CD=500.(2分)在Rt△AEC中,∠C=60°,AE=100.∴CE=AEtan60°=√3=1003√3.(4分)在Rt△BFD中,∠BDF=45°,BF=100,∴DF=BFtan45°=1001=100.(6分)∴AB=EF=CD+DF-CE=500+100-1003√3≈600-1003×1.73≈600-57.67≈542.3(米).(8分)答:岛屿两端A、B的距离为542.3米.(9分)评分说明:其他解法请参照给分.24.解析(1)设每千克核桃应降价x元.(1分)根据题意,得(60-x-40)(100+x2×20)=2240.(4分)化简,得x2-10x+24=0.解得x1=4,x2=6.(6分)答:每千克核桃应降价4元或6元.(7分)(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.(8分)此时,售价为60-6=54(元),5460×100%=90%.(9分)答:该店应按原售价的九折出售.(10分)25.解析(1)依据1:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合).(1分)依据2:角平分线的性质(或角平分线上的点到角的两边的距离相等).(2分)评分说明:考生答案只要与定理内容意思相同即可给分.(2)证明:∵CA=CB,∴∠A=∠B.∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°.∴△OMA≌△ONB(AAS).(4分)∴OM=ON.(5分)评分说明:此题有多种证法,其他证法可参照给分.(3)OM=ON,OM⊥ON.(6分)(注:两个结论都正确只给1分,若考生此处未写两个结论,但在证明过程中有此结论,且证明正确,可不扣分)证明如下:证法一:如图1.连结CO,则CO是AB边上的中线.图1∵∠ACB=90°,∴OC=12AB=OA.(7分)又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°, ∠AOC=∠BOC=90°. ∴∠2=∠CAB=45°,∴∠OCN=∠OAM=135°.(8分)∵FM ⊥MC,∴∠DMC=90°.∵∠3=∠CAB=45°,∴∠4=45°.∴∠3=∠4.∴DM=AM.(9分)∵∠ACB=90°,∴∠NCM=90°.又∵BN ⊥DE,∴∠DNC=90°.∴ 四边形DMCN 是矩形.∴DM=CN.∴AM=CN.(10分)∴△OAM ≌△OCN(SAS).∴OM=ON,∠5=∠6.(11分)∵∠AOC=90°,即∠5+∠7=90°.∴∠6+∠7=90°,即∠MON=90°.∴OM ⊥ON.(12分) 证法二:如图2.连结CO,则CO 是AB 边上的中线.图2∵∠ACB=90°,∴OC=12AB=OB.(7分) 又∵CA=CB,∴∠CAB=∠B=45°, ∠1=∠2=45°,∠AOC=∠BOC=90°. ∴∠1=∠B.(8分)∵BN ⊥DE,∴∠BND=90°.又∵∠B=45°,∴∠3=45°.∴∠3=∠B.∴DN=NB.同证法一可得,四边形DMCN 是矩形.∴DN=MC.(9分)∴MC=NB.(10分)∴△MOC ≌△NOB(SAS).∴OM=ON.(11分) ∠MOC=∠NOB.∴∠MOC-∠4=∠NOB-∠4. 即∠MON=∠BOC=90°.∴OM ⊥ON.(12分)评分说明:此题还有其他证法(如过点O 作OP ⊥AC 于点P,OQ ⊥BC 于点Q,通过证明Rt △OPM ≌Rt △OQN 得证),可参照给分.26.解析 (1)当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3.∵点A 在点B 的左侧,∴A 、B 的坐标分别为(-1,0)、(3,0).当x=0时,y=3.∴C 点的坐标为(0,3).设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则{b 1=3,-k 1+b 1=0,解得{k 1=3,b 1=3,∴直线AC 的解析式为y=3x+3.∵y=-x 2+2x+3=-(x-1)2+4.∴顶点D 的坐标为(1,4).(4分)评分说明:求出直线AC 的解析式给2分,求出B 、D 两点的坐标各1分,共4分.(2)抛物线上有三个这样的点Q,分别为Q 1(2,3),Q 2(1+√7,-3),Q 3(1-√7,-3).(7分)(3)过点B 作BB'⊥AC 于点F,使B'F=BF,则B'为点B 关于直线AC 的对称点.连结B'D 交直线AC 于点M,则点M 为所求.(8分)过点B'作B'E ⊥x 轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2. ∴Rt △AOC ∽Rt △AFB.∴CO BF =CA AB , 由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3.∴AC=√10,AB=4. ∴3BF =√104.∴BF=√.∴BB'=2BF=√.(10分)由∠1=∠2可得Rt △AOC ∽Rt △B'EB, ∴AO B'E =CO BE =CA BB',∴1B'E =3BE =√1024√10,即1B'E =3BE =512. ∴B'E=125,BE=365.∴OE=BE-OB=365-3=215. ∴B'点的坐标为(-215,125).(12分) 设直线B'D 的解析式为y=k 2x+b 2(k 2≠0). ∴{k 2+b 2=4,-215k 2+b 2=125,解得{k 2=413,b 2=4813,∴y=413x+4813.(13分) 由{y =3x +3,y =413x +4813,解得{x =935,y =13235, ∴M 点的坐标为(935,13235).(14分)评分说明:其他解法可参照给分.。

2012年上海中考数学试卷及答案(word版)

2012年上海中考数学试卷及答案(word版)

2012年上海中考数学试题一、选择题:(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A 2xy ;B 33+x y ;C .3x y ;D .3xy .2数据5,7,5,8,6,13,5的中位数是( )A .5;B .6;C .7 ;D .8.3.不等式组2<62>0x x ⎧⎨⎩--的解集是( ) A .>3x -; B .<3x -; C .>2x ; D .<2x .4.在下列各式中,二次根式 )ABC; D.5在下列图形中,为中心对称图形的是( )A .等腰梯形;B .平行四边形;C .正五边形;D .等腰三角形.6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( ) A .外离; B .相切; C .相交; D .内含.二、填空题:(本大题共12题,每题4分,满分48分)7.计算112-= .8.因式分解=xy x - .9.已知正比例函数()=0y kx k ≠,点()2,3-在函数上,则y 随x 的增大而 (增大或减小).10的根是 .11.如果关于x 的一元二次方程26+=0x x c -(c 是常数)没有实根,那么c 的取值范围是.12.将抛物线2=+y x x 向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有 名.分数段60—70 70—80 80—90 90—100 频率0.2 0.25 0.2515.如图,已知梯形ABCD ,AD ∥BC ,=2BC AD ,如果=AD a ,=AB b ,那么=AC (用a ,b 表示).16.在△ABC 中,点D 、E 分别在AB 、AC 上,=ADE B ∠∠,如果=2AE ,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为 .17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .18.如图,在Rt △ABC 中,=90C ∠,=30A ∠,=1BC ,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ED ⊥,那么线段DE 的长为 .B CA三、解答题:(本大题共7题,满分78分)19.(本题满分10分) ()112211231++32221-⎛⎫⨯-- ⎪ ⎪-⎝⎭.20.(本题满分10分)解方程:261393x x x x +=+--.21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在Rt △ABC 中,∠=90ACB ,D 是边AB 的中点,BE ⊥CD ,垂足为点E .己知=15AC ,3=5cosA . (1)求线段CD 的长;(2)求sin ∠DBE 的值.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G .(1)求证:=BE DF(2)当要DF FC =AD DF 时,求证:四边形BEFG 是平行四边形.G FD E B C A24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE , 1=2tan DAE ∠,EF OD ⊥,垂足为F . (1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当=1BC 时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.2012年上海中考数学试题答案11A CB D。

2012年黄石市中考数学试题(带答案)

2012年黄石市中考数学试题(带答案)

