高等数学--高阶导数
高阶导数的常用求法

2021.13科学技术创新高阶导数的常用求法韩荣梅(内蒙古科技大学包头师范学院数学科学学院,内蒙古包头014000)1用数学归纳法求高阶导数当高阶导数不能一下求出时,可以先求出前n 阶导数,总结归纳处其n 阶导数的表达式,然后用数学归纳法证明。
例1[1]证明[2]试证证[1]:(1)当n=1时,(2)当n=2时,即当n=1,2时,等式成立(3)设n=k-1,n=k 时成立,即①②则当n=k+1时,有③将①②带入③中整理得,即题得证。
[2]证当n=0时;左端==右端,即等式成立;设当n=m 时成立,即当n=m+1时,所以2用拆分法求高阶导数有些式子不易直接求高阶导数,当拆项以后,变成易于求高阶导数的一些基本形式之和,便立即可直接求导。
在这里要用到的基本形式主要有:并特别注意,因子a n 不要漏掉。
例2求下列函数的n 阶导数y(n )解:(1)由于所以(2)由于所以摘要:介绍求高阶导数的常用方法,运用数学归纳法求高阶导数,拆分法求高阶导数,泰勒公式求高阶导数,Leibniz 公式求高阶导数,递推公式法求高阶导数等等。
关键词:高阶导数;莱布尼茨公式;泰勒公式;数学归纳法中图分类号:O17文献标识码:A 文章编号:2096-4390(2021)13-0035-02()1111)(1)(nn xn n xe x e x(41)241411cos2(cos sin)(41)!2n n n x x x x n1211())xx ee x、(1311())xxe e x、、(1(1)112)(1)(k k xkk x ex e x()1111(1)(kk xk k x e xe x()(1)()()(1)11))11121112((()()k k k k k k kx x k k xxk k k x x xe x e k x e x e x e x e()1111)(1)(nn xn n x e x e x21(cos 2)1sin 2(cos sin )2x x x x x (41)241411cos 2(cos sin)(41)!2m m m x x x x m(45)41451cos 2(45)!2m m m x x m(41)(41)2(4)454541411cos 2(45)!21cos 2(41)!2(cos sin )m m m m m m x x m x x m x x(41)241411cos 2(cos sin )(41)!2n n n x x x x n()()()()1()()(1)...(1)();;;(1)!;sin();2cos().2))(ln )()(ln )(1)(sin )(cos )n k nn xn nxn n nn n k k k k n n k x x n n x n x x x e e a a a x xx x(( ()()()()n n nax b f ax b f a 211113)(2)3256y x x x x x x(()(()1111(1)!11()()32(3)(2)n n n nn n n y x x x x)44sin cos y x x2221222221122sin cos sin cos cos x x x x x2cos 2sin 2 sin 4y x x x35--科学技术创新2021.133用泰勒公式法求高阶导数例3(1)设。
高等数学-§2.3 高阶导数

n
其中公式(2)称为莱布尼茨(Leibniz)公式.
高等数学 第2章 导数与微分
2.3 高阶导数
例2.3.7
y sin x cos x
4 4
2 2 2 2
, 求
y
n
.
解 将 y 变形得
y sin x cos x
1 cos 4 x 3 1 1 cos 4 x 4 4 4
2 2x 2 2 x x2 1 x 2x x2
y
y
2 1 x 2 x x 1 x
2
2x x2
2x x
2
2
2 x x 1 x 2x x
2
2 2x 2 2x x
2
高等数学 第2章 导数与微分
x
n
k
k n
高等数学 第2章 导数与微分
2.3 高阶导数
如果函数 u u x 和 v v x 在点 x 处具有 n 阶导数, 那么
u x v x 和 u x v x 在点 x 处也都具有
n 阶导数( , 是常数), 且
n
n 1 ! 1 n 1 x
n 1
通常规定 0! 1 , 因此这个公式当 n 1 时也成立.
