郑州大学物理工程学院量子力学试题含答案
量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论.2.关于波函数Ψ的含义,正确的是:BA。
Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C。
Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA。
偏振光子的一部分通过偏振片;B。
偏振光子先改变偏振方向,再通过偏振片;C。
偏振光子通过偏振片的几率是不可知的;D。
每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。
粒子在势垒中有确定的轨迹;B。
粒子在势垒中有负的动能;C。
粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧z lC 。
i ∧xlD.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B 。
ψ一定是 ∧B 的本征态;C 。
*ψ一定是∧B 的本征态;D 。
∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态; B 。
一定不处于本征态; C 。
一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A 。
能量守恒; B 。
动量守恒; C 。
角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为—3。
4ev ,则 n=5能级能量为:D A 。
-1。
51ev ; B 。
量子力学复习题部分解答

s5如果算符、满足条件,求证:,,证] 利用条件,以左乘之得则有最后得。
再以左乘上式得,即则有最后得7<10分)求角动量z分量的本征值和本征函数。
解:波函数单值条件,要求当φ转过2π角回到原位时波函数值相等,即:求归一化系数最后,得Lz的本征函数910在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态波函数具有确定的宇称。
证:在一维势场中运动的粒子的定态S-方程为①将式中的代换,得②利用,得③比较①、③式可知,都是描写在同一势场作用下的粒子状态的波函数。
由于它们描写的是同一个状态,因此之间只能相差一个常数。
方程①、③可相互进行空间反演而得其对方,由①经反演,可得③,b5E2RGbCAP④由③再经反演,可得①,反演步骤与上完全相同,即是完全等价的。
⑤④乘⑤,得可见,当时,,具有偶宇称,当时,,具有奇宇称,当势场满足时,粒子的定态波函数具有确定的宇称11一粒子在一维势场中运动,求粒子的能级和对应的波函数。
解:无关,是定态问题。
其定态S—方程在各区域的具体形式为Ⅰ:①Ⅱ:②Ⅲ:③由于(1>、(3>方程中,由于,要等式成立,必须即粒子不能运动到势阱以外的地方去。
方程(2>可变为令,得其解为④根据波函数的标准条件确定系数A,B,由连续性条件,得⑤⑥⑤⑥∴由归一化条件得由可见E是量子化的。
对应于的归一化的定态波函数为12设t=0时,粒子的状态为求此时粒子的平均动量和平均动能。
解:可见,动量的可能值为动能的可能值为对应的几率应为上述的A为归一化常数,可由归一化条件,得∴∴动量的平均值为#13 一维运动粒子的状态是其中,求:(1>粒子动量的几率分布函数;(2>粒子的平均动量。
解:(1>先求归一化常数,由∴动量几率分布函数为(2>14在一维无限深势阱中运动的粒子,势阱的宽度为,如果粒子的状态由波函数描写,A为归一化常数,求粒子的几率分布和能量的平均值。
解:由波函数的形式可知一维无限深势阱的分布如图示。
郑州大学大三物理专业量子力学试卷及答案 (5)

郑州大学20XX-20XX 学年第一学期《量子力学》(B )卷及参考解答评分标准一、简答题1. 能级简并、简并度。
答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为能级简并。
把对应于同一能级的不同状态数称为简并度。
2. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在球壳()dr r r +,中被测到的几率。
解:()ϕϕθψθθππd r d dr r P ⎰⎰=2022,,sin 。
3. 粒子在一维δ势垒 ()()(0)V x x γδγ=>中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
解: 22(0)(0)(0)m γψψψ+-''-=。
4. 写出电子自旋z s 的二本征值和对应的本征态。