2012年黄石市中考数学试题(带答案)鏈哄瘑鈽呭惎鐢ㄥ墠榛勭煶甯?012?濮撳悕锛?鍑嗚€冭瘉鍙凤細娉ㄦ剰浜嬮」锛?1.棰樺嵎鍜岀瓟棰樺崱涓ら儴鍒嗭紝鑰冭瘯鏃堕棿120鍒嗛挓锛屾弧鍒?20鍒? 2.? 3.紝鍋氬湪鍏跺畠鍖哄煙鏃犳晥. ?0皬棰橈紝姣忓皬棰?鍒嗭紝鍏?0鍒嗭級. 1.锛?鐨勫€掓暟鏄?A. B.3 C.锛? D.锛?2.鏌愭槦鐞冪殑浣撶Н绾︿负6635421km3鏈夋晥鏁板瓧锛夎〃绀轰负6.64脳10nkm3锛屽垯n锛?A.4 B.5 C.6 D.7 3.宸茬煡鍙嶆瘮渚嬪嚱鏁皔锛?锛坆涓哄父鏁帮級锛屽綋x锛?鏃讹紝yц€э. A.涓€B.浜?C.涓?D.鍥?4.2012骞?鏈堟煇鏃ユ垜鍥介儴鍒嗗煄甯傜殑鏈€楂樻皵娓鍩庡競姝︽眽鎴愰兘鍖椾含涓婃捣娴峰崡鍗椾含鎷夎惃娣卞湷姘旀俯锛堚剝锛?27 27 24 25 28 28 23 26 璇烽棶杩欑粍鏁版嵁鐨勫钩鍧囨暟鏄?A.24 B.25 C.26 D.27 5.濡傚浘锛?锛夋墍绀猴紝璇ュ嚑浣曚綋鐨勪富瑙嗗浘搴斾负 6.濡傚浘锛?锛夋墍绀猴紝鎵囧舰AOB涓?20锔掞紝鍗婂緞涓? A. B. C. D. 7.鏈変竴鏍归暱40mm x鏍?mm寉鏍?mmx A.x锛?锛寉锛? B.x锛?锛寉锛? C.x锛?锛寉锛? D.x锛?锛寉锛? 8.濡傚浘锛?锛夋墍绀猴紝鐭╁舰绾哥墖ABCD AB锛?cm锛孊C锛?cm锛岀幇灏嗗叾娌縀F瀵规姌锛屼娇寰楃偣C涓庣偣A閲嶅悎锛屽垯AF闀夸负 A. cm B. cm C. cm D.8cm 9.濡傚浘锛?锛夋墍绀猴紝鐩寸嚎CD AB涓虹洿寰勭殑鍦嗙浉鍒囦笌鐐笵骞朵氦BA鐨勫欢闀跨嚎浜庣偣C锛屼笖AB锛?锛孉D锛?锛孭鐐瑰湪鍒囩嚎CD涓婄Щ鍔?褰撯垹APB鐨勫害鏁版渶澶ф椂锛屽垯鈭燗BP鐨勫害鏁颁负 A.15锔?B.30锔?C.60锔?D.90锔?10.濡傚浘锛?锛夋墍绀猴紝宸茬煡A锛?锛寉1锛夛紝B锛?锛寉2锛変负鍙嶆瘮渚嬪嚱鏁皔锛?鍥捐薄涓婄殑涓ょ偣锛屽姩鐐筆锛坸锛?锛夊湪xP涓庣嚎娈礏P涔嬪樊杈惧埌鏈€澶ф椂锛岀偣P鐨勫潗鏍囨槸A.锛?锛?锛?B.锛?,0锛?C.锛?锛?锛?D.锛?锛?锛???鍒嗭紝鍏?8鍒嗭級11.鍒嗚В鍥犲紡锛歺2锛媥锛?锛?. 12.鑻ュ叧浜巟鐨勪笉绛夊紡缁?鏈夊疄鏁拌В锛屽垯a鐨勫彇鍊艰寖鍥存槸. 13.浜?0?0锝?006锛夋墍绀虹殑棰戞暟鍒嗗竷鐩存柟鍥撅紙鍏朵腑70锝?0娈靛洜鏁呯湅涓嶆竻锛夛紝鑻?0鍒嗕互涓婏紙鍚?0鍒嗭級涓哄.14.. 鈶犺嫢n涓哄ぇ浜??锛夆€?80锔? ? 鈶㈣瘉SSS锛孲AS锛孉SA锛孲SA鍙奌L绛?15.?鍦ㄤ粬璇诲皬瀛︽椂灏辫兘鍦?锛?锛?锛嬧€︼紜98锛?9锛?00锛?050細浠?S锛?锛?锛?锛嬧€︼紜98锛?9锛?00 鈶?S锛?00锛?9锛?8锛嬧€︼紜3锛?锛? 鈶?鈶狅紜鈶★細鏈?S锛濓紙1锛?00锛壝?00 瑙e緱锛歋锛?050 璇风??锛?锛?锛嬧€︼紜锛?n锛?锛夛紳168锛屽垯n锛?. 16.濡傚浘锛?锛夋墍绀猴紝宸茬煡A鐐逛粠锛?,01勯€熷害娌跨潃x杞t绉掑悗锛屼互O銆丄涓洪《鐐逛綔鑿卞舰OABC 锛屼娇B AOC锛?0锔掞紝鍙堜互P 锛?,4锛変负鍦嗗績锛孭C涓哄崐寰勭殑鍦嗘伆濂戒笌OA鎵€鍦ㄧ殑鐩寸嚎鐩稿垏锛屽垯t锛?. ??2鍒嗭級灏介噺鍐欏嚭鏉? 17.7鍒嗭級璁$畻锛氾紙锛?锛?sin60锔掞紞|2锛? |.18.7鍒嗭級鍏堝寲绠€锛屽悗璁$畻锛?锛屽叾涓璦锛?锛?.19.7鍒嗭級濡傚浘锛?锛夋墍绀猴紝宸茬煡鍦ㄥ钩琛屽洓杈瑰舰ABCD BE锛滵F.姹傝瘉锛氣垹DAE锛濃垹BCF.20.8鍒嗭級瑙f柟绋嬬粍锛?21.8爣鏈夋暟瀛?锛?锛?鏈?,3,2鐨勫崱鐗囷紝鍗$墖澶栧舰鐩稿悓.鐜颁粠鐢蹭箼涓や汉鎵嬩腑鍚勪换鍙.鏍戝舰鍥炬垨鍒楄〃娉曞垪鍑烘墍鏈夊彲鑳界殑缁撴灉. 鈶电幇鍒跺畾杩欐牱x2锛媌x锛?锛?鏈О涔欒幏鑳?璇. 22.8鍒嗭級濡傚浘锛?闃宠B鍜孋D锛堝潎涓庢按骞抽潰鍨傜洿锛夛紝鍐嶅皢闆嗙儹鏉垮畨瑁呭湪AD涓?AD?1锛屼笖鍦ㄦ按骞崇嚎涓婄殑鐨勫皠褰盇F涓?.4m.2锛屽苟宸茬煡tan 1锛?.082锛宼an 2锛?.412.B 楂樹负25cm CD1cm锛夛紵23.锛堟8級锛屼.鍟嗗搧鎴垮敭浠3000鍏?绫??0鍏冿紱鍙嶄箣锛屾ゼ灞傛瘡涓嬮檷涓€灞傦紝姣忓钩鏂圭背鐨勫敭浠峰噺灏?0鍏?宸茬煡鍟嗗搧鎴挎瘡濂楅潰绉?20骞虫柟绫?锛??0%锛夛紝鍐嶅姙鐞嗗垎鏈熶粯娆撅紙鍗宠捶娆撅級.涓€娆′粯娓呮墍鏈夋埧娆撅紝鍒欎韩鍙?%鐨勪紭鎯狅紝骞跺厤鏀朵簲骞寸墿y锛堝厓/绫?锛変笌妤煎眰x锛??3変箣闂寸殑鍑芥暟瑙f瀽寮? 鈶靛皬寮犲凡绛瑰埌120000鈶舵湁浜哄?%鐨勪紭鎯犲垝绠?浣鐨勭湅娉?24.9鍒嗭級濡傚浘锛?0锛夋墍绀猴細绛夎竟鈻矨BCAD D鐐圭殑鐩寸嚎B1C1C浜嶤1B鐨勫欢闀跨嚎浜嶣1. 锛?鈶ABC涓轰换鎰忎笁瑙掑舰锛岀嚎娈礎D涓哄叾?涓€瀹氭垚绔嬪悧锛熷苟璇佹槑浣犵殑鍒ゆ柇.11锛夋墍绀篟t鈻矨BC CB锛?0锔掞紝AC锛?锛孉B 锛?锛孍涓篈B涓婁竴鐐逛笖AE锛?锛孋E AD浜嶧.璇曟眰鐨勫€?25.10鍒嗭級宸茬煡鎶涚墿绾緾1鐨勫嚱鏁拌В鏋愬紡涓簓锛漚x2锛媌x锛?a锛坆锛?锛夛紝鑻ユ姏鐗╃嚎C1缁忚繃鐐癸紙0锛岋紞3锛夛紝鏂圭▼ax2锛媌x锛?a锛?鐨勪袱鏍逛负x1锛寈2锛屼笖|x1锛峹2|锛?. 鈶存眰鎶涚墿绾緾1鐨勯《鐐瑰潗鏍? 鈶靛凡鐭ュ疄鏁皒锛?x锛?鈮?锛屽苟璇存槑x涓轰綍鍊兼椂鎵嶄細鏈墄锛?锛?. 鈶惰嫢灏嗘姏鐗╃嚎鍏堝悜涓婂钩绉??悗寰楀埌鎶涚墿绾緾2锛岃A锛坢锛寉1锛夛紝B锛坣锛寉2锛夋槸C2涓婄殑涓や釜涓嶅悓鐐癸紝涓旀弧瓒筹細鈭燗OB锛?0锔掞紝m锛?锛宯锛?.璇蜂綘鐢ㄥ惈m鐨勮〃杈惧紡琛ㄧず鍑衡柍AOB鐨勯潰绉疭锛屽苟姹傚嚭S鐨勬渶灏忓€煎強S鍙栨渶灏忓€兼椂涓€娆″嚱鏁癘A鐨勫嚱鏁拌В鏋愬紡. 锛堝弬鑰冨叕寮忥細鍦ㄥ钩闈㈢洿瑙1锛寉1锛夛紝Q锛坸2锛寉2锛夛紝鍒橮锛孮涓?锛?榛勭煶甯?012鍒嗘爣鍑?涓€銆?閫夋嫨棰橈細锛堟湰棰樻湁10?鍒?锛屽叡30鍒嗭級1锝?锛欳CBCC, 6锝?0锛欰BBBD 浜屻€???鍒嗭紝鍏?8鍒嗭級11锛?x锛?)(x+2); 12锛巃<4锛?13锛?5%锛?14锛庘憽锛?15锛?2锛?16锛?涓夈€?瑙g瓟棰橈細锛堟湰棰樻湁9?2鍒嗭級17.锛?鍒嗭級瑙o細鍘熷紡= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?18.锛?鍒嗭級瑙o細鍘熷紡= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?褰?鏃讹紝鍘熷紡= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?19.锛?鍒嗭級璇佹槑锛氣埖鍥涜竟BCD涓哄钩琛屽洓杈瑰舰鈭碅D C,涓擜D=BC 鈭粹垹ADE=鈭燘CF 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍙堚埖BE=DF, 鈭碆F=DE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭粹柍ADE鈮屸柍CBF 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭粹垹DAE=鈭燘CF 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?20.锛?