电力系统的短路计算仿真实验报告
《基于MATLAB的电力系统短路故障的仿真报告_论文手册》

中国石油大学胜利学院本科生毕业设计( 论文)手册题目电力系统短路故障分析及仿真研究学生姓名梅西学号 201107013120 专业班级自动化一班指导教师马拉多纳2015 年6月10日目录本科生毕业设计(论文)任务书........................ 错误!未定义书签。
本科生毕业设计(论文)开题报告...................... 错误!未定义书签。
本科生毕业设计(论文)指导记录...................... 错误!未定义书签。
本科生毕业设计(论文)中期检查表.................... 错误!未定义书签。
本科生毕业设计(论文)指导教师评语.................. 错误!未定义书签。
本科生毕业设计(论文)答辩记录表.................... 错误!未定义书签。
本科生毕业设计(论文)专业答辩小组评语.............. 错误!未定义书签。
本科生毕业设计(论文)成绩汇总表.................... 错误!未定义书签。
本科生毕业设计(论文)任务书论文题目电力系统短路故障分析与仿真研究一、研究的主要内容1.电力系统故障分析主要研究电力系统故障(包括短路,断线和非正常操作)时,故障电流,电压及其在电网中的分布。
短路电流计算失效分析的主要内容。
的短路电流计算的目的是确定短路故障的严重程度,选择电气设备的参数。
调谐保护,负序和零序电流分布的分析系统,以确定它的电气设备和系统。
2. 本课题研究的目的及意义随工厂供电系统要求正常地不间断地对用电负荷供电,以保证工厂生产和生活的正常进行。
系统中最常见的故障就是短路。
短路电流比正常电流要大得多,在大电力系统中,短路电流可达几万安甚至几十万安。
电力系统的短路故障是严重的,而又是发生几率最多的故障,一般来说,最严重的短路是三相短路。
当发生短路时,其短路电流可以达到数万安以至十几万安,它们所产生的热效应和电动力效应将使电气设备遭受严重破坏。
短路试验测试实验报告(3篇)

第1篇一、实验目的本次实验旨在通过短路试验,评估电气设备的短路承受能力,验证设备在短路条件下的安全性能和稳定性。
通过实验,了解设备的短路特性,为设备的设计、制造和运行提供重要依据。
二、实验原理短路试验是通过对电气设备施加一个或多个短路条件,模拟实际运行中可能出现的短路故障,以检验设备在短路条件下的性能和安全性。
实验过程中,通过测量短路电流、短路时间、短路功率等参数,分析设备的短路特性。
三、实验设备与材料1. 实验设备:- 短路试验装置- 电流表- 电压表- 电阻表- 计时器- 电流互感器- 接地线- 安全防护用具2. 实验材料:- 电气设备(如变压器、电机、开关等)- 短路试验电缆四、实验步骤1. 准备工作:- 熟悉实验原理和操作步骤。
- 检查实验设备是否完好,连接线是否牢固。
- 确保实验环境安全,符合实验要求。
2. 实验操作:a. 将电气设备接入短路试验装置。
b. 按照设备规格和实验要求设置短路电流和短路时间。
c. 启动试验装置,记录短路电流、短路时间和短路功率等参数。
d. 观察设备在短路条件下的表现,如是否有异常声响、火花、温度升高等。
e. 关闭试验装置,断开设备,检查设备是否损坏。
3. 数据处理与分析:a. 记录实验数据,包括短路电流、短路时间、短路功率等。
b. 对实验数据进行整理和分析,评估设备的短路特性。
c. 比较实验数据与设备规格和标准要求,判断设备是否符合短路性能要求。
五、实验结果与分析1. 短路电流:a. 实验测得的短路电流与设备规格和标准要求相符。
b. 设备在短路条件下的短路电流未超过额定值。
2. 短路时间:a. 实验测得的短路时间与设备规格和标准要求相符。
b. 设备在短路条件下的短路时间未超过允许值。
3. 短路功率:a. 实验测得的短路功率与设备规格和标准要求相符。
b. 设备在短路条件下的短路功率未超过允许值。
4. 设备表现:a. 设备在短路条件下的表现良好,无异常声响、火花、温度升高等。
电力仿真算法实验报告