解:⎪⎪⎭⎫ ⎝⎛===01)(,21z z s s χα ;⎪⎪⎭⎫ ⎝⎛==-=-10)(,221z z s s χβ。
二、填充题5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开,展开式为∑=nn n x c x )()(ψψ,展开式系数()dx x x x x c nn n ⎰==)()()(,)(*ψψψψ 6. 一个电子运动的旋量波函数为 ()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,电子自旋向上(2 =z s )、位置在r处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
7. 二粒子体系,仅限于角动量涉及的自由度,有两种表象,分别为耦合表象和非耦合表象;它们的力学量完全集分别是()z J J J J ,,,22221和()z z J J J J 222121,,,;在两种表象中,各力学量共同的本征态分别是jm j j 21和2211m j m j 。
8. 计算下列对易式:(1) ,1d x d x ⎡⎤=-⎢⎥⎣⎦ (2)2,2d x x d x ⎡⎤=⎢⎥⎣⎦三、证明题9. 设力学量A 不显含时间t ,证明在束缚定态下, 0=td Ad 。
郑州大学大三物理专业量子力学试卷及答案 (1)

郑州大学20XX-20XX 学年第一学期《量子力学》(B )卷试卷及参考解答一、简答题1. 束缚态、非束缚态及相应能级的特点。
答:束缚态:粒子在一定范围内运动,∞→r 时,0→ψ。
能级分立。
非束缚态:粒子的运动范围没有限制,∞→r 时,ψ不趋于0。
能级连续分布。
2. 一质量为μ 的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
解: ⎪⎩⎪⎨⎧≥≤<<=ax x a x axn a x n 2,0,0,20,2sin 1)(πψ,3,2,1,82222==n a n E n μπ3. 写出一维谐振子的归一化波函数和能级表达式。
解:!2,)()(2/22n A x H eA x nn n x n n ⋅==-πααψα 。
,2,1,0,21=⎪⎭⎫ ⎝⎛+=n n E n ω4. 电子自旋假设的两个要点。
解:(1)电子具有自旋角动量s,它在空间任意方向的投影只有两个取值:2 ±; (2)电子具有自旋磁矩M,它的回转磁比值为轨道回转磁比值的2倍,即 自旋回转磁比值 ⎪⎭⎫⎝⎛===为单位取自旋内禀磁矩mc e mc e g s 22,轨道回转磁比值 12===mceg l 轨道角动量轨道磁矩。
二、填充题5. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,则粒子在立体角Ωd 中被测到的几率为()220,,P d r r drψθϕ∞=Ω⎰6. )(z L L ,2 的共同本征函数是球谐函数),(ϕθlm Y ,相应的本征值分别是22(,)(1)(,)lm lm L Y l l Y θϕθϕ=+ 和 (,)(,)z lm lm L Y m Y θϕθϕ= 。
7.[],,,,2,z x z yz y x zy z xz p i L L i L y L ixi L p i p σσσ⎡⎤⎡⎤==-=⎣⎦⎣⎦⎡⎤⎡⎤=-=⎣⎦⎣⎦8. 完全描述电子运动的旋量波函数为 ⎪⎪⎭⎫ ⎝⎛-=)2/,()2/,(),(r r s r z ψψψ,则 ()2,/2r ψ()232/,⎰-r r d ψ表示电子自旋向下(2 -=z s )的几率。
量子力学复习题答案

2
分别表示什么样的物理意义。
解: ψ (r , = / 2 )
表示电子自旋向上( s z = = 2 ) 、位置在 r 处的几率密度;
2
K
∫d
3
K r ψ (r , − = / 2 )
表示电子自旋向下( s z = − = 2 )的几率。
18. 二电子体系中,总自旋 S = s1 + s 2 ,写出( S , S z )的归一化本征态(即自旋单态与三重态) 。
2
解: L , L z 的共同本征函数是球谐函数 Ylm (θ , ϕ ) 。
2
(
)
L2Ylm (θ , ϕ ) = l (l + 1)= 2Ylm (θ , ϕ ) ,
15. 写出电子自旋 s z 的二本征态和本征值。 解: s z = 16. 解:
L z Ylm (θ , ϕ ) = m=Ylm (θ , ϕ )
K
K
gs = gl =
内禀磁矩 e e ⎞ ⎛ = = 2 ⎜取 为单位 ⎟ 自旋 mc ⎝ 2mc ⎠ 轨道磁矩 e = =1 轨道角动量 2mc
13. 量子力学中,一个力学量 Q 守恒的条件是什么?用式子表示。 解:有两个条件:
2
∂Q = 0 , [Q , H ] = 0 。 ∂t
14.(L , L z) 的共同本征函数是什么?相应的本征值又分别是什么?