灏嗏憼浠e叆鈶′腑鍖栫畝寰楋細x2锛?x 锛?=0 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?瑙e緱锛歺=锛?鎴杧=1 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鎵€浠ワ紝鍘熸柟绋嬬殑瑙d负锛?鎴?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?21.锛?鍒嗭級瑙o細锛?锛夛紙a,b锛?锛夈€侊紙锛?锛夈€侊紙锛?锛夈€侊紙锛夈€侊紙锛夈€侊紙锛夈€侊紙1锛?锛夈€侊紙1锛?锛夊強锛?锛?锛?鈭?a,b)鍙栧€肩粨鏋滃叡鏈?绉?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?锛夆埖螖=b2锛?a1锛変腑鐨勭粨鏋滀负锛?锛?銆?銆?銆?銆?銆?銆侊紞3銆?銆? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭碢(鐢茶幏鑳?= P(螖锛?)= 锛濸(涔欒幏鑳? 锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?22.锛?鍒嗭級瑙o細濡傚浘鎵€绀猴紝杩嘇浣淎E C,鍒欌垹EAF=鈭燙BG=胃2锛?涓擡C=AB=25cm 鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?Rt鈻矰AFAF=胃1锛孌F=AFtan胃1 鈥︹€︹€?鍒?Rt鈻矱AF AF=胃2锛孍F=AFtan胃2 鈥︹€?鍒?鈭碊E=DF锛岴F=AF(tan胃1锛峵an胃2) 鍙堚埖AF=140cm, tan胃1=1.082, tan胃2=0.412鈭碊E=140脳(1.082锛?.412)=93.8 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭碊C=DE+EC=93.8+25=118.8 cm鈮?19cm 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?DC鐨勯珮搴斾负119cm.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?23.锛?鍒嗭級瑙o細锛?锛?o褰??鏃讹紝姣忓钩鏂圭背鐨勫敭浠峰簲涓猴細3000锛嶏紙8锛峹锛壝?0=20x锛?840 (鍏冿紡骞虫柟绫? 2O褰??3鏃讹紝姣忓钩鏂圭背鐨勫敭浠峰簲涓猴細3000+锛坸锛?锛夆€?0=40x锛?680(鍏冿紡骞虫柟绫? 鈭?, x鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紥鍒?锛?锛夌敱锛?锛夌煡锛?1o褰??鏃讹紝灏忓紶棣栦粯娆句负锛?0x 锛?840锛夆€?20鈥?0% =36锛?0x锛?840锛夆墹36锛?0鈥?锛?840锛?108000鍏冿紲120000鍏?鈭?锝?灞傚彲浠婚€夈€€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?2o褰??3鏃讹紝灏忓紶棣栦粯娆句负锛?0x锛?680锛夆€?20鈥?0%=36锛?0x锛?680锛夊厓36锛?0x 锛?680锛夆墹120000锛岃В寰楋細x鈮?9?6銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?缁间笂寰楋?鈥︹€︼紤鍒?锛?佸疄浜ゆ埧娆句负锛?y1=(40鈥?6锛?680) 鈥?20鈥?2%锛?0a锛堝厓锛?鑻ユ寜鑰佺帇y2=(40鈥?6锛?680) 鈥?20鈥?1%锛堝厓锛?鈭祔1锛峺2=3984锛?0a 銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?褰搚1锛瀥2鍗硑1锛峺2锛?鏃讹紝瑙e緱0锛渁锛?6.4,姝ゆ椂鑰佺帇鎯虫硶姝g‘锛?褰搚1 2鍗硑1锛峺2鈮?鏃讹紝瑙e緱a鈮?6.4︼紥鍒?24.锛?鍒嗭級瑙o細锛?锛夋槗楠岃瘉, ?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?(2)鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?濡傚彸鍥炬墍绀何擜BC涓轰换鎰忎笁瑙掑舰锛岃繃B鐐逛綔BE C浜?AD 鐨勫欢闀跨嚎浜嶦鐐?鈭碘垹E=鈭燙AD=鈭燘AD 鈭碆E=AB 鍙堚埖螖EBD鈭轿擜CD 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?鍙堚埖BE=AB 鈭?? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锟絭3锟絯濡傚浘锛?1锛夋墍绀猴紝杩炵粨ED 鈭礎D涓何擜BC?鈭?鈥︹€︹€︹€︹€︹€︼紤鍒?鑰?鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?鈭?, 鈭碊E C 鈭次擠EF鈭轿擜CF 銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?鈭?銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?25.锛?0鍒嗭級瑙o細锛?锛夆埖鎶涚墿绾胯繃锛堬紣,锛嶏紦锛夌偣锛屸埓锛?a 锛濓紞锛?銆€銆€銆€銆€銆€鈭碼锛濓紤銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?銆€銆€銆€銆€銆€鈭达綑锛漻2锛媌x锛嶏紦銆€銆€銆€銆€銆€鈭祒2锛媌x锛嶏紦=锛愮殑涓ゆ牴涓簒1,x2涓?锛濓紨鈭?锛濓紨涓攂锛滐紣鈭碽锛濓紞锛掋€€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︼紤鍒?鈭达綑锛漻2锛嶏紥x锛嶏紦锛濓紙x锛嶏紤锛夛紥锛嶏紨鈭存姏鐗╃嚎锛o紤鐨勯《鐐瑰潗鏍囦负锛堬紤锛岋紞锛旓級銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?锛?锛夆埖x锛烇紣锛屸埓鈭?鏄剧劧褰搙锛濓紤鏃讹紝鎵嶆湁銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紥鍒?锛?锛夌敱骞崇Щ鐭ヨ瘑鏄撳緱锛o紥鐨勮В鏋愬紡涓猴細y锛漻2銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紤鍒?鈭达肌(m锛宮锛?锛孊锛坣锛宯锛掞級鈭滴擜OB涓篟t螖鈭碠A锛?OB锛?AB锛?鈭磎锛掞紜m锛旓紜n锛掞紜n锛旓紳锛坢锛峮锛夛紥锛嬶紙m锛掞紞n锛掞級锛?鍖栫畝寰楋細m n锛濓紞锛戙€€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︼紤鍒?鈭碉汲螖AOB= = 銆€鈭祄n锛濓紞锛?鈭达汲螖AOB= 銆€銆€銆€銆€锛?鈭达汲螖AOB鐨勬渶灏忓€间负锛戯紝姝ゆ椂m锛濓紤,锛?锛?锛? 銆€銆€銆€銆€銆€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︼紥鍒?鈭寸洿绾縊A鐨勪竴娆″嚱鏁拌В鏋愬紡涓猴綑锛漻銆€銆€銆€。