一、实验目的本次实验旨在通过电力系统仿真软件对电力系统进行仿真分析,验证电力系统仿真算法的有效性,并进一步了解电力系统在不同运行条件下的稳定性和性能。
实验内容包括电力系统潮流计算、暂态稳定分析、短路电流计算等。
二、实验内容1. 电力系统潮流计算(1)实验背景:以某地区110kV电网为例,分析该电网在不同运行方式下的潮流分布。
(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 运行潮流计算程序,得到潮流分布结果;④ 分析潮流分布结果,判断电网的稳定性。
2. 电力系统暂态稳定分析(1)实验背景:以某地区110kV电网为例,分析该电网在发生单相接地故障时的暂态稳定性。
(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 设置故障参数,包括故障类型、故障位置等;④ 运行暂态稳定分析程序,得到暂态稳定结果;⑤ 分析暂态稳定结果,判断电网的稳定性。
3. 电力系统短路电流计算(1)实验背景:以某地区110kV电网为例,计算电网在发生短路故障时的短路电流。
(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 设置故障参数,包括故障类型、故障位置等;④ 运行短路电流计算程序,得到短路电流结果;⑤ 分析短路电流结果,判断电网的短路容量。
三、实验结果与分析1. 电力系统潮流计算结果通过潮流计算,得到110kV电网在不同运行方式下的潮流分布。
结果表明,在正常运行方式下,电网的潮流分布合理,节点电压满足要求。
在故障运行方式下,电网的潮流分布发生较大变化,部分节点电压超出了允许范围。
2. 电力系统暂态稳定分析结果通过暂态稳定分析,得到110kV电网在发生单相接地故障时的暂态稳定结果。
结果表明,在故障发生初期,电网暂态稳定,但故障持续一段时间后,电网发生暂态失稳。
实验六电力系统短路电流计算实验(仿真软件)

0.2685
0.2685
LO GEN2 230. STATIONC230. .0255 .2160
0.1118
0.1118
LO STATIONC230. GEN3 230. .0357 .3024
0.1568
0.1568
XO GEN1 16.5 GEN1 230. 2 .0576
XO GEN2 18.0 GEN2 230. 2 .0625
本实验以 IEEE9 节点系统数据作为计算的基础,网络结构及短路相关参数如下:
17
电力系统分析实验指导书
图 6-1 IEEE 9 节点系统网络结构示意图
发电机参数、线路零序参数、变压器零序参数、节点零序参数及负荷特性见下表。
发电机参数
发电 电压基
机名 准(kV)
TJ
X’d
GEN1 16.5 47.28 0.0608
GEN2 18.0
12.8 0.1189
GEN2 13.8
6.02 0.1813
发电 电压基 机名 准(kV)
T’q0
XL
GEN1 16.5
0.0 0.0336
GEN2 18.0
0.54 0.0521
GEN2 13.8
0.6 0.0742
注:功率基准值为 100MVA
X’q
0.0969 0.1969
R0
0.03 0.051 0.096 0.107 0.0255 0.0357
单位:pu
X0
B0/2
0.255 0.276 0.483 0.51 0.216 0.3024
0.132 0.1185 0.2295 0.2685 0.1118 0.1568
变压器零序参数
电力系统的短路计算仿真实验报告

广州大学学生实验报告开课学院及实验室: 2014年 12 月11 日学院机械与电气工程年级、专业、班姓名学号实验课程名称电力系统分析实验成绩实验项目名称实验三电力系统的短路计算仿真指导老师一、实验目的了解PSCAD/EMTDC软件的基本使用方法,学会用其进行电力系统短路分析。
二、实验原理运用短路时电压电流的计算方法,结合PSCAD软件,进行电力系统短路分析。
三、使用仪器、材料计算机、PSCAD软件四、实验步骤1. 新建项目文件启动软件,选择File/New/Case,在项目窗口就出现一个默认为noname的例子,点保存,出现保存文件对话框,填好保存路径和文件名。
双击项目栏中的文件名,右侧显示空白工作区。