高等数学 第2章 导数与微分
2.3 高阶导数
例2.3.6
解
求
yx
1
(
是任意常数)的 n 阶导数.
y 1 x 2
,
y x
y sin x cos( x ) sin( x 2 ) 2 2
高等数学第二章导数知识总结

高等数学第二章知识总结在这一章里需要掌握的是求一阶导数的多种方法和求高阶导数的计算公式。
微分和导数的关系求导数与求微分方法相同,只不过在求微分时要在后面加上dx.函数在某点处的导数就是函数在该点处的变化率. 导数有很多种表现形式.一.(1)单侧导数即左右导数.函数可导的充要条件是:左右导数存在且相等. (2)可导与连续的关系:可导必然连续,连续不一定可导.注:函数的导数就是函数在某点处因变量与自变量比值的极限.◆求导数的方法有:(1)利用导数的定义.(简单一点就是△y/△x的极限)(2)利用导数的几何意义解决几何及物理,化学的实际问题.(3)利用初等函数的求导公式.(在书P59)(4)利用反函数求导法.(反函数的导数就是原函数导数的倒数.)(5)利用复合函数求导法.(由外到内,逐层求导)(6)利用隐函数求导法(7)利用参数方程确定函数的求导法.(8)利用分段函数求导法.(9)利用函数连续,可导的定义,研究讨论函数的连续性与可导性.二.高阶导数高阶导数可细分为:一阶导数,二阶导数,三阶导数……N阶导数等等.(一阶导数的导数是二阶导数) 应该掌握的是高阶导数的运算.方法有两种:(1)直接法.(2)间接法.间接法适用于阶数较高的运算.其规律性较强.常用的高阶导数公式在书P63上.注意查看.■计算uv相乘形式的高阶导数时,首先要判断u,v从一阶到n阶的结果,再运用莱布尼兹公式求出结果。
三.隐函数和由参数方程确定的函数的导数什么是隐函数?如果变量x,y的函数关系可以用一个二元方程表示,且对在给定范围内的每一个x,通过方程有确定的y与之对应,即Y是X的函数,这种函数就叫做隐函数F(x,y)=0从二元方程中解出y的值,就是隐函数的显化.有些隐函数不易显化,甚至不能显化.隐函数的求导方法:(例题在书P66 例40,41)(1)把y看做是复合函数的中间变量,把y看作y(x)即可。
再在方程两边分别对X求导.(2)从求导后的方程中求出y’.(3)在隐函数的求导结果中允许含有y,但是求某一以知点的导数时不仅要代X的值,还要代Y的值. 对数求导法:先两边取对数,再关于X求导.例题在书P68,例44(遇到指数形式的函数时就采用此类方法)对参数方程确定的函数求导方法很简单,就是用y’/x’.四.函数的微分.可微就可导,可导就可微.求函数的微分就是对函数求导,主要就是在所求结果后面加上dx.微分的几何意义是某点处的切线纵坐标的增量.常用的微分公式在书P76.五.微分的应用.1.微分在近似计算,误差估计中的应用.在书P80 P81.。
高阶导数

(4)
3! = (1 + x ) 4
LL (n) n 1 ( n 1)! y = ( 1) (1 + x ) n
( n ≥ 1, 0! = 1)
例4
设 y = sin x , 求y (n ) . ′ = cos x = sin( x + π ) 解 y 2 π π π π ′′ = cos( x + ) = sin( x + + ) = sin( x + 2 ) y 2 2 2 2 π y ′′′ = cos( x + 2 ) = sin( x + 3 π ) 2 2 LL π (n) y = sin( x + n ) 2 π (n) 同理可得 (cos x ) = cos( x + n ) 2
x2 +1
【4】 第10讲 】 讲
高阶导数
一,高阶导数的定义 二, 高阶导数求法举例 三,由参数方程所确定的函数的 二阶导数
一,高阶导数ቤተ መጻሕፍቲ ባይዱ定义
问题:变速直线运动的加速度 问题:变速直线运动的加速度.
设 s = f (t ), 则瞬时速度为 v ( t ) = f ′( t )
Q 加速度 a是速度 v对时间 t的变化率
2x 2( 3 x 2 1) y ′′′ = ( )′ = 2 2 (1 + x ) (1 + x 2 ) 3 2x ′′(0) = ∴f (1 + x 2 ) 2
x=0
2( 3 x 2 1) = 0; f ′′′(0) = (1 + x 2 ) 3
x=0
= 2.
例2
设 y = x (α ∈ R ), 求y
高等数学第二章高阶导数

高阶导数的定义 几个基本初等函数的n阶导数 莱布尼茨(Leibniz)公式 小结 思考题 作业
1
第二章 导数与微分
一、高阶导数的定义 高阶导数也是由实
问题:变速直线运动的加速度. 际需要而引入的.
设 s s(t), 则瞬时速度为v(t) s(t)
加速度a是 速度v对时间t的变化率
y
x2
1 3x
2
令
1
AB
(x 2)(x 1) x 2 x 1
A (x 2) 原式
1
x2
B (x 1) 原式
1
x 1
y 1 1
x 2 x 1
y(n)
(1)n
n!