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷(含解析版)

2012年浙江省杭州市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.22.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣46.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5 8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.510.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是;众数是.12.(4分)化简得;当m=﹣1时,原式的值为.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于%.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为cm.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.2012年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(3分)计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.2【考点】1B:有理数的加减混合运算.【专题】11:计算题.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.2.(3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A.内含B.内切C.外切D.外离【考点】MJ:圆与圆的位置关系.【分析】两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d>R+r则两圆相离,若d=R+r则两圆外切,若d=R﹣r则两圆内切,若R﹣r<d<R+r则两圆相交.本题可把半径的值代入,看符合哪一种情况.【解答】解:∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4,∴两圆内切.故选:B.【点评】本题主要考查两圆的位置关系.两圆的位置关系有:外离(d>R+r)、内含(d <R﹣r)、相切(外切:d=R+r或内切:d=R﹣r)、相交(R﹣r<d<R+r).3.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【考点】X1:随机事件;X2:可能性的大小.【分析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.【点评】此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键.4.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【考点】JA:平行线的性质;L5:平行四边形的性质.【专题】11:计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.5.(3分)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【考点】4I:整式的混合运算;6F:负整数指数幂.【分析】根据幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法分别进行计算,即可判断.【解答】解:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)÷(6ab2)=2abc,故本选项错误;C、3m2÷(3m﹣1)=,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确;故选:D.【点评】此题考查了整式的混合运算,用到的知识点是幂的乘方,积的乘方、整式的乘法、同底数幂的乘法和除法等,需熟练掌握运算法则,才不容易出错.6.(3分)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是()A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】VC:条形统计图.【分析】根据条形统计图可以看出每个区的人口数,根据每个区的人口数进行判断,可选出答案.【解答】解:A、只有上城区人口数都低于40万,故此选项错误;B、萧山区、余杭区两个区的人口超过100万,故此选项错误;C、上城区与下城区的人口数之和低于江干区的人口数,故此选项错误;D、杭州市区的人口数已超过600万,故此选项正确;故选:D.【点评】此题主要考查了条形统计图,关键是从图中获取正确信息,从条形统计图中很容易看出数据的大小,便于比较.7.(3分)已知m=,则有()A.5<m<6B.4<m<5C.﹣5<m<﹣4D.﹣6<m<﹣5【考点】2B:估算无理数的大小;75:二次根式的乘除法.【分析】求出m的值,求出2()的范围5<m<6,即可得出选项.【解答】解:m=(﹣)×(﹣2),=,=×3,=2=,∵<<,∴5<<6,即5<m<6,故选:A.【点评】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.8.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【考点】J5:点到直线的距离;JA:平行线的性质;T7:解直角三角形.【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=AB sin36°,即可判断A、B;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AO sin36°,AO=AB•sin54°,求出AD,即可判断C、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=AB sin36°=sin36°,故A、B选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故C选项正确,D 选项错误;故选:C.【点评】本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.9.(3分)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2B.3C.4D.5【考点】HA:抛物线与x轴的交点.【专题】17:推理填空题.【分析】整理抛物线解析式,确定出抛物线与x轴的一个交点A和y轴的交点C,然后求出AC的长度,再分①k>0时,点B在x轴正半轴时,分AC=BC、AC=AB、AB=BC三种情况求解;②k<0时,点B在x轴的负半轴时,点B只能在点A的左边,只有AC=AB一种情况列式计算即可.【解答】解:y=k(x+1)(x﹣)=(x+1)(kx﹣3),所以,抛物线经过点A(﹣1,0),C(0,﹣3),AC===,点B坐标为(,0),①k>0时,点B在x正半轴上,若AC=BC,则=,解得k=3,若AC=AB,则+1=,解得k==,若AB=BC,则+1=,解得k=;②k<0时,点B在x轴的负半轴,点B只能在点A的左侧,只有AC=AB,则﹣1﹣=,解得k=﹣=﹣,所以,能使△ABC为等腰三角形的抛物线共有4条.故选:C.【点评】本题考查了抛物线与x轴的交点问题,根据抛物线的解析式确定出抛物线经过的两个定点是解题的关键,注意分情况讨论.10.(3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④【考点】97:二元一次方程组的解;CB:解一元一次不等式组.【专题】16:压轴题.【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断.【解答】解:解方程组,得,∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4,①不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,且﹣3≤a≤1,∴﹣3≤a≤0∴1≤1﹣a≤4∴1≤y≤4结论正确,故选:C.【点评】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x、y的表达式及x、y的取值范围.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)数据1,1,1,3,4的平均数是2;众数是1.【考点】W1:算术平均数;W5:众数.【分析】利用算术平均数的求法求平均数,众数的定义求众数即可.【解答】解:平均数为:(1+1+1+3+4)÷5=2;数据1出现了3次,最多,众数为1.故答案为2,1.【点评】本题考查了众数及算术平均数的求法,属于基础题,比较简单.12.(4分)化简得;当m=﹣1时,原式的值为1.【考点】64:分式的值;66:约分.【专题】11:计算题.【分析】先把分式的分子和分母分解因式得出,约分后得出,把m=﹣1代入上式即可求出答案.【解答】解:,=,=,当m=﹣1时,原式==1,故答案为:,1.【点评】本题主要考查了分式的约分,关键是找出分式的分子和分母的公因式,题目比较典型,难度适中.13.(4分)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于6.56%.【考点】1G:有理数的混合运算.【分析】根据题意和年利率的概念列出代数式,再进行计算即可求出答案.【解答】解:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6﹣1000)÷1000=0.0656=6.56%,则年利率高于6.56%;故答案为:6.56.【点评】此题考查了有理数的混合运算,关键是根据年利率的概念列出代数式,进行计算.14.(4分)已知(a﹣)<0,若b=2﹣a,则b的取值范围是2﹣<b<2.【考点】72:二次根式有意义的条件;C2:不等式的性质.【分析】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2﹣a的范围即可得解.【解答】解:∵(a﹣)<0,∴>0,a﹣<0,解得a>0且a<,∴0<a<,∴﹣<﹣a<0,∴2﹣<2﹣a<2,即2﹣<b<2.故答案为:2﹣<b<2.【点评】本题考查了二次根式有意义的条件,不等式的基本性质,先确定出a的取值范围是解题的关键.15.(4分)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为15cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为1或9cm.【考点】I1:认识立体图形;I6:几何体的展开图;L8:菱形的性质.【分析】由底面为菱形的直棱柱,高为10cm,体积为150cm3,由体积=底面积×高,即可求得这个棱柱的下底面积,又由该棱柱侧面展开图的面积为200cm2,即可求得底面菱形的周长与BC边上的高AE的长,由勾股定理求得BE的长,继而求得CE的长.【解答】解:∵底面为菱形的直棱柱,高为10cm,体积为150cm3,∴这个棱柱的下底面积为:150÷10=15(cm2);∵该棱柱侧面展开图的面积为200cm2,高为10cm,∴底面菱形的周长为:200÷10=20(cm),∴AB=BC=CD=AD=20÷4=5(cm),∴AE=S菱形ABCD÷BC=15÷5=3(cm),∴BE==4(cm),∴如图1:EC=BC﹣BE=5﹣4=1(cm),如图2:EC=BC+BE=5+4=9(cm),故答案为:15;1或9.【点评】此题考查了菱形的性质、直棱柱的性质以及勾股定理.此题难度不大,注意审题,掌握直棱柱体积与侧面积的求解方法.16.(4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【考点】P8:利用轴对称设计图案.【专题】16:压轴题.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,把A进行移动可得到点的坐标,注意考虑全面.【解答】解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),故答案为:(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义,根据3个定点所在位置,找出A的位置.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘以多项式法则先计算括号里的乘法,再去括号合并同类项,即可算出结果.【解答】解:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)]=2(m2﹣m+m2+m)(m2﹣m﹣m2﹣m)=﹣8m3原式=﹣8m3,表示一个能被8整除的数.【点评】此题主要考查了整式的混合运算,关键是掌握计算顺序,先算乘法,后算加减,注意符号的变化,运用乘法分配律是不要漏乘.18.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】H7:二次函数的最值.【专题】32:分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.19.(8分)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.【考点】KQ:勾股定理;MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】(1)在数轴上截取AC=5a,再以A,C为圆心3a,4a为半径,画弧交点为B;(2)利用△ABC的外接圆的面积为S圆,根据直角三角形外接圆的性质得出AC为外接圆直径,求出的比值即可.【解答】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S圆,∴S圆=π×()2=π,△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【点评】此题主要考查了复杂作图以及直角三角形外接圆的性质,根据已知得出外接圆直径为AC是解题关键.20.(10分)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.【考点】CE:一元一次不等式组的应用;K6:三角形三边关系;X4:概率公式.【分析】(1)设三角形的第三边为x,根据三角形的三边关系列出不等式组,再解不等式组即可;(2)求出x的所有整数值,即可求出n的值;(3)先求出该三角形周长为偶数的所有情况,再除以总的个数,即可求出答案.【解答】解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,又∵有9个三角形,∴该三角形周长为偶数的概率是.【点评】此题考查了一元一次不等式组的应用,关键是根据三角形的三边关系列出不等式组,在解题时要注意x只能取整数.21.(10分)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;LJ:等腰梯形的性质.【专题】2B:探究型.【分析】(1)根据等腰梯形的性质和等边三角形的性质以及全等三角形的判定方法证明△AED≌△DF A即可;(2)如图作BH⊥AD,CK⊥AD,利用给出的条件和梯形的面积公式即可求出BC的长.【解答】(1)证明:在梯形ABCD中,AD∥BC,AB=CD,∴∠BAD=∠CDA,而在等边三角形ABE和等边三角形DCF中,AB=AE,DC=DF,且∠BAE=∠CDF=60°,∴AE=DF,∠EAD=∠FDA,AD=DA,∴△AED≌△DF A(SAS),∴AF=DE;(2)解:如图作BH⊥AD,CK⊥AD,则有BC=HK,∵∠BAD=45°,∴∠HAB=∠KDC=45°,∴AB=BH=AH,同理:CD=CK=KD,∵S梯形ABCD=,AB=a,∴S梯形ABCD==,而S△ABE=S△DCF=a2,∴=2×a2,∴BC=a.【点评】本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目.22.(12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A (1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】方法一:(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0,又由二次函数y =k(x2+x﹣1)的对称轴为x=﹣,可得x<﹣时,才能使得y随着x的增大而增大;(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(﹣,﹣k),A(1,k),即可得=,继而求得答案.方法二:(1)略.(2)根据反比例函数及二次函数的增减性得出k及x的取值范围.(3)设参数Q点坐标,由于AB为斜边,得出AQ垂直BQ,利用黄金法则二列式便可求解.(4)列出A,B,C三点参数坐标,利用黄金法则二列式便可求解.【解答】方法一:解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,﹣k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作BD⊥OC,QC⊥OC,∴OQ==,∵OB==,∴=,解得:k=±.方法二:(1)略.(2)略.(3)抛物线的顶点Q(﹣,﹣k),A(1,k),B(﹣1,﹣k),∵△ABQ是以AB为斜边的直角三角形,∴AQ⊥BQ,∴K AQ×K BQ=﹣1,∴,∴,k1=,k2=﹣,方法二追加第(4)问:点C为x轴上一动点,且C点坐标为(2k,0),当△ABC是以AB为斜边的直角三角形时,求K的值.(4)△ABC是以AB为斜边的直角三角形,∴AC⊥BC,∴K AC×K BC=﹣1,∵A(1,k),B(﹣1,﹣k),C(2k,0),∴,∴3k2=1,∴k1=,k2=﹣.【点评】此题考查了二次函数的性质、反比例函数的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意掌握待定系数法求函数解析式,注意数形结合思想的应用.23.(12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB ⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.【考点】KO:含30度角的直角三角形;KQ:勾股定理;M2:垂径定理;MC:切线的性质;Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质.【专题】11:计算题;16:压轴题.【分析】(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与AT垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tan A的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合,在EF的同一侧,这样的三角形共有3个.延长EO与圆交于点D,连接DF,如图所示,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.【解答】解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tan A=tan30°=,即EC=AE tan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.【点评】此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含。

