解析几何中求参数取值范围的方法_答题技巧
解析几何中求参数取值范围的5种常用方法

解析几何中求参数取值范围的5种常用方法解析几何中求参数取值范围的5种常用方法及经典例题详细解析:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2),=-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得 x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P 在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
浅谈解析几何中最值和参数范围问题的求解策略

浅谈解析几何中最值和参数范围问题的求解策略作者:陆爱莲来源:《教育教学科研》2013年第03期作者简介:陆爱莲,2002年毕业于广西师范大学数学教育专业,大学本科学历,理学学士,同年9月至今任教于马山中学,2008年12月获得中学一级教师资格。
积极参加教研教改活动,所撰写的论文多次在省、国家级论文评选中获二、三等奖。
【摘要】:解析几何中的最值和参数范围问题是高中数学的重要内容.其主要特点是综合性强,在解题中几乎处处涉及函数与方程、不等式、三角等内容.因此,在教学中应重视对数学思想、方法进行归纳提炼,如方程思想、函数思想、参数思想、数形结合的思想、对称思想、整体思想等思想方法,达到优化解题思维、简化解题过程的目的.本文通过对一些典型例题的分析和解答,归纳了解析几何中常见的解决最值和参数范围问题的思想方法,总结了解答典型例题的具体规律,并提供了一些常用的解题方法、技能与技巧。
【关键词】:解析几何最值问题参数范围求解策略解析几何中涉及最值和参数范围问题常有求面积、距离最值、参数范围问或与之相关的一些问题;求直线与圆锥曲线中几何元素的最值或与之相关的一些问题。
我们可以从两个方面来研究圆锥曲线的最值和参数范围问题,一方面用代数的方法研究几何,题中涉及较多数字计算与字母运算,对运算及变形的能力要求较高,用代数的方法解决几何;另一方面要善于从曲线的定义、性质等几何的角度思考,利用数形结合的思想解决问题。
一、代数法:借助代数函数求最值和参数取值范围的方法。
运用代数法时,先要建立“目标函数”,然后根据“目标函数”的特点灵活运用求最值。
常用的方法有: 1.配方法。
由于二次曲线的特点,所求“目标函数”的表达式常常和二次函数在某一个闭区间上的最值联系紧密,这时可对二次函数进行配方,并根据顶点的横坐标结合区间的端点确定所求函数的最值。
1、已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1。
求参数的取值范围(解析几何)