( x
1 2)n1
(x
1
1)
n1
18
(4) y sin6 x cos 6 x
d2 y 或 d2 y d (dy) dx2 d x 2 d x dx
2
二阶导数的导数称为三阶导数, f ( x),
y,
d3 y dx 3
.
三阶导数的导数称为四阶导数, f (4)( x),
y(4) ,
d4 y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数,记作
2)n
cos
x2
16
,
则
f (n) (2)
n!
2 2
提示:
各项均含因
(x 2)n(x 1)n cos x2 子 ( x – 2 )
16
n !(x 1)n cos x2
高等数学3-3高阶导数

20-14
利用高阶导数运算法则,以及常用高阶导数公式,通过
适当的函数变形,求出函数n 阶导数的方法称为间接法。
例 3.3.6 设 y ln
1 x 1 x ,则 y(99) (0)
.
解 由于 y 1 [ln(1 x) ln(1 x)],所以 2
y(99) 1 {[ln(1 x)](99) [ln(1 x)](99)} 2
1 [ 2
98! (1 x)99
(1)98
98! (1 x)99
]
98![ 1 2 (1 x)99
1 (1 x)99
]
,
所以
y(99) (0)
98![ 2
(1
1 0)99
1 (1 0)99
]
98! 。
20-15
例 3.3.7
求
y
x x2 1
的n
阶导数, n
1, 2,
。
解
由于 y
x
x
x2 1 (x 1)(x 1)
如果 为正整数,则情形如同例 3.3.2;
如果
1,则 (
x
1 )(n) C
(1)n n! (x C)n1
.
20-10
记住
由于[ln(1 x)] 1 (1 x)1 ,则 1 x
[ln(1
x)](n)
[(1
x) 1 ]( n 1)
(1)n1
(n 1)! (1 x)n
,n
1,2,.
同理可得
2
20-9
同理有
(cosx)(n) n cos(x n ), n 0,1, 2, .
2
例 3.3.5 求 y (x C) 的 n 阶导数(其中 C, 为常数).
高等数学:第十二讲 高阶导数

2
2
2
y(n) 3n sin(3x n )
2
归纳法:逐阶求出若干阶导数后,再归纳出 n 阶导数的一般表达式.
谢谢
仍是x的可导函数, 就称 y f (x) 的导数为 f (x)的二阶导数,记作
y,f
(x)
或
d2 y d x2
,
则
y
( y),
f
(x)
f
(
x),d
d
2y x2
d dx
(dy) dx
高阶导数的定义
二阶导数的导数称为三阶导数,记作
f (x),
y, d3 y . dx3
三阶导数的导数称为四阶导数,记作
f
(4)
( x),
y
(4)
,
d4 y dx 4
.
一般地,(n-1)阶导数的导数叫做n阶导数,记作
f
(n)
( x),
y
(n)
,
dn y dx n
.
二阶和二阶以上的导数统称为高阶导数.
例1:
已知y=2x4-3x2+x-1 ,求 y.
解 y=8x3-6x+1 y =(8x3-6x+1)'=24x2-6 y=(24x2-6)'=48x
逐阶求导法: 按高阶导数的定义逐阶求导.
例2:
设y=sin3x,求y(n).
cosx sin(x )
2
解 y 3cos3x 3sin(3x )
y [3sincos(3x
)
32
sin(3x
2)
2
2
2
y [32 sin(3x 2)] 33 cos(3x 2) 33 sin(3x 3)
高等数学导数的四则运算

课题2导数的四则运算法则一、复习基本初等函数的导数公式用定义只能求出一些较简单的函数的导数(常函数、幂函数、正、余弦函数、指数函数、对数函数),对于比较复杂的函数则往往很困难。
本节我们就来建立求导数的基本公式和基本法则,借助于这些公式和法则就能比较方便地求出常见的函数——初等函数的导数,从而是初等函数的求导问题系统化,简单化。
二、导数的四则运算法则设函数)(x u u =、)(x v v =在点x 处可导,则函数)(x u ±)(x v ,)()(x v x u ⋅,)0)(()()(≠x v x v x u 也在点x 处可导,且有以下法则: (1) [])()()()(x v x u x v x u '±'='±推论:[]'±±'±'±'='±±±±n n u u u u u u u u 321321 (2) [])()()()()()(x v x u x v x u x v x u '+'=', 推论1: [])()(x u C x Cu '='(C 为常数); 推论2:此法则可以推广到有限个函数的积的情形. 