第2课时 中心对称与中心对称图形
第三章 第2课时 中心对称与中心对称图形(1)

第2课时中心对称与中心对称图形(1)【基础巩固】1.判断:(1)如果两个图形关于某点成中心对称,那么这两个图形全等.( )(2)如果两个图形全等,那么这两个图形一定关于某点成中心对称.( )(3)如果一个图形绕某一定点旋转后与另一个图形重合,那么这两个图形成中心对称.( )(4)成中心对称的两个图形,对称点连线都经过对称中心,且被对称中心平分.( )(5)成中心对称的两个图形具有图形旋转的一切性质.( )2.已知三点A、B、O,如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是_______.3.在等腰三角形ABC中,∠C=90°,BC=20 cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B'处,那么点B'与点B原来位置相距_______.4.在数轴上,点A.B对应的数分别为2,51xx-+,且A、B两点关于原点对称,则x的值为_______.5.如图,□ABCD中,点A关于点O的对称点是点_______.6.下列说法中,正确的是( )A.在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B.在成中心对称的图形中,连接对称点的线段都被对称中心平分C.若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D.以上说法都正确7.如图,△ABC是一个中心对称图形的一部分,O点是对称中心,点A和点B是一对对应点,∠C=90°,那么将这个图形补成一个完整的图形是( )A.矩形B.菱形C.正方形D.梯形8.已知线段AB与点O的位置如图所示,试画出线段AB关于点O的对称线段A'B'.9.已知四边形ABCD和点O,画出四边形ABCD关于O点的对称图形.10.如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,试作出△ABC绕点D顺时针旋转90°所得的图形,并指出图形中有多少个等腰直角三角形.11.如图,将几根火柴棒移动x根变成一个中心对称图形,怎样移动?x的最小值是多少?【拓展提优】12.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB'的长为( )A.4BC D13.如图,在四边形ABCD中,AD∥BC,DF=CF,连接AF并延长交BC延长线于点E.(1)图中哪两个三角形可以通过怎样的旋转而相互得到?(2)四边形ABCD的面积与图中哪个三角形的面积相等?(3)若AB=AD+BC,∠B=70°,试求∠DAF的度数.14.如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形_______,②中的图形_______.15.图①、图②均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.(1)在图①中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.16.)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O 成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.参考答案【基础巩固】1.(1)√(2)×(3)×(4) √(5) √2.平行且相等或在同一直线上3.cm4.15.C 6.B 7.A 8-9.略10.5个11.x的最小值是2,图略【拓展提优】12 D13.(1)将△ADF绕点F旋转180°可得△ECF (2)△ABE (3)55°14.(1)如图:(2)略15.(1)有以下答案供参考:(2)有以下答案供参考:16.(1)图中点O为所求.(2)图中△A1B1C1为所求.(3)图中点M为所求.(答案不唯一)。
八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.
八(上)数学 第三章 3.2 中心对称与中心对称图形(2)