2
K
K
K
解: ( S , S z )的归一化本征态记为 χ SM S ,则
2
自旋单态为
χ 00 =
1 [α (1) β (2) − β (1)α (2)] 2
自旋三重态为
量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C。
经典电磁场理论不适用于黑体辐射公式;D。
黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B。
Ψ归一化后,代表微观粒子出现的几率密度;C。
Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA。
偏振光子的一部分通过偏振片;B。
偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A。
一定也是该方程的一个解;B. 一定不是该方程的解;C. Ψ与一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。
粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以表示角动量算符,则对易运算为:BA。
ihB。
ihC.iD。
h7.如果算符、对易,且=A,则:BA。
一定不是的本征态;B. 一定是的本征态;C。
一定是的本征态;D。
∣Ψ∣一定是的本征态。
8.如果一个力学量与对易,则意味着:CA。
一定处于其本征态;B.一定不处于本征态;C。
一定守恒;D。
其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:BA。
能量守恒;B。
动量守恒;C。
角动量守恒;D。
宇称守恒。
10.如果已知氢原子的n=2能级的能量值为-3。
4ev,则n=5能级能量为:DA. -1。
51ev;B。
—0。
85ev;C。
-0。
378ev;D。
—0。
544ev11.三维各向同性谐振子,其波函数可以写为,且l=N—2n,则在一确定的能量(N+)h下,简并度为:BA. ;B。
;C。
N(N+1);D。
量子力学复习题答案与题解

量子力学复习题导致量子论产生的物理现象主要有哪些?p2量子的概念是如何引进的?p5为什么说爱因斯坦是量子论的主要创始人之一?p6写出德布罗意公式并说明其中各量的含义和该公式的意义。
P12什么是波函数的几率解释?p18态的迭加原理。
P22动量算符的定义。
P27写出单粒子薛定谔方程。
P27写出多粒子薛定谔方程。
P28写出单粒子哈密顿算符及其本征值方程。
P33什么条件下可以得到定态薛定谔方程?p32什么是束缚态?p37什么情况下量子系统具有分立能级?p37什么是基态?p37写出线性谐振子的定态薛定谔方程。
P39写出线性谐振子的能级表达式。
P40写出波函数应满足的三个基本条件。
P51写出算符的本征值方程并说明其中各量的含义。
P54量子力学中的力学量算符如何由经典力学中相应的力学量得出?p55写出厄米算符的定义,并解释为什么量子力学中的力学量要用厄米算符来表示。
P56写出轨道角动量算符的各分量表达式。
P60什么是角量子数、磁量子数?写出相应的本征值表达式及其数值关系。
P63解:),()1(),(ˆ22ϕθϕθlm lm Y l l Y L += ),(),(ˆϕθϕθlmlm z Y m Y L = 其中l 表征角动量的大小,称为角量子数,m 称为磁量子数。
对应于一个l 的值,m 可以取(2l +1)个值,从-l 到+l 。
写出波尔半径的值和氢原子的电离能,可见光能否导致氢原子电离?00.52A a =( 3分) 113.6e V E =( 3分)可见光的能量不超过3.26eV , 这个值小于氢原子的电离能,所以不能引起氢原子电离。
( 4分)写出类氢原子体系的定态薛定谔方程。
P65 写出氢原子能级的表达式及其简并度。
P68 s, p, d, f 态粒子是什么含义?p63关于力学量与算符的关系的基本假定。
P83 写出力学量平均值的积分表达式。
P84 两个算符可对易的充要条件是什么?p89 写出X 方向坐标与动量的不确定关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008~2009郑州大学物理工程学院电子科学与技术专业
光电子方向量子力学试题(A 卷)
(说明:考试时间120分钟,共6页,满分100分)
计分人:
一、填空题:(每题 4 分,共 40 分)
1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:
E = h ν, p = /h λ 。
3.根据波函数的统计解释,dx t x 2
),(ψ的物理意义为: 粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量
F 所得的数值,必定是算符F
ˆ的 本征值 。
7.定态波函数的形式为: t E i
n n e
x t x -
=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_ 反对称的_____________,玻色子体系的波函数是_ 对称的 _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2
± 。
二、证明题:(每题10分,共20分)
1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:
证明:
2、(10分)由Schr ödinger 方程