2012年广东广州中考数学试题(含答案)

2012年广东广州中考数学试题(含答案)

一、选择题(共10小题,每题3分,共30分)1.实数3的倒数是()A.-13 B.13C.-3 D.32.将二次函数2=y x的图象向下平移1个单位,则平移后的二次函数的解析式为()A.2=1y x-B.2=+1y xC.2=(1)y x-D.2=(+1)y x3.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱第3题图第5题图4.下面的计算正确的是()A.6a-5a=1 B.a+2a2= 3a3C.-(a-b) =-a+b D.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD =5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.已知|1|+7+a b-=0,则a+b=()A.-8 B.-6 C.6 D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3348.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a +c<b+ c B.a-c>b-cC.ac<bc D.ac>bc2012年广东广州中考数学试题(满分150分,考试时间120分钟)9.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y1=k1x和反比例函数2 2kyx=的图象交于A (-1,2),B(1,-2)两点,若y1<y2,则x的取值范围是()A.x<-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1D.-1<x<0或x>1二、填空题(共6小题,每题3分,共18分)11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度.12.不等式x-1≤10的解集是_____________.13.分解因式:a2-8a=_____________________.14.如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_____.15.已知关于x的一元二次方程223=0x x k--有两个相等的实数根,则k的值为____________.16.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_____倍,第n个半圆的面积为______________.(结果保留π)BAyx-3213-32-21-13-2-1O三、解答题(共9小题,共102分) 17. (9分)解方程组:{=83+=12x y x y -.18. (9分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:BE =CD .19. (10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________,极差是________; (2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是_____年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.20. (10分)已知11+a ba ≠b ),求()ab a b -- ()ba ab -的值.21. (12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标,纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况;(2)求点A落在第三象限的概率.22.(12分)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P',根据作图直接写出⊙P'与直线MN的关系;(2)若点N在(1)中的⊙P'上,求PN的长.23.(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨 2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式; (2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24. (14分)如图,抛物线233384y x x =--+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.25.(14分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于点E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长.(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.2012年广东广州中考数学参考答案一、选择题(共30分,每题3分)二、填空题()三、解答题()17.53x y =⎧⎨=-⎩18.证明略19.(1)345,24;(2)2008;(3)343.22021.(1)树状图略,共9种情况;(2)2922.(1)图略,⊙P '与直线MN 相交;(2)PN 23.(1)当每月用水量未超过20吨时,y 与x 间的函数关系式:y =1.9x (0≤x ≤20);当每月用水量超过20吨时,y 与x 间的函数关系式:y =2.8x -18(x >20);(2)30吨24.(1)A (-4,0),B (2,0);(2)点D 的坐标(-1,274-)或(-1,94-);(3)334y x =-+或334y x =-25.(1)(2)①存在,k =3。

2012年陕西省数学中考试卷及答案(WORD版)

2012年陕西省数学中考试卷及答案(WORD版)