例 w uv w v u vw u uvw '+'+'=')((3) )0(2≠'-'='⎥⎦⎤⎢⎣⎡v v v u v u v u , 三、例题分析例:求 的导数解:例:已知x x y ln 3=,求y '解:)1ln 3(ln 3)(ln ln )()ln (222333+=+='+'='='x x x x x x x x x x x y例: 解:例:求的导数x x x x y ln cos sin 2⋅+⋅= 解3ln 11cos )(3++-=x x x x f ()()'+'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛-'='3ln 11cos )(3x x x x f 0131sin 234+-+-=-x x x x xx x sin 13123--=(x)f ,1)(2'+=求设x xx f 22222)1()1()1()()1()(x x x x x x x x f +'+-+'='+='2222222)1(1)1(21x x x x x +-=+-+=x x x x x x xx x x x x x x x x x x x cos ln sin cos 2sin )(ln cos ln )(cos )(sin 2sin )(2)ln (cos )sin x 2y +-+='⋅+⋅'+'+'='⋅+'='(附加练习:求下列函数的导数(1)x x y 33log = (2)x x xy sin cos 41+-=,(3)π+-=x x y 32(4)xx y +=41(5) (6)设4sin cos 4)(3π-+=x x x f ,求)(x f '及)2(πf '(7)x x x y cos )ln 2(-=四、导数的应用 例1 [电流]电路中某点处的电流i 是通过该点处的电量q 关于时间的瞬时变化率,如果一电路中的电量为t t t q +=3)(,(1)求其电流函数i (t ) ?(2)t =3时的电流是多少? 解:(1)13)()(23+='+==t t t t i ,(2)i(3)=28例2 [电压的变化率]一个电阻为 Ω6,可变电阻R 为的电路中的电压由下式给出: ,求在R=Ω7电压关于可变电阻R 的变化率 解例3[气球体积关于半径的变化率]现将一气体注入某一球状气球,假定气体的压力不变.问当半径为2cm 时,气球的体积关于半径的增加率是多少?解:气球的体积V 与半径r 之间的函数关系为气球的体积关于半径的变化率为 半径为2cm 时气球的体积关于半径的变化率为小结导数的四则运算作业 上册 p57 1—6),1()11)(1()(22f xx x f '-+=求3256++=R R V 26256333R R R V R R +++''==++()-(625)()()07.01007)7(-=-='V 334r V π=24r V π=')/(1624/322cm cm dtdVr ππ=⋅==课题3复合函数的导数一、复习导数公式 导数的四则运算法则 二、复合函数的求导法则因为x x cos )(sin =',是否可以类似写出x x 2cos )2(sin ='呢? 由三角函数的倍角公式可知x x x cos sin 22sin = ])(cos sin cos )[(sin 2)2(sin '+'='x x x x x )sin (cos 222x x -= x 2c o s 2=显然x x 2cos )2(sin ≠',因为x 2sin 不再是基本初等函数而是一个复合函数,对于求复合函数的导数给出如下法则.定理:如果函数)(x u ϕ=在点x 处可导,而函数)(u f y =在对应的u 处可导,则复合函数[])(x f y ϕ=也在x 处可导,且有dxdudu dy dx dy ⋅= 或 )()(]))(([x u f x f ϕϕ''=', 简记为 x u x u y y ''='证明:当)(x u φ=在x 的某邻域内不等于常数时, ∆u ≠0, 给自变量x 一增量x ∆,相应函数有增量y u ∆∆,因为0y 0x )()(→∆→∆==时,处连续,固有在处可导,可知在x x u x x u φφ)()(lim lim lim lim0000x u f xu u y x u u y x y x u x x ϕ'⋅'=∆∆∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆即 )()(]))(([x u f x f ϕϕ''=' 或 dxdudu dy dx dy ⋅= 当)(x u φ=在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 说明:(1)复合函数对自变量的导数等于它对中间变量的导数乘以中间变量对自变量的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
y(n ) (a 2 b 2)2eas x ib n x n ( )
(arctabn) a
2. 高阶导数的运算法则:
设函 u和 v具 数n阶 有导 ,则数
(1 )(u v )(n ) u (n ) v (n )
(2)(C)u (n) C(n u )
(3)(uv)(n) u(n)vnu(n1)v n(n1)u(n2)v 2!
n(n1)(nk1)u(nk)v(k) uv(n) k!
n
C u v k (nk) (k) n k0
莱布尼兹公式
例6 设 yx 2 e2 x,求 y (2).0
解 设ue2x,vx2,则由莱布尼兹公式
y(2)0(e2x)(2)0x22(0e2x)(1)9(x2) 2(020 1)(e2x)(1)8(x2)0 2!