03求参数的取值范围一、基础知识:求参数的取值范围宏观上有两种思路:一个是通过解不等式求解,一个是利用函数,通过解函数的值域求得参数范围1、解不等式:通过题目条件建立关于参数的不等式,从而通过解不等式进行求解。
常见的不等关系如下:(1)圆锥曲线上的点坐标的取值范围① 椭圆(以()222210x y a b a b+=>>为例),则[],x a a ∈-,[],y b b ∈-② 双曲线:(以()22221,0x y a b a b-=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支)y R ∈③ 抛物线:(以()220y px p =>为例,则[)0,x ∈+∞(2)直线与圆锥曲线位置关系:若直线与圆锥曲线有两个公共点,则联立消元后的一元二次方程0∆>(3)点与椭圆(以()222210x y a b a b+=>>为例)位置关系:若点()00,x y 在椭圆内,则2200221x y a b +< (4)题目条件中的不等关系,有时是解决参数取值范围的关键条件2、利用函数关系求得值域:题目中除了所求变量,还存在一个(或两个)辅助变量,通过条件可建立起变量间的等式,进而可将等式变形为所求变量关于辅助变量的函数,确定辅助变量的范围后,则可求解函数的值域,即为参数取值范围(1)一元函数:建立所求变量与某个辅助变量的函数关系,进而将问题转化为求一元函数的值域,常见的函数有:① 二次函数;②“对勾函数”()0ay x a x=+>;③ 反比例函数;④分式函数。
若出现非常规函数,则可考虑通过换元“化归”为常规函数,或者利用导数进行解决。
(2)二元函数:若题目中涉及变量较多,通过代换消元最后得到所求参数与两个变量的表达式,则可通过均值不等式,放缩消元或数形结合进行解决。
3、两种方法的选择与决策:通常与题目所给的条件相关,主要体现在以下几点:(1)若题目中含有某个变量的范围,则可以优先考虑函数的方向,将该变量视为自变量,建立所求变量与自变量的函数关系,进而求得值域 (2)若题目中含有某个表达式的范围(或不等式),一方面可以考虑将表达式视为整体,看能否转为(1)的问题进行处理,或者将该表达式中的项用所求变量进行表示,从而建立起关于该变量的不等式,解不等式即可 二、典型例题:例1:已知椭圆()2222:10x y C a b a b+=>>,1F 、2F ()3,1.(1)求椭圆C 的标准方程;(2)若12,A A 分别是椭圆长轴的左右端点,Q 为椭圆上动点,设直线1A Q 斜率为,且11,23k ⎛⎫∈-- ⎪⎝⎭,求直线2A Q 斜率的取值范围;解:(1)c e a ==::a b c ∴= ∴椭圆方程为:222213x y b b+=代入()3,1可得:24b =22312a b ∴== ∴椭圆方程为:221124x y +=(2)由(1)可得:()()12,A A - 设(),Q x y ,则k =2A Q k22212A Q y k k x ∴⋅==- Q 在椭圆上 ()222211121243x y y x ∴+=⇒=-2221123A Q y k k x ∴⋅==--213A Q k k ∴=- 11,23k ⎛⎫∈-- ⎪⎝⎭12,133k ⎛⎫∴-∈ ⎪⎝⎭即22,13A Q k ⎛⎫∈ ⎪⎝⎭例2:已知椭圆()2222:10xy C a b a b+=>>,其左,右焦点分别是12,F F ,过点1F 的直线l 交椭圆C 于,E G 两点,且2EGF 的周长为 (1)求椭圆C 的方程(2)若过点()2,0M 的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25PA PB -<时,求实数t 的取值范围 解:(1)c e a ==::a b c ∴2EGF 的周长4C a a ===1b ∴=,椭圆方程为:2212x y +=(2)设直线AB 的方程为()2y k x =-,()()1122,,,A x y B x y ,(),P x y OA OB tOP += 1212x x txy y ty +=⎧∴⎨+=⎩联立直线与椭圆方程:()()222222212882021y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩()()()22228412820k k k ∴∆=-+->,解得:212k <()23121212222884,44212121k k kx x y y k x x k k k k k +=+=+-=-=-+++ ()()222821421k x t k k y t k ⎧=⎪+⎪∴⎨⎪=-⎪+⎩,代入2212x y +=可得:()()2222284222121k k t k t k ⎛⎫⎛⎫ ⎪ ⎪+-= ⎪ ⎪++⎝⎭⎝⎭2221612k t k∴=+,由条件25PA PB -<可得:25AB <12AB x ∴-<()()22121220149k x x x x ⎡⎤∴++-<⎣⎦,代入22121222882,2121k k x x x x k k -+==++可得: ()()()222222228822014411413021219k k k k k k k ⎡⎤⎛⎫-⎢⎥+-⋅<⇒-+> ⎪++⎢⎥⎝⎭⎣⎦214k ∴> 211,42k ⎛⎫∴∈ ⎪⎝⎭,22221618=16,411232k t k k⎛⎫∴=⋅∈ ⎪+⎝⎭+262,,2t ⎛⎛⎫∴∈- ⎪ ⎪⎝⎭⎝⎭例3:在平面直角坐标系中,已知椭圆()2222:10x y C a b a b+=>>的离心率为2,且在所有(1)求椭圆方程(2)若过点()0,2B 的直线l与椭圆交于不同的两点,E F (E 在,B F 之间),求三角形OBE与三角形OBF 面积比值的范围解:(1)c e a == ::a b c ∴由椭圆性质可得,焦点弦的最小值为22b a=1,b a ∴==∴椭圆方程为2212x y +=(2)设:2l y kx =+,()()1122,,,E x y F x y112211,22OBEOBFSOB x x S OB x x ∴=⋅⋅==⋅⋅= 1122OBE OBF x S xS x x ∴== 联立直线与椭圆方程:()222221286022y kx k x kx x y =+⎧⇒+++=⎨+=⎩ ()()22238241202k k k ∴∆=-+>⇒>12122286,01212k x x x x k k +=-=>++ 12,x x ∴同号 ()()22221212212212832122631212k x x x x k k x x x x k k ⎛⎫- ⎪++⎝⎭∴===++++232k > ()22232321164,1333122k k k ⎛⎫∴=⋅∈ ⎪+⎝⎭+,122116423x x x x <++< 设120x t x =>,所解不等式为:124111612333t t tt t t ⎧++>⇒≠⎪⎪⎨⎪++<⇒<<⎪⎩()121,11,33x x ⎛⎫∴∈ ⎪⎝⎭,即()1,11,33OBE OBF S S ⎛⎫∴∈ ⎪⎝⎭例4:已知椭圆()22122:10x y C a b a b+=>>,直线:2l y x =+与以原点为圆心,椭圆1C 的短半轴长为半径的圆相切(1)求椭圆1C 的方程(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程 (3)设2C 与x 轴交于点Q ,不同的两点,R S 在2C上,且满足0QR RS ⋅=,求QS 的取值范围解:(1)c e a a==⇒= :2l y x =+与圆222x y b +=相切,O l d b -∴==b ∴=3a c =,22222b a c c ∴=-=即21c =,解得1c =a ∴,221:132x y C ∴+=(2)由(1)可得1:1l x =- 线段2PF 的垂直平分线交2l 于点2PM MF ∴=,即12M l d MF -=M ∴的轨迹为以2F 为焦点,1l 为准线的抛物线,设为()220y px p =>()21,0F 2p ∴= 22:4C y x ∴=(3)思路:由已知可得()0,0Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则所求QS 为关于2y 的函数,只需确定2y 的范围即可,因为0QR RS ⋅=,所以有可能对2y 的取值有影响,可利用此条件得到2y 关于1y 的函数,从而求得2y 范围。
(完整版)解析几何大题的解题技巧