八年级数学上第三章中心对称图形(一)3.2 中心对称与中心对称图形第2课时中心对称与中心对称图形(2)1.如图,□ABCD的对角线AC、BD相交于点O,用纸板验证:把□ABCD绕______旋转_______,旋转后的图形与旋转前的图形互相重合,根据这一过程,可以验证平行四边形的性质有:①_______;②________;③_________.2.在平面内,一个图形绕某个点旋转_________,如果旋转前后的图形______,那么这个图形叫做中心对称图形,这个点叫做它的_________.3.中心对称图形上的每一对对应点所连成的线段都被对称中心_______.4.下列图形中属于中心对称图形的是( )5.下列图形中,既是轴对称图形,又是中心对称图形的是( )6.下列图形中,是中心对称图形的是( )7.如图,四边形ABCD关于点O成中心对称图形.说明:四边形ABCD是平行四边形的理由.8.如图,MN⊥PQ,交点为O,点A、A′是以MN为对称轴的对称点,点A、A″是以PQ为对称轴的对称点,试说明点A′、A″是以点O为对称中心的对称点.9.如图,有一个圆(圆心为O)和一个平行四边形,请画出一条直线,同时把这两个图形分成面积相等的两个部分.10.如图,线段AB与A′B′关于某一点对称.(1)在图上作出对称中心O;(2)连结AB′,A′B,试判断AB′和A′B的关系,并说明理由.11.如图,图中出现的角都是直角.(1)画一条直线将这个图形分成面积相等的两个部分(给出三种画法);(2)符合(1)中要求的直线有多少条?如果只有三条,请说明理由;如果超过三条,请画出一种图出来.12.如图,菱形ABCD(图(1))与菱形EFGH(图(2))的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写:①点E、F、G、H;②点G、F、E、H;③点E、H、G、F;④点G、H、E、F.如果图(1)经过一次平移后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次轴对称后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次旋转后得到图(2),那么点A、B、C、D对应点分别是________;(2)①图(1)、图(2)关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条..性质:__________.(可以结合所画图形叙述) 13.将下图按顺时针方向旋转90°后得到的是( )14.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后,点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系(直接写出结果).参考答案1.点O 180°对边相等对角相等对角线互相平分2.180°能够完全重合对称中心3.平分4.B 5.C 6.B7.∵四边形ABCD关于点O成中心对称图形,∴AC、BD都过点O,且OA=OC,OB=OD.∴∠AOD=∠BOC,∴△AO D≌△COB,∠DAO=∠BCO.∴AD∥BC.同理AB∥DC.∴四边形ABCD是平行四边形.8.如图,连结AA′、A A″、OA、OA′、O A″.∵A、A′是以MN为对称轴的对称点,∴MN是AA′的垂直平分线.∴OA=OA′,∠1=∠2.同理OA=O A″,∠3=∠4,∴OA′=O A″.∴∠1+∠4=∠2+∠3=∠MOQ=90°.∴∠1+∠2+∠3+∠4=180°.∴A′、O、A″在同一直线上,且OA′=O A″.∴点A′、A″是以点O为对称中心的对称点.9.10.(1)连结AA′,BB′,其交点即为对称中心O.(2)AB′∥A′B且AB′=A′B.11.这样的直线有无数条,比如我们可以利用图(1)来画出第四种图形.如图(4),取线段AB的中点O,过点O作直线l4,则直线l4也能将整个图形分成为面积相等的两个部分.因此这样的直线实际上有无数条.12.(1)①②③④(2)①图略②DC=DE等13 A14.(1)图略E(-3,-1)、A(-3,2)、C(-2,0)(2)A2(3,4)、C2(4,6)(3)以点O成中心对称。
24.1 第2课时 中心对称和中心对称图形

成中心对称的两个图形中,对应点的连线经过对称中心,而被对称中心平分.
两个图形成中心对称,除具有一般旋转的性质外,还有
什么特性呢?
B 如图,△ABC与△A′B′C′关于点O对称.
分别连接AA′,BB′,CC′.
A
(2)△ABC与△A′B′C′有什么关系?
C O C′
A′
△ABC≌△A′B′C′.
B′
如图所示,把△ABC绕定点O旋转180°所得的图形与 △A'B'C'有什么关系?
A 180°C'
B
O
B'
180° A' C
旋转角为180°时,是一个特殊的变换.
对称中心 C' A
B
O
B'
180° A'
C
如图,△ABC绕定点O旋转180°,得到△A'B'C',这时, 图形△ABC与图形△A'B'C'关于点O的对称叫做中心对称,点 O就是对称中心.
P'
P'
P'
O P
O P
Q
O
P Q
R
3. 下列标志图中,既是轴对称图形,又是中心对称图
形的是
( B)
中心对称
中
如图,△ABC绕定点O旋转180°得到
心
△A'B'C' ,图形△ABC与图形△A'B'C'关
对
于点O的对称叫做中心对称.
称
和
中心对称的性质
中
1.成中心对称的两个图形中,对应点的连线经过对称中心,
C' A D
中心对称和中心对称图形

中心对称和中心对称图形一、中心对称中心对称是数学中的基本概念之一,在几何学中有广泛的应用。
中心对称是指存在一个中心点,通过该中心点可以将图形分成两个部分,这两个部分相互镜像,并且对称点与中心点的距离相等。
换句话说,如果将图形绕着中心点旋转180度,那么图形还是与原图形完全重合。
二、中心对称图形中心对称图形是指具有中心对称性质的图形。
常见的中心对称图形包括正方形、圆形、五角星等。
1. 正方形正方形是一种具有中心对称性质的图形。
它有四个二等边的直角三角形组成,每个直角三角形的两条直角边都是正方形的一条边。
正方形的对称中心位于正方形的中心点,通过对称中心可以将正方形分成两个对称的部分。
2. 圆形圆形也是一种具有中心对称性质的图形。
圆形的对称中心位于圆心,通过对称中心可以将圆形分成两个对称的部分。
无论从任何角度看,圆形都具有中心对称性,因为无论如何旋转都可以使圆形与原来的位置完全重合。
3. 五角星五角星是一种常见的中心对称图形。
它由两个五边形组成,每个五边形的五个顶点与另一个五边形的对称顶点相连,形成一个具有中心对称性质的图形。
五角星的对称中心位于两个五边形的重心,通过对称中心可以将五角星分成两个对称的部分。
三、应用举例中心对称和中心对称图形在日常生活中有很多应用,下面举几个例子。
1. 建筑设计中心对称在建筑设计中得到了广泛运用。
比如,很多教堂、宫殿等建筑物采用中心对称布局,将整个建筑划分成两个对称的部分。
这样的布局不仅使建筑物更加美观,而且在视觉上给人一种稳定和和谐的感觉。
2. 服装设计中心对称也在服装设计中被广泛应用。
比如,一些裙子、外套等服装的剪裁会采用中心对称设计,使得服装的左右两侧完全对称。
这种设计不仅美观,而且方便穿着,给人带来舒适的感觉。
3. 艺术创作中心对称在艺术创作中也有重要地位。
很多绘画作品和雕塑作品都运用了中心对称来构图,使得作品更加平衡和谐。
例如,著名画家达芬奇的作品《蒙娜丽莎》就采用了中心对称的构图,使得人物形象更加生动和真实。
23.2.2中心对称图形 课件人教版数学九年级上册