2012陕西省中考数学试题及解析第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A .2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分 )分数(分) 89 92 95 96 97 评委(位)12211A .92分B .93分C .94分D .95分 【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C .5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶4 【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2.-3),(-4,6)B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6) 【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1) 【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D .9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .24【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C .10.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( ) A .1 B .2C .3D .6【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与 x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2 个单位,恰好使得抛物线经过原点,且移动距离最小.选B .第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:(02cos 45=︒ .【答案】【解析】原式=2⨯ 12.分解因式:3223-2+=x y x y xy . 【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 . 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯.B 69︒≈ (精确到0.01).【答案】2.4714.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料. 【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6k y xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k . 16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 . 【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD , 过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACORt BCE ∆∆.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC .方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得'=41AB .所以='=41AB AB .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =;(2)当35AB BC ==,时,求AEAC的值. 【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =. 19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20.(本题满分8分) 如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan65 2.1445︒≈︒≈,)【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米. 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种.∴P (点数和为2)= 136.(2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23.(本题满分8分) 如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .(1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长. 【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.骰子2骰子11 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 910 11678910 11 12(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 【答案】解:(1)等腰 (2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅. ∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=+23y x x .25.(本题满分12分)如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由. 【答案】解:(1)如图①,正方形''''EFPN 即为所求. (2)设正方形''''EFPN 的边长为x . ∵△ABC 为正三角形, ∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对, 2.20x ≈也正确)(3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n . ∴()2222222=+=2+2=2+PN NE PE m n m n .∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小. ∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大. 即当m 最大且n 最小时,S 最大. ∵+=3m n ,由(2)知,=33-3m 最大. ∴()=3-=3-33-3=6-33n m 最小最大.∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A.0 B.-2 C.1 D.1 22.计算(ab)3的结果是( )A.ab3B.a3b C.a3b3D.3ab3.如图中几何体的主视图是( )A. B. C. D.4.下列各数中,为不等式组230,40xx->⎧⎨-<⎩的解的是( )A.-1 B.0 C.2 D.45.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A.AE>BE B.AD=BCC.∠D=12∠AEC D.△ADE∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每两次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上 D. 不可能有10次正面向上7.如图,点C 在∠A O B 的O B 边上,用尺规作出了C N ∥O A ,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x+2)2=3B .(x -2)2=3C .(x -2)2=5D .(x+2)2=59.如图,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠A MF 等于( )A .70°B .40°C .30°D .20° 10.化简的结果是22111x x ÷--( ) A .21x - B .321x - C .21x + D .2(x+1)11.如图,两个正方形的面积分别为16和9,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A.7 B.6 C.5 D.412.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确的结论是( )A.①②B.②③C.③④D.①④卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13.-5的相反数是___________.14.如图,AB、CD相交于点O,AC⊥CD于点C,若∠B O D=38°,则∠A等于_______°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为_______.16.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为________.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为________.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:|-5|--3)0+6×(1132)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC -CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:DC=10:5:2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a =_______,x乙=________; (2)请完成图11中表示乙变化情况的折线;(3)①观察图11,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m x (x>0)的图象经过点D,点P是一次函数y=k x+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=k x+3-3k(k≠0)的图象一定经过点C;(3)对于一次函数y=k x+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为_________,AE和ED的位置关系为__________;(2)在图1中,以点E为位似中心,作△E GF与△EAB位似,点H是BC所在直线上的一点,连接GH,H D,分别得到了图2和图3.①在图2中,点F在BE上,△E GF与△EAB的相似比为1:2,H是EC的中点.求证:GH=H D,GH⊥H D.②在图3中,点F在BE的延长线上,△E GF与△EAB的相似比是k:1,若BC=2,请直接写出C H的长为多少时,恰好使得GH=H D且GH⊥H D(用含k的代数式表示).某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,变长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长40cm 的薄板,获得的利润是26元;(利润=出厂价-成本价) ①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标是(2b a-,244ac b a-).如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CB O=45°,CD∥AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BC P=15°时,求t的值;(3)以点P为圆心,P C为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=5.13探究如图1,A H⊥BC于点H,则A H=________,AC=________,△ABC的面积S△ABC =________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,C F=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD和S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x的值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省中考数学试卷参考答案与试题解析1.