2. 构造电气主接线图1)在Master Library库中找到所需的元件或模型,复制到工作区,或从元件库栏直接选中元件到工作区。
所需元件有三相电压源、断路器和输电线(选用集中参数PI模型)。
双击元件出现参数设置对话框,在Graphics Display下拉框中有3 phase view和single line view选项,分别表示三相视图和单线视图,本例将系统画为三相视图,如图3所示:图3元件2)将元件正确地连接起来。
连线方法:鼠标在按钮上点一下,拿到工作区后变为铅笔状,点左键,移动鼠标画线,若再点左键可转向画,再点右键画线完成。
连好后将鼠标再在按钮上点一下则恢复原状了。
连接后如图4所示:(注:右端开路也可以无穷大电阻接地表示)图4元件连接图3. 设置元件参数(参照第二章方法)电源参数:容量400MV A,220KV,50Hz,相角0度,内阻1欧,其余用默认参数;输电线长度100Km,50Hz,其余参数采用默认值。
4. 设置故障假设在线路末端出口处发生三相接地故障,按照第二章中的故障设置方法,如图5所示。
图5故障接线图5. 设置输出量和断路器状态短路器闭合,分别输出显示故障相电压和电流。
完整的仿真图如图6所示。
2.短路计算实验报告

简单系统的短路计算与PSASP验证
一、实验目的
1.掌握电力系统短路故障的概念及分类;
2. 培养运用所学知识和PSASP软件进行对称短路故障分析的实践能力。
二、实验原理
1.对称短路计算机算法原理
(添加内容,图形可打印,描述手写)
2.不对称短路计算原理
(添加内容,图形可打印,描述手写)
三、实验内容
1.手工计算下图所示系统短路点电流和电压;
2.使用PSASP软件计算上述系统计算短路点电压和电流;
四、实验结果(图形打印,其他手写)
1.短路估算的计算过程及结果
(1)系统图
(2)计算过程
(3)结果
2.使用PSASP软件的短路计算结果
(1)写出计算机计算短路的各个步骤
(2)给出潮流计算结果,可在实验时截图。
3.与手算结果的差异及原因分析
(手写)
五、实验中遇到的问题及解决方法
(手写,同时可配以截图说明问题)
六、实验心得
(手写)。
电力系统分析仿真实验报告
电力系统分析仿真实验报告电力系统分析仿真实验报告一、实验目的本次实验的目的是通过使用电力系统仿真软件进行电力系统模拟分析,掌握电力系统运行特点及原因、掌握电力系统基本传输线路的参数,以及了解电力系统的潮流分布计算和短路分析流程。
二、实验原理电力系统仿真软件是针对电力系统运行及其各种故障情况下的仿真软件。
仿真软件将电力系统进行模拟分析,可以让使用者对电力系统进行检测修正,达到保证电网质量的目的。
仿真软件主要采用数学模型进行计算,本次实验中使用的仿真软件为PSASP。
第一,电力系统线路模型:电力系统线路模型是电力系统分析的核心内容,此模型通过研究电力线路本身的运行特点,为电力系统计算和仿真打下基础。
电力系统线路模型假设电力系统线路为非常规线路,包括零序电感和阻抗、平衡、非平衡模型的相间电路等,具体包括电感、电容、电阻三部分。
第二,电力系统模拟分析:电力系统的仿真分析,就是对电力系统进行计算、仿真,从而得出电力系统的各种参数或特性。
模拟分析主要包括电力系统的潮流计算、电力系统的短路分析等两个方面。
(1)电力系统潮流计算:电力系统潮流计算是指通过对电力系统进行数学建模,来分析电力系统中电流、电压等各种状态量的分布规律。
具体的计算过程采用功率系统仿真软件进行计算。
(2)电力系统短路分析:电力系统短路分析是针对电力系统在遭受外部灾害时计算其在各种短路状态下的可能损伤程度,在电力系统建设过程中非常重要。
同时也是保障电网电力质量安全的必要手段。
三、实验内容实验的主要内容分为两个部分,第一部分是电力系统潮流计算实验,第二部分是电力系统短路分析实验。
(1)潮流计算实验这部分实验的主要内容是计算电力系统的电流分布以及电压分布等参数,实验过程如下:1. 打开PSASP软件,新建项目档案。
根据实际需求设置主进程,建立相应关系文件,并完成电力系统初始化操作。
2. 添加仿真数据。
根据实验要求,添加相应的电力系统数据。
其中包括节点数据、主变和传输线路数据、变压器等数据。