证明几率守恒: 。
其中几率密度
几率流密度 。
2
|),(|),(),(),(t r t r t r t r ψ=ψψ=*
ω2
2(,)[()](,)
2i r t V r r t t μ
∂
ψ=-∇+ψ∂z
y x L i L L ˆ]ˆ,ˆ[ =0=∙∇+∂∂
J t
ω]
[2ψ∇ψ-ψ∇ψ=**μ
i J ]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z y
x p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z p
y ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z p
y +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z p
y +=y z z y z x x z p p x z p x p z p p z y p z p
y ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z p
y ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p p
yz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x p
i y ˆ)(ˆ)( +-=]ˆˆ[x y p y p
x i -= z
L i ˆ =
证明:考虑 Schr ödinger 方程及其共轭式:
在空间闭区域τ中将上式积分,则有:
三、计算题:(共40分)
1、(10分)设氢原子处于状态
),()(2
3
),()(21),,(11211021ϕθϕθϕθψ--=
Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
解:在此状态中,氢原子能量有确定值 2
2
2
2
2
282
s s e n
e E μμ-
=-
= )2(=n ,几率为1
2
2[](1)2i V t μ∂ψ=-∇+ψ∂22[](2)
2i V t μ
**
∂-ψ=-∇+ψ∂(1)(2)*ψ⨯-ψ⨯将式得:
]
[2222***
*
ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμ
t i t i ][22ψ∇ψ-ψ∇ψ∙∇=ψψ∂∂***
μ
)(t i τ
μτττd d dt d i ][22ψ∇ψ-ψ
∇ψ∙∇=ψψ**
*
⎰⎰ )(τ
μ
ττ
τd i d dt d ][2ψ∇ψ-ψ∇ψ∙∇-=ψψ***⎰⎰ )(τ
τωττ
d J d t r dt d
∙∇-=⎰⎰),(0=∙∇+∂∂
J t
ω
角动量平方有确定值为
2222)1( =+=L )1(= ,几率为1 角动量Z 分量的可能值为 01=Z L -=2Z L 其相应的几率分别为
41, 4
3
2、(10分)求角动量z 分量 的本征值和本征函数。
解:
波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:
求归一化系数
最后,得 L z 的本征函数
ˆz
d L i d φ
=-π
πφφψππ21
12||2202220=→===⎰
⎰
c c
d c d 归一化系数。
是积分常数,亦可看成其中解得:c c
e l d d i L z
i l z
z φ
φψφψφψφφψ ==-=)()()()(ˆ)2()(πφψφψ+=)2(πφφ+=→z
i z i l l ce
ce 1
2=πz
i l e
,2,1,022±±==m m l z
ππ于是 ,2,1,0±±==→m m l z
3、(20分)某量子体系Hamilton 量的矩阵形式为:
设c << 1,应用微扰论求H 本征值到二级近似。
解:c << 1,可取 0 级和微扰 Hamilton 量分别为:
H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式。
所以能量的 0 级近似为:
E 1(0) = 1 E 2(0) = 3 E 3(0) = -2
由非简并微扰公式
得能量一级修正:
⎪
⎪
⎪⎭⎫
⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010(1)
2(2)(0)(0)
||n nn
kn
n k n n k
E H H E E E ≠'⎧=⎪
'⎨=⎪-⎩∑(1)
111
(1)
222
(1)3
3300E H E H E H c
'⎧==⎪'==⎨⎪'==⎩⎪⎪⎪
⎭
⎫ ⎝⎛-=2000301
c c
c
H
,2,1,021
)(±±=⎪⎩
⎪⎨
⎧==m e m l im m z φπ
φψ
能量二级修正为:
二级近似下能量本征值为:
221)
0(3)0(1231)0(2)0(12
21)0()0(121)2(1||||||c E E H E E H E E H E k k n k -=-'+-'=-'=∑
≠2
21)0(3
)0(2232)0(1)0(2212)0()0(222)2(2||||||c E E H E E H E E H E k k n k =-'+-'=-'=∑
≠0||||||)
0(2)0(3223)0(1)0(3213)0()0(323)2(3=-'+-'=-'=∑
≠E E H E E H E E H E k k n k ⎪⎩
⎪
⎨⎧+-=+=-=c E c E c E 2313
22
1
22211。