【答案】B【思路分析】考点解剖:本题考查负数的概念与有理数的分类,解题的关键掌握有理数的概念.【解题思路】直接根据负数的概念,可以确定其中的负数只有-2.解答过程:【解答】A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【规律总结】对提供的实数,确定其是正数还是负数时,往往先对其进行化简,再与0进行大小比较,大于零即为正数、小于零即为负数.2.【答案】C【思路分析】考点解剖:本题考查了幂的运算,解题的关键是正确掌握积的乘方法则.【解题思路】积的乘方等于把每一个因式分别乘方,再把所得的幂相乘.解答过程:【解答】把其中的因式a、b分别乘方,得a3b3,结果为a3b3, 故选C.【规律总结】进行幂的运算时,关键是要正确确定其中的运算法则,防止滥用公式,而导致出现错误.3.【答案】A【思路分析】考点解剖:本题考查了对几何体的三视图的认识,解题的关键是正确根据三视图的特征,确定平面图形.【解题思路】主视图也就是从几何体的正面观察,得到的平面图形.解答过程:【解答】从正面观察这个几何体,得到的平面图形是左、中、右三个矩形,其中左、右两个矩形的大小相同,中间一个是小于两边的矩形.因此,符合题意的主视图是A, 故选A.【规律总结】三个视图中,主视图反映了物体的长度和高度并反映上下、左右的位置关系;俯视图反映了物体的长度和宽度,并反映了物体左右、前后的位置关系;左视图反映了物体的高度和宽度,并反映了物体上下、前后的位置关系.三视图之间的对应关系:主、俯长相等;主、左高平齐;俯、左宽相等.4.【答案】C【思路分析】考点解剖:本题考查了不等式组的解法,解题的关键是正确解答不等式,并能够确定几个不等式组成不等式组的解集.【解题思路】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,,进而确定符合条件的特殊解.解答过程:【解答】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,则所给的数中是不等式的解的有2,故选C.【规律总结】确定不等式组的解集可采用口诀:(1)小小取小:都是小于号的取小于号后面较小的那个数;(2)大大取大:都是大于号的取大于号后面较大的那个数;(3)大小小大中间找:大于小的小于大的中间的部分即为解集;(4)大大小小无处找:大于大的小于小的不等式组无解.5.【答案】D【思路分析】考点解剖:本题考查了垂径定理、圆周角定理,解题的关键正确掌握垂径定理、圆周角定理.【解题思路】根据圆的垂径定理知道:点E是AB的中点、CD垂直平分AB所对的两条弧AB、ADB,∠AEC=90°、∠D的度数无法确定;根据圆周角性质,可以知道:∠D=∠B、∠A=∠C,因此,可以确定图形中隐含的三角形相似.解答过程:【解答】∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,AC BC,,故A、B错误;∵∠AEC不是圆心角,∴∠D≠12∠AEC,故C错误;∵∠CEB=∠AED,∠DAE=∠BCE,∴△ADE∽△CBE,故C正确.故选D.【规律总结】垂径定理往往隐含着图形中存在着的相等弧、相等的角.同弧所对的圆周角相等,为图形中构造三角形相似架设了桥梁.6.【答案】B【思路分析】考点解剖:本题考查了概率与频率之间的关系,解题的关键正确理解概率与频率之间的内在联系.【解题思路】掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是12,因此,平均每两次中有1次正面向上或有1次反面向上.解答过程:【解答】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有5次正面向上;故选B.【规律总结】随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.7.【答案】D【思路分析】考点解剖:本题考查了平行线的判定、尺规作图,解题的关键正确掌握基本的尺规作图方法.【解题思路】先根据条件确定图形中相等的角,再用尺规作一个角等于已知角的方法解决问题.解答过程:【解答】由图形和条件可以知道:∠A O B=∠N CB,根据用尺规作一个角等于已知角的方法,即可知道FG是以点E为圆心,D M为半径的弧, 故选D.【规律总结】解答这类问题的一般步骤,往往是先根据问题条件,再确定隐含在图形中的边角之间的关系,从而解决问题.8.【答案】A【思路分析】考点解剖:本题考查了等式的性质和配方法,解题的关键正确理解等式的性质,并熟练掌握配方法的意义和一般方法.【解题思路】方法一:在方程的两边同时加上3,使方程的一边化为完全平方式;方法二:也可以先将方程中的常数项移至方程的另一边,再在方程的两边同时加上4.解答过程:【解答】方法一:在方程的两边同时加上3,得x 2+4x +4=3,即:(x +2)2=3;方法二:也可以先将方程中的常数项移至方程的另一边,得得x 2+4x =-1,再在方程的两边同时加上4,得得x 2+4x +4=-1+4,即:(x +2)2=3.故选A ﹒【规律总结】配方法的一般步骤:1.方程两边同除以二次项系数,化二次系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为(x +a )2=b 的形式.9.【答案】B【思路分析】考点解剖:本题考查了平行四边形性质和轴对称图形的性质,解题的关键是熟练掌握灵活应用平行四边形性质和轴对称图形的性质将问题进行转化.【解题思路】根据题意知道∠D MN =∠FMN 、∠D =∠MF E ,再根据平行四边形的性质,可以得到∠MF A =∠A =70°.再应用三角形内角和定理可以求得∠A MF 的度数. 解答过程:【解答】根据题意知道四边形MF E N 与四边形M DC N 关于折痕MN 成轴对称,则∠D MN =∠FMN ,即∠D MF =2∠D MN 、∠MF E =∠D .又因为∠A +∠D =180°、∠MF A +∠MF E =180°,所以∠MF A =∠A =70°.因为∠A MF+∠MF A +∠A =180°,所以∠A MF =40°. 故选B .【规律总结】解答这类问题时,往往需要灵活应用轴对称图形隐含的边、角之间的相等关系解决问题.10.【答案】C【思路分析】考点解剖:本题考查了分式的运算,解题的关键熟练掌握因式分解和约分.【解题思路】先将除法运算转化为乘法运算,并把分子分母因式分解,再进行约分计算. 解答过程: 【解答】22111x x ÷--=2(1)(1)(1)x x x ⨯--+=21x +,故选择C. 【规律总结】分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化.11.【答案】A【思路分析】考点解剖:本题考查了同学们整体、转化数学思想的形成,解题的关键是灵活地将陌生的数学问题转化为熟悉的问题.【解题思路】运用整体思想,把求a-b的问题转化为与已知的两个正方形的面积有关的计算.解答过程:【解答】令重叠部分的面积为m,则a-b=(16+m)-(9+m)=16-9=7.【规律总结】解答这类问题时,往往需要灵活地从整体出发,善于将待求的问题进行转化.12.【答案】D【思路分析】考点解剖:本题考查了二次函数的解析式确定、图象信息,解题的关键是正确从图象中获取相关信息,并结合问题条件进行解题.【解题思路】根据抛物线上的点A坐标,可以直接确定y1的解析式,即知道a值,进而确定点A、B、C的坐标以及当x=0时,y1、y2的值,从而解决问题.解答过程:【解答】由图象可以知道y2的图象全部在x轴上方,所以无论x取何值,y2的值总是正数.∵抛物线y1=a(x+2)2-3过点A(1,3),∴a(1+2)2-3=3,∴a=23,即y1=23(x+2)2-3,当x=0时,y1=-13、y2=112,则y2-y1=356;当y=3时,23(x+2)2-3=3,解得x1=-5、x2=1,即A(1,3)、B(-5,3),则AB=6;当y=3时,y2=12(x-3)2+1,解得x1=5、x2=1,即A(1,3)、C(5,3),则AC=4;∴2AB=3AC.因此,其中正确的有①④.故选D.【规律总结】解答这类问题,往往需要综合应用所学的数学知识,从二次函数的图象性质、解析式的求法角度灵活运用,正确获取相关信息进行解答.有时还需要应用淘汰法加以选择.13.【答案】5【思路分析】考点解剖:本题考查了实数的相关概念,解题的关键正确理解实数相反数的意义.【解题思路】直接相反数的意义确定,只有符号不同的两个数叫做互为相反数.解答过程:【解答】-5的相反数是5,故填5﹒【规律总结】正数的相反数是负数、负数的相反数是正数、0的相反数是0.14.【答案】52°【思路分析】考点解剖:本题考查了垂直定义、三角形内角和定理、对顶角性质,解题的关键是灵活应用垂直定义、三角形内角和定理和对顶角性质,使待求问题得以转化.【解题思路】根据垂直定义知道:∠AC O=90°,再根据对顶角性质可以知道∠A O C=∠B O D =38°,最后应用三角形内角和定理确定∠A的度数.解答过程:【解答】∵∠BOD=38°,∴∠AOC=38°,∵AC⊥CD于点C,∴∠A=90°﹣∠AOC=90°﹣38°=52°.故答案为52°.【规律总结】解答这类问题时,往往借助于三角形内角和、外角或平行线的相关性质,使问题得以转化.15.【答案】1【思路分析】考点解剖:本题考查了代数式的值,解题的关键是灵活对条件和问题进行适当变形.【解题思路】将y=x-1变形为x-y=1,再代入其中进行计算求得结果.解答过程:【解答】(x-y)2+(y-x)+1=(x-y)2-(x-y)+1=1-1+1=1,故填1﹒【规律总结】整体思想是指淡化问题的细节,将结构相同的部分看作一个整体的解题思想,它实质上是化归思想的一种具体的体现.恰当地使用整体思想解题,可以将复杂问题简单化,取到事半功倍的效果,但在使用前一定要将问题的细节分析清楚,以免弄巧成拙,产生错误..16.【答案】3 4【思路分析】考点解剖:本题考查了等可能条件下的概率,解题的关键正确理解等可能条件下的概率的意义.【解题思路】先确定这个等可能事件下共有多少种等可能的结果,再确定所要研究的事件可能出现的结果数目,从而应用概率计算公式求解.解答过程:【解答】因为第三个棋子可能落在其余四个位置的格点上,而以这枚棋子所在格点与已知格点为顶点的三角形的格点有3个,因此,以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.故答案为:34﹒【规律总结】确定等可能条件下的概率时,一定确定好等可能事件下共有等可能发生的结果数目以及所要研究的事件可能出现的结果数.17.【答案】21【思路分析】考点解剖:本题考查了阅读理解能力和探索规律的能力,解题的关键正确阅读规则,确定其中隐含的内在规律.【解题思路】根据报数游戏规则,可以知道:第n位同学报(1n+1).不妨先求得到的第2个数的积、得到的第3个数的积、得到的第4个数的积,并从中发现隐含在其中的规律.解答过程:【解答】第2个数的积为(11+1)(12+1)=2×(12+1)=3、得到的第3个数的积为3×(13+1)=4、得到的第4个数的积为4×(14+1)=5、得到的第n个数的积为n×(1n+1)=n+1.因此,这样得到的第20个数的积为21.故答案为:21.【规律总结】解决有探索规律的问题,往往先从特殊的问题进行入手,再对其进行一般化,从而获取一般化的结论.18.【答案】6【思路分析】考点解剖:本题考查了正多边形的性质,解题的关键是熟练应用正多边形的边数与内角的数量关系进行解题.【解题思路】先求得正八边形的每个内角的度数,再确定所求的中间一个正多边形的内角度数,从而根据多边形的外角和为360°,进而确定其边数.解答过程:【解答】正六边形的每个内角都是120°,则所求的中间一个正多边形的内角度数360°-120°-120°=120°,则这个多边形的每个外角度数为180°-120°=60°,即n=360°÷60°=6,故答案为:6.【规律总结】解决与正多边形边、角有关的问题时,往往从其外角和以及每个外角的度数进行如手进行思考,较为简捷.19【答案】4【思路分析】考点解剖:本题考查了实数的混合运算,解题的关键是熟练掌握实数的混合运算法则.【解题思路】观察本题中的算式,不妨先对算式中的绝对值、乘方和乘法同时进行运算,再进行加减运算.解答过程:【解答】|-5|--3)0+6×(1132-)+(-1)2=5-1+(2-3)+1=4.【规律总结】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果.20.【答案】10【思路分析】考点解剖:本题考查了列代数式和列方程解决实际问题的能力,解题的关键是从实际问题中获取等量关系式.【解题思路】用含有相同参数的代数式分别表示外环公路总长、市区公路长,进而解决问题(1);问题(2)中,隐含着这样一个相等关系式:去时所用时间-返回时所用时间=110h ,进而建立方程解决问题.解答过程:【解答】(1)设AB =10x km ,则AD =5x km ,CD =2x km .