目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
解析几何中参数取值范围问题(精)

解析⼏何中参数取值范围问题(精)解析⼏何中参数取值范围问题⼀.学习⽬标:1、掌握求参数取值范围的基本思路与⽅法,会解决⼀些简单的求参数取值问题;2、了解双参数问题的求解思路。
⼆.思想⽅法技巧1.利⽤数形结合思想求解:挖掘参数的⼏何意义,转化为直线斜率、距离等问题求解; 2.通过建⽴参数的不等式求解:(1)利⽤题设中已有的不等关系建⽴不等式;(2)利⽤判别式建⽴不等式(3)利⽤图形特征建⽴不等式 3.双参数问题求解策略:建⽴参数的不等式、⽅程的混合组,通过消元转化为⼀元不等式,或转化为求函数值域问题求解。
4、分类讨论思想的运⽤三.基础训练1.已知两点A (-3,4).B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是()A .[1,3]-B .(1,3)-C .(,1][3,)-∞-?+∞D .(,1)(3,)-∞-?+∞2.直线y kx =与双曲线221169x y -=不相交,则k 的取值范围是 3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是()(A )),(2222-(B )),(22-(C )),(4242-(D )),(8181-⼆.典型例题1.若直线y=x+b 与曲线21y x -=恰有⼀个公共点,则有b 的取值范围是。
2.双曲线1422=+ky x 的离⼼率为e ,且e ∈(1,2)则k 的范围是________。
3.若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是()A . [2,2]-B . [0,2]C .D . [-4.直线y=kx -2与焦点在x 轴上的椭圆1522=+my x 恒有公共点,求m 的取值范围5.已知椭圆C :2214x y += 和直线:2l y x m =+,椭圆C 上存在两个不同的点A 、B 关于直线l 对称,求m 的取值范围三.巩固练习1.若平⾯上两点A (-4,1),B (3,-1),直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是。
解析几何中求参数取值范围的方法(精)

解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x 1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ<ARCTAN4< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )A a<0B a≤2C 0≤a≤2D 0<A<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0) 由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得 (k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<K<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。
解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。
f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。
设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。
∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。
高考数学解析几何解题技巧