电力系统仿真计算报告
电力系统仿真计算报告
目录
一、潮流计算 (2)
1.1计算条件及基础数据 (2)
1.2 常规方式潮流运算 (4)
1.3 规划方式潮流运算 (5)
二、短路计算 (6)
2.1三相短路 (6)
2.2 单相接地 (9)
2.3 两相短路 (12)
2.4 两相接地短路 (14)
三、暂态稳定计算 (15)
3.1 基于常规方式 (16)
3.2 基于规划暂稳计算 (20)
一、潮流计算
1.1计算条件及基础数据
1.2 常规方式潮流运算
图1.1 常规潮流单线图
图1.2 常规潮流计算结果1.3 规划方式潮流运算
图1.3 规划潮流单线图
图1.4 规划潮流计算结果
二、短路计算
2.1三相短路
图2.1 三相短路计算条件
图2.2 三相短路单线图
图2.3 三相短路部分计算结果2.2 单相接地
图2.4 单相接地计算条件
图2.5 单相接地单线图
图 2.6 单相接地部分母线计算电压
2.3 两相短路
图2.6 两相短路计算条件
图2.7 两相短路单线图
图2.8 两相短路部分计算结果
2.4 两相接地短路
图2.9 两相接地计算条件
图2.10 两相接地单线图
图2. 11 两相接地部分计算结果三、暂态稳定计算
3.1 基于常规方式
图3.1常规暂稳计算条件
图3.2 常规暂稳单线图
图3.3 常规暂稳发电机功角
图3.4 常规暂稳部分母线电压
3.2 基于规划暂稳计算
图3.5 规划暂稳计算条件
图3.6 规划暂稳单线图
3.7 规划暂稳发电机功角
图3.8 规划暂稳部分母线电压。
电力系统分析短路故障实验报告
电力系统分析上机报告——短路计算程序设计姓名:学号:班级:一、目的根据所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。
通过自己设计电力系统计算程序使同学对电力系统分析有进一步理解,同时加强计算机实际应用能力的训练。
二、上机内容电力系统故障的计算程序设计及编制和调试。
采用所编制的程序进行《电力系统分析》例6-3题的对称短路计算。
有关数学模型和原理框图以及已知结果的例题,参见《电力系统分析》第六章。
常用的计算方法为节点导纳矩阵法或节点阻抗矩阵法,其形成方法分别参见《电力系统分析》第四章。
三、选择所用计算机语言的理由我们使用的是第四代计算机语言的MATLAB,利用其丰富的函数资源,它的优点如下:1.语言简洁紧凑,使用方便灵活,库函数极其丰富。
MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。
由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。
可以说,用MATLAB进行科技开发是站在专家的肩膀上。
2.运算符丰富。
由于MATLAB是用C语言编写的,MATLAB提供了和C语言几乎一样多的运算符,灵活使用MATLAB的运算符将使程序变得极为简短。
3.MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。
4.程序限制不严格,程序设计自由度大。
例如,在MATLAB里,用户无需对矩阵预定义就可使用。
5.程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。
6.MATLAB的图形功能强大。
在FORTRAN和C语言里,绘图都很不容易,但在MATLAB里,数据的可视化非常简单。
MATLAB还具有较强的编辑图形界面的能力。
7.MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
电力系统分析仿真实验报告模板
电力系统分析仿真实验报告模板一、实验目的本次电力系统分析仿真实验的主要目的是通过对电力系统的建模和仿真,深入理解电力系统的运行特性和规律,掌握电力系统分析的基本方法和工具,提高对电力系统故障和异常情况的分析和处理能力。
二、实验原理电力系统分析是研究电力系统稳态和暂态运行特性的学科,主要包括电力系统潮流计算、短路计算、稳定性分析等内容。
本次实验基于电力系统仿真软件,通过建立电力系统模型,输入系统参数和运行条件,进行仿真计算和分析。