(2 s x c i 2 x n ) o 4 ( x s s s 2 x i c i2 n n x o c 4 x s ) o
(s 2 x ic n 2 x o ) 2 3 s s2 i x c n 2 x os
13sin2 2x131co4sx
4
42
53
cos4x
88
y(n)34nco 4x sn ().
7、 设 x n a1 x n1 a 2 x n2 a n1 x a n (a1 ,a2 , ,an 都 是 常 数 ), 则 y (n) =___________.
8 、 设 f ( x ) x ( x 1)( x 2 ) ( x n ) , 则 f (n1)( x)=____________.
高
等
数
学
-
-
高
阶
导
注意:求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法证明)
例3 设 y ln 1 x ()求 ,y(n ).
解 y 1
1 x
y (11x)2
y
2! (1 x)3
y(4)
3!
(1
x)4
y (n ) ( 1 )n 1(n 1 )! (n 1 ,0 ! 1 ) (1 x )n
ea(x asibn x bco b)s x eax a2b2sib n x () ( arb c)tan
a y a 2 b 2 [ a a s x e b i n ) x b ( a c x e b o ) x s ](
a 2 b 2 e ax a 2 b 2 sb i n 2 x )(
x a xa lxima fx(xa) l x a i[2 m g (x ) (x a )g (x )] 2g(a)
练习题
一、 填空题:
1 、 设 y sin t 则 y = _ _ _ _ _ _ _ _ _ . et
2 、 设 y tan x , 则 y = _ _ _ _ _ _ _ _ _ . 3 、 设 y (1 x 2 ) arctan x , 则 y = _ _ _ _ _ _ _ _ . 4 、 设 y xe x 2 , 则 y = _ _ _ _ _ _ _ _ _ . 5 、 设 y f ( x 2 ) , f ( x ) 存 在 , 则 y = _ _ _ _ _ _ _ _ _ . 6 、 设 f ( x ) ( x 10 ) 6 , 则 f ( 2 ) = _ _ _ _ _ _ _ _ _ .
例4 设 ysixn ,求 y(n ).
解 ycoxssin(x) 2
ycosx() sinx()sinx(2)
2
22
2
y c oxs(2 2)sinx(32)
y(n) sinx (n) 2
同理可得 (cx o)(n s)coxsn () 2
例5 设 y eas x ibn (a x ,b 为)常 求 ,y(n ).数 解 y aae s x ibn x bae c x b ox s
五 、下 列 函 数 的 n阶 导 数 :
1、 yexcox; s
2、 y1x; 1x
3、 yx2x 33x2; 4、 ysix n si2n xsi3n x.
220e2x x2 20219e2x 2x 2019218e2x 2 2!
2 2e 0 2 x(x 2 2x 0 9)5
3.间接法:利用已知的高阶导数公式, 通过四则
运算, 变量代换等方法, 求出n阶导数. 常用高阶导数公式
( 1 )( a x ) ( n ) a x ln n a( a 0 ) (ex)(n) ex
二、求下列函数的二阶导数:
1、y2x3 x4; x
2、y co2s xlnx;
3、yln(x 1x2).
三、试从dx 1,导出: dy y
1、d2x dy2
(yy)3
;
2、d3x dy3
3(y()y2)5yy.
四 、 验 证 函 数 y c 1 e x c 2 e x( , c 1 , c 2 是 常 数 ) 满 足 关 系 式 y 2 y 0 .
(2 )(ski)(n n x ) k nsik n x n ( ) 2
(3 )(cko )(n x ) sk nco k s x n ( ) 2
( 4 ) ( x ) ( n ) ( 1 ) ( n 1 ) x n
(5)(lx n )(n)(1)n1(nx n 1)!(1x)(n)
8
2
三、小结
高阶兹公式);
n阶导数的求法;
1.直接法;
2.间接法.
思考题
设 g(x) 连续,且 f(x)(xa)2g(x), 求 f(a) .
思考题解答
g(x)可导 f ( x ) 2 ( x a ) g ( x ) ( x a ) 2 g ( x ) g(x)不一定存在 故用定义求 f(a) f(a)lim f(x)f(a) f(a)0
(1)n
n! xn1
例7 设y 1 ,求 y(5). x21
解 y 1 1( 11) x21 2x1 x1
y(5) 1[ 5! 5! ] 2(x1)6 (x1)6
1
1
6[0
]
(x1)6 (x1)6
例8 设 y s6 i x n c6 o x ,求 y s ( n ).
解 y(s2x i)n 3(c2x o )3s