∵四边形ABCD 是等腰梯形,DC ∥AB ,∴BC =AD =5x ,∴AD +DC +CB =12x ,∴外环公路总长和市区公路总长的比为12x :10x =6:5;(2)由(1)可知,市区公路的长为10x km ,外环公路的长为12x km .由题意,得10121408010x x =+,解这个方程,得x =1,∴10x =10.答:市区公路的长为10km .【规律总结】应用方程解决实际问题,其关键根据实际问题,寻找等量关系式建立恰当的方程.21.【答案】(1)见解析(2)见解析(3)见解析【思路分析】考点解剖:本题考查了从统计图表中获取信息,应用数据的集中程度、离散程度的知识进行解决实际问题.【解题思路】(1)根据他们的总成绩相同可以求得a值,并应用平均数的意义得到可以解决;(2)直接可以补全统计图;(3)只要求得乙成绩的方差,即可联系平均数确定应该是谁将被选中.解答过程:【解答】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①乙,S2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于S2乙<S2甲,所以上述判断正确;②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.【规律总结】确定谁被选中参加某项活动,往往从综合数据的集中程度和离散程度进行思考.一组数据的方差越大,这组数据越稳定.22.【答案】见解析【思路分析】考点解剖:本题考查了平行四边形性质、反比例函数、一次函数的图象性质,解题的关键是灵活应用待定系数法解决相关问题.【解题思路】(1)根据图形性质,可以看成是点D 由点A 平移而得,并应用待定系数法求得反比例函数解析式;(2)直接将点C 坐标代入其中,看是否符合一次函数解析式,从而进行说理;(3)由于一次函数是y 随x 的增大而增大,所以整个图象从左到右是呈上升趋势,即分别求得过点C 分别与x 、y 垂直时直线与双曲线相交时的点的横坐标.解答过程:【解答】(1)由题意,得AD =CB =2,故点D 的坐标为(1,2).∵反比例函数y =m x 的图象经过点D (1,2),∴2=1m .∴m =2,∴反比例函数的解析式为y =2x ;(2)当x =3时,y = k x +3-3k =3,∴一次函数y =k x +3-3k(k≠0)的图象一定过点C ;(3)设点P 的横坐标为a ,23<a <3.【规律总结】确定反比例函数解析式时,往往只需要知道图象上的一个点的坐标即可.确定一次函数系数的取值范围问题,往往通过y 与x 之间的增减性关系来确定.23.【答案】(1)见解析(2)见解析【思路分析】考点解剖:本题考查了三角形全等判定、性质和三角形相似的判定、性质以及条件探索能力,解题的关键是正确应用三角形全等、三角形相似的判定和性质解题.【解题思路】(1)直接知道其中的△EAB ≌△ECD ,从而可以得到AE =DE 、∠AED =90°;(2)①可以得到GF =H C 、∠GFH =∠C =90°、FH =CD ,则有△HGF ≌△D H C ,从而可以得到GH =H D ,GH ⊥H D ;②要使得GH =H D 且GH ⊥H D ,必须具备的条件是△HGF ≌△D H C ,即C H =GF =k 时,恰好有FH =CD .解答过程:【解答】(1)∵点E 是线段BC 的中点,分别BC 以为直角顶点的△EAB 和△EDC 均是等腰三角形,∴BE=EC=DC=AB ,∠B=∠C=90°,∴△ABE ≌△DCE ,∴AE=DE ,∠AEB=∠DEC=45°,∴∠AED=90°,∴AE ⊥ED .故答案为:AE=ED,AE⊥ED;(2)①证明:由题意,∠B=∠C=90°,AB=BE=EC=DC.∵△E GF与△EAB位似且相似比为1:2,∴∠GF E=∠B=90°,GF=12AB,E F=12EB,∴∠GF E=∠C.∵E H=H C=1 2EC,∴GF=H C,FH=F E+E H=12EB+12EC=12BC=EC=CD,∴△HGF≌△D H C,∴GH=H D,∠GHF=∠H DC.又∵∠H DC+∠D H C=90°,∴∠GHF+∠D H C=90°,∴∠GH D=90°,∴GH⊥H D;②根据题意得出:∵当GH=HD,GH⊥HD时,∴∠FHG+∠DHC=90°,∵∠FHG+∠FGH=90°,∴∠FGH=∠DHC,∴DH GHFGH DHCDCH GFH=⎧⎪∠=⎨⎪∠=⎩,∴△GFH≌△HCD,∴CH=FG,∵EF=FG,∴EF=CH,∵△EGF与△EAB的相似比是k:1,BC=2,∴BE=EC=1,∴EF=k,∴CH的长为k.【规律总结】这是一道融三角形全等、三角形相似和条件探索于一体的简单综合题.解答时,需要应用类比的方法、综合应用所学数学知识解决问题.24.【答案】(1)y=2x+10(2)见解析【思路分析】考点解剖:本题考查了应用一次函数、二次函数解决实际问题的能力,解题的关键是对于实际问题能够灵活地构建恰当的数学模型,并应用其相关性质加以解答.【解题思路】(1)由每张薄板的出厂价是薄板的边长一次函数,根据表格中的对应值即可求得其函数关系式;(2)由于利润=出厂价-成本价,即从(1)中的函数关系中减去成本价,可得一张薄板的利润与边长之间的二次函数关系式,进而可确定边长为某值时对应的函数的最大值. 解答过程:【解答】(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为k x 元,则y =k x +n .由表格中的数据,得5020,7030.k n k n =+⎧⎨=+⎩ 解得2,10.k n =⎧⎨=⎩,所以y =2x +10;(2)①设一张薄板的利润为P 元,它的成本价为m x 2元,由题意, 得P =y -m x 2=2x +10-m x 2.将x =40,P =26代入P =2x +10-m x 2中, 得26=2×40+10-m×402,解得m =125,所以P =-125x 2+2x +10;②因为a =-125<0,所以,当x =-22512225ba=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,P 最大值=22141024253514425ac b a⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭,即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元.【规律总结】对于生活中的实际问题,要能够抓住隐含中其中的数量关系,根据变量之间的变化关系确定适当的数学函数模型进行解答. 25.【答案】(1)(0,3)(2)(3)1或4或5.6【思路分析】考点解剖:本题考查了勾股定理、解直角三角形和直线与圆相切的性质,解题的关键灵活应用三角形中的边角关系构造直角三角形解决问题,并根据点的运动位置确定时直线与圆相切时的性质.【解题思路】(1)直接求得O C 的长度;(2)先求得OP 的长度,再确定运动的路程PQ 长度,进而求得时间t 的值;(3)⊙P 与四边形ABCD 的边(或边所在的直线)相切,其实质隐含了三种情况进行分类讨论. 解答过程:【解答】(1)∵∠BC O =∠CB O =45°,∴O C =O B =3.又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3);(2)当点P 在点B 的右侧时,如图2.由∠BC P =15°,得∠P C O =30°,故OP =O C t a n30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学试题
A 卷(共100分)
第1卷(选择题.共30分)
一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)
1.3-的绝对值是( )
A .3
B .3-
C .
13 D .13
- 2.函数12
y x =
- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )
A .
B .
C .
D .
4.下列计算正确的是( )
A .223a a a +=
B .235a a a ⋅=
C .3
3a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )
A . 59.310⨯ 万元
B . 69.310⨯万元
C .49310⨯万元
D . 6
0.9310⨯万元
6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )
A .( 3-,5-)
B .(3,5)
C .(3.5-)
D .(5,3-)
7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )
A . 8cm
B .5cm
C .3cm
D .2cm
8.分式方程
3121
x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..
的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC
B
10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )
A .100(1)121x +=
B . 100(1)121x -=
C . 2100(1)121x +=
D . 2100(1)121x -=
第Ⅱ卷(非选择题,共70分)
二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:2
5x x - =________.
12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.
13
件衬衫,其领口尺寸统计如下表:
则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .
14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若
AB=,0C=1,则半径OB 的长为________.
三、解答题(本大题共6个小题,共54分)
15.(本小题满分12分,每题6分)
(1
)计算:024cos458((1)π-++-
(2)解不等式组:202113
x x -<⎧⎪+⎨≥⎪⎩
16.(本小题满分6分)
化简: 22(1)b a a b a b
-÷+-
17.(本小题满分8分)
如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5
米.试帮助小华求出旗杆AB 的高度.(结果
精确到0.1 1.732≈ )
18.(本小题满分8分)
如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x
=(k 为常数,且k ≠0)
的图象交于A,B两点,且点A的坐标为(1
,4).
(1)分别求出反比例函数及一次函数的表达式;
(2)求点B的坐标.
19.(本小题满分10分)
某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,
CQ=9
2
a时,P、Q两点间的距离 (用含a的代数式表示).
B 卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
21.已知当1x =时,22ax bx +的值为3,则当2x =时,2
ax bx +的值为________.
22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π
)
23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22
(1)2y x a x a =-+-+ 的图象不经过...
点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x
=
(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则
12
S S =________. (用含m 的代数式表示)
25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.
(注:裁剪和拼图过程均无缝且不重叠)
则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.
二、解答题(本大题共3个小题,共30分)
26.(本小题满分8分)
“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.
(1)求当28<x≤188时,V关于x的函数表达式;
(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.
(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。

相关文档
最新文档