电力系统潮流计算是根据给定的网络结构、参数和负荷分布,计算电力系统中各节点的电压、功率等电气量的分布情况。
短路计算则是分析电力系统在短路故障情况下的电流、电压等参数,评估系统的短路容量和设备的短路耐受能力。
电力系统稳定性分析研究系统在受到扰动后能否保持稳定运行,包括功角稳定、电压稳定等方面。
三、实验设备及软件1、计算机2、电力系统仿真软件(如 PSCAD、MATLAB/Simulink 等)四、实验步骤1、建立电力系统模型确定系统的拓扑结构,包括发电机、变压器、输电线路、负荷等元件的连接方式。
输入各元件的参数,如发电机的额定容量、电压、电抗,变压器的变比、电抗,输电线路的电阻、电抗、电容等。
2、设置运行条件确定系统的基准容量和基准电压。
设定发电机的出力、负荷的大小和功率因数。
3、进行潮流计算在仿真软件中运行潮流计算模块,得到各节点的电压幅值和相角、线路的功率潮流等结果。
4、进行短路计算设置短路故障点和故障类型(如三相短路、单相短路等)。
运行短路计算模块,获取短路电流、短路电压等参数。
5、进行稳定性分析模拟系统受到的扰动,如线路故障切除、发电机出力变化等。
观察系统的动态响应,分析系统的稳定性。
6、结果分析与评估对潮流计算、短路计算和稳定性分析的结果进行分析和比较。
评估系统的运行性能和安全裕度,提出改进和优化建议。
五、实验结果1、潮流计算结果各节点电压幅值和相角的分布情况。
各线路功率潮流的大小和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州大学学生实验报告
开课学院及实验室: 2014年 12 月11 日
学院机械与电气
工程
年级、专
业、班
姓名学号
实验课程名称电力系统分析实验成绩
实验项目名称实验三电力系统的短路计算仿真指导老师
一、实验目的
了解PSCAD/EMTDC软件的基本使用方法,学会用其进行电力系统短路分析。
二、实验原理
运用短路时电压电流的计算方法,结合PSCAD软件,进行电力系统短路分析。
三、使用仪器、材料
计算机、PSCAD软件
四、实验步骤
1. 新建项目文件
启动软件,选择File/New/Case,在项目窗口就出现一个默认为noname的例子,点保存,出现保存文件对话框,填好保存路径和文件名。
双击项目栏中的文件名,右侧显示空白工作区。
2. 构造电气主接线图
1)在Master Library库中找到所需的元件或模型,复制到工作区,或从元件库栏直接选中元件到工作区。
所需元件有三相电压源、断路器和输电线(选用集中参数PI模型)。
双击元件出现参数设置对话框,在Graphics Display下拉框中有3 phase view和single line view选项,分别表示三相视图和单线视图,本例将系统画为三相视图,如图3所示:
图3元件
2)将元件正确地连接起来。
连线方法:鼠标在按钮上点一下,拿到工作区后变为铅笔状,点左键,移动鼠标画线,若再点左键可转向画,再点右键画线完成。
连好后将鼠标再在按钮上点一下则恢复原状了。
连接后如图4所示:(注:右端开路也可以无穷大电阻接地表示)
图4元件连接图
3. 设置元件参数(参照第二章方法)
电源参数:容量400MV A,220KV,50Hz,相角0度,内阻1欧,其余用默认参数;
输电线长度100Km,50Hz,其余参数采用默认值。
4. 设置故障
假设在线路末端出口处发生三相接地故障,按照第二章中的故障设置方法,如图5所示。
图5故障接线图
5. 设置输出量和断路器状态
短路器闭合,分别输出显示故障相电压和电流。
完整的仿真图如图6所示。
图6 完整仿真图
6. 编译运行
完成后编译连接,若有错误,消息窗口则有红色显示,双击消息指示在工作区,修改重新编译连
接直至无错,然后运行,观察分析波形。
本例中三相接地短路,故障开始时间为0.2s,持续时间0.2s,
如图7所示,0.2s时电流增大,电压降低,持续0.2s后在0.4s又恢复。
五、实验过程原始记录(程序、数据、图表、计算等)
实验原理图:
六、实验结果及分析
随着时间的增大,直流分量逐渐衰减在直至为零, b相电流相位滞后a相120度,c相电流滞后a相电流
240度,a相直流分量起始值最大,说明a相短路电流瞬时值最大。