B. 甲不正确,乙正确
C. 甲、乙都正确
D. 甲、乙都不正确
图1
图2
图3
识别中心对称 判断依据:绕着内部一点旋转180
中 心
图形
度能与本身重合的图形
对
称
图
(1)中心对称图形上的每一对对称点所连成
形
中心对称图形 的性质
的线段都被对称中心平分; (2)过对称中心的直线可以把中心对称图形 分成面积相等的两部分.
②对应线段相等且平行(或共线)。
中心对称图形的形状通常匀称美观,我们在自然界中可以看到许多美丽 的中心对称图形(图(1)),在很多建筑物和工艺品中也常采用中心对称图形 作装饰图案(图(2)).另外,由于具有中心对称图形形状的物体,能够在所在 的平面内绕对称中心平稳地旋转,所以在各种机器中要旋转的零部件的形 状常设计成中心对称图形,如水泵叶轮等(图(3)).
23.2.2中心对称图形
人教版九年级上册
本节课选自九年义务教育课程标准实验教科书,人教版九年级上册第 三单元第二节《中心对称与中心对称图形》第二课时。本节课与图形 的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联 系,通过对这一节课的学习,既可以让学生认识图形“旋转”在几何 知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称 图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用, 为后面学习图形的设计打下基础。
线段AB 与平行四边形ABCD 均为中心对称图形。 上面左图,A 、B 、0共线,且OA=OB; 上 面 右 图 ,A、C、0 共 线 ,B、D、0 共线,且 OA=OC,OB=OD;AB=CD,AD=BC。
综合以上我们得出中心对称图形的性质:
①图形上每一对对应点所连接成的线段都过对称中心, 且被对称中心平分。
3.2-2 中心对称与中心对称图形

P.79 判断下列图形是否为中心对称图形 如果是, 判断下列图形是否为中心对称图形? 如果是,请 是否为中心对称图形? 画出对称中心。 画出对称中心。
随堂练习 1.把下列英文字母看成图案, 1.把下列英文字母看成图案, 把下列英文字母看成图案 哪些英文大写字母是中心对称图案 是中心对称图案? 哪些英文大写字母是中心对称图案?
方法: 由定义) 方法:(由定义)对 应点连线经过图形 中同一点; 中同一点;并且被 这一点平分. 这一点平分.
A E O F D B C
A、B,C、D,E、F,是对应点,A、E、F、B共线,连接CD B,C、D,E、F,是对应点 、 是对应点,A 共线,连接CD AB得交点 对应点连线经过同一点 再证被 平分. 得交点O,(对应点连线经过同一点),再证被O 与AB得交点O,(对应点连线经过同一点),再证被O平分.
你认为中心对称 中心对称图形有联系吗 你认为中心对称与中心对称图形有联系吗? 中心对称与 有联系吗?
如果将成中心对称的两个图形看成一个整体 如果将成中心对称的两个图形看成一个整体, 将成中心对称的两个图形看成一个整体, 那么这个图形的整体就是中心对称图形. 那么这个图形的整体就是中心对称图形. 反过来, 反过来,将一个中心对称图形沿过对称中心的任一 条直线分成两个图形,那么这两个图形成中心对称. 分成两个图形,那么这两个图形成中心对称.
3.23.2-2中心对称与中心对称图形
能举出生活中两个图形成中心对称的例子吗? 能举出生活中两个图形成中心对称的例子吗? 两个图形成中心对称的例子吗
这两幅图反应的是什么现象 它们有什么不同? 这两幅图反应的是什么现象? 它们有什么不同? 轴对称是两个图形之间的特殊位置关系。 轴对称是两个图形之间的特殊位置关系。对于 什么现象? 之间的特殊位置关系 任何一个图形,都可以作出 作出它关于任一直线对称的 任何一个图形,都可以作出它关于任一直线对称的 图形. 图形.
中心对称和中心对称图形

中心对称和中心对称图形教学建议知识归纳1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形把一个图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.知识结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。