配多少呢,我先配一次给大家看看
新手版:原式 ak 2 (3bk 2 4b)
1
1
( ak 2 3bk 2 4b )2
2
(4k 2 1)2 ab ab
(4k 2 1)2
1 4ab
[(a
3b)k 2 4b]2 (4k 2 1)2
只需系数对应成比例,a 3b 4b ,a 13b 41
• 方法:
• ①设参 ②联立+韦达(秒杀)
• 分类型:
• (i)单参问题:③△>0(秒杀)//解范围1
•
④由题干翻译出另一不等式(运用韦达定理)
•
//考察转换关系(秒杀),解范围2,取交集即可
• (ii)双参问题:
• ③△>0(秒杀)//一道含两个参数的不等式
• ④由题干翻译出一道等式,用于消参
• ⑤代回③得解
• 方法: • ①设参 ②联立+韦达(秒杀) • ③△>0得到一个不等式(秒杀) • //这一步通常没什么用,仅仅用于对消参后得到的式子进行
初步判断....但几乎每道题都会满足△>0,不过既然可以秒杀,浪 费不了多少时间 • ④消参(必定可以因式分解) • ⑤一般得到两个解.....一般利用题干(例如不过顶点等条件)舍去 一解,计算定点即可
套路三:证明直线过定点问题
祭出今年的解析几何大题
20.已知椭圆C:x a
2 2
y2 b2
1(a b 0),四点P1(1,1), P2 (0,1), P3(1,
3 2
),
P4
(1,
3) 2
中恰好有三点在椭圆C上
(1)求C的方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中求参数取值范围的方法_答题技巧
近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:
一、利用曲线方程中变量的范围构造不等式
曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.
例1 已知椭圆x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)
求证:-a2-b2a a2-b2a
分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.
解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1
又∵线段AB的垂直平分线方程为
y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )
令y=0得x0=x1+x22 a2-b2a2
又∵A,B是椭圆x2a2 + y2b2 = 1 上的点
-aa, -aa, x1x2 以及-ax1+x22 a
-a2-b2a a2-b2a
例2 如图,已知∵OFQ的面积为S,且OFFQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围.
分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题.
解: 依题意有
tan=2S
∵12 2 1 tan4
又∵0
4
例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ||a|,则a的取值范围是( )
A a0
B a2
C 02
D 0 p
分析:直接设Q点坐标,利用题中不等式|PQ||a| 求解.
解: 设Q( y024 ,y0) 由|PQ| a
得y02+( y024 -a)2a2 即y02(y02+16-8a) 0
∵y020 (y02+16-8a) 0即a2+ y028 恒成立
又∵ y020
而2+ y028 最小值为2 a2 选( B )
二、利用判别式构造不等式
在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.
例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L 的斜率取值范围是( )
A [-12 ,12 ]
B [-2,2]
C [-1,1]
D [-4,4]
分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式∵0
解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)
由得k2x2+(4k2-8)x+4k2 = 0
∵直线L与抛物线有公共点
∵0 即k21 解得-11 故选(C)
例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.
分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则∵0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.
解:由得(k2-2)x2 +2kx+2 = 0
∵直线与双曲线的右支交于不同两点,则
解得-2 p
三、利用点与圆锥曲线的位置关系构造不等式
曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)若P在曲线外,则f(x0,y0)可见,平面内曲线与点均满足一定的关系。
故可用这些关系来构造不等式解题.
例6已知椭圆2x2 + y2 = a2 (a0)与连结两点A(1,2)、B(2,3)的线段没有公共点,求实数a的取值范围.
分析:结合点A,B及椭圆位置,可得当AB两点同时在椭圆内或同时在椭圆外时符合条件.
解:依题意可知,当A、B同时在椭圆内或椭圆外时满足条件。
当A、B同时在椭圆内,则
解得a 17
当A、B同时在椭圆外,则
解得0 p
综上所述,解得06 或a17
例7若抛物线y2=4mx (m0)的焦点在圆(x-2m)2+(y-1)2=4的内部,求实数m的取值范围.
分析:由于焦点(m,0)在圆内部,则把(m,0)代入可得.
解:∵抛物线的焦点F(m,0)在圆的内部,
(m-2m)2+(0-1)24 即m23
又∵m0
-3 0或0 p
四、利用三角函数的有界性构造不等式
曲线的参数方程与三角函数有关,因而可利用把曲线方程转化为含有三角函数的方程,后利用三角函数的有界性构造不等式求解。
例8 若椭圆x2+4(y-a)2 = 4与抛物线x2=2y有公共点,
求实数a的取值范围.
分析: 利用椭圆的参数方程及抛物线方程,得到实数a与参数的关系,再利用三角函数的有界性确定a的取值情况.
解:设椭圆的参数方程为(为参数)
代入x2=2y 得
4cos2= 2(a+sin)
a = 2cos2-sin=-2(sin+ 14 )2+ 178
又∵-1sin1,-1178
例9 已知圆C:x2 +(y-1)2= 1上的点P(m,n),使得不等式m+n+c0恒成立,求实数c的取值范围
分析:把圆方程变为参数方程,利用三角函数的有界性,确定m+n的取值情况,再确定c的取值范围.
解:∵点P在圆上,m = cos,n = 1+sin(为参数)
∵m+n = cos+1+sin = 2 sin(4 )+1
m+n最小值为1-2 ,
-(m+n)最大值为2 -1
又∵要使得不等式c-(m+n) 恒成立
c2 -1
五、利用离心率构造不等式
我们知道,椭圆离心率e(0,1),抛物线离心率e = 1,双曲线离心率e1,因而可利用这些特点来构造相关不等式求解.
例10已知双曲线x2-3y2 = 3的右焦点为F,右准线为L,直线y=kx+3通过以F为焦点,L为相应准线的椭圆中心,求实数k的取值范围.
分析:由于椭圆中心不在原点,故先设椭圆中心,再找出椭圆中各量的关系,再利用椭圆离心率01,建立相关不等式关系求解.
解:依题意得F的坐标为(2,0),L:x = 32
设椭圆中心为(m,0),则m-2 =c和m-32 = a2c
两式相除得: m-2m-32 = c2a2 = e2
∵01,01,解得m2,
又∵当椭圆中心(m,0)在直线y=kx+3上,
0 = km+3 ,即m = - 3k ,
- 3k 2,解得-32 p
上面是处理解析几何中求参数取值范围问题的几种思路和求法,希望通过以上的介绍,能让同学们了解这类问题的常用求法,并能认真体会、理解掌握,在以后的学习过程中能够灵活运用。