《应用离散数学》谓词公式及其解释
《离散数学》谓词逻辑

§3.5 前束范式
§3.6 谓词逻辑的推理
4
谓词与量词
个体词(individual)是一个命题里表示思维
对象的词,表示独立存在的具体或抽象的客体
具体的、确定的个体词称为个体常项,一般用
a, b, c 表示
抽象的、不确定的个体词称为个体变项,一般
用 x, y, z 表示
个体变项的取值范围称作个体域或论域
那么在解释2下该命题是真命题。
24
谓词公式及分类
类似于命题逻辑,也可以对谓词逻辑
公式进行分类:
设 A 为一个谓词公式,若 A 在任何解
释下真值均为真,则称 A 为普遍有效
的公式或逻辑有效式(logically valid
formula)
例
(x)
(P(x)∨P(x))
(x) P(x) P(y)
第三章 谓词逻辑
《离散数学及应用》
第三章 谓词逻辑
苏格拉底三段论:
凡是人都是要死的。
苏格拉底是人。
所以苏格拉底是要死的。
p∧q r
重言式?正确的推理?
2
第三章 谓词逻辑
为了克服命题逻辑的局限性,引入了
3
谓词和量词对原子命题和命题间的相
互关系做进一步的剖析,从而产生了
为谓词。这是一元(目)谓词,以
P(x), Q(x), …表示。
例
Human
(Socrates)
Mortal (Socrates)
7
谓词与量词
如果在命题里的个体词多于一个,那
么表示这几个个体词间的关系的词称
作谓词。这是多元(目)谓词,有 n
个个体的谓词 P(x1, …, xn) 称 n 元(目)
离散数学的谓词逻辑详解

全称量词:
1.全称量词 : (任意,所有) x: “对一切x”,“对所有的x”, “对任一x”
如: x P(x) ┐ x P(x) x ┐ P(x)
“对一切x,P(x)是真” “并非对一切x,P(x)是真” “对一切x, ┐ P(x) 是真”
如: “ 所有人都是要死的”
于是令 M(x):x是人。 (1) x(M(x)→D(x)) (2) x (M(x)∧ ┐G(x))
命题符号化(翻译):
将汉语(或其他自然语言)语句翻译成逻辑表 达式,这在数学、逻辑编程、人工智能、软 件工程以及许多其他学科中都是一项重要的 任务。翻译的目的是生成简单而有用的逻辑 表达式。
命题符号化:
1.谓词与个体词
将简单命题分解成个体与谓词这样两个组成部分。谓词,通 常是用来描述个体的性质或特征,或者个体之间的关系。谓 词逻辑,是命题逻辑的扩充与发展 。
例1:下面两个命题 1. 张华是学生 2. 李明是学生
a: 张华 b:李明 H:是学生 ,则 H(x):x是学生
1,2可分别表示成 H(a) ,H(b). 这样表示就揭示了两命题间有相同的谓语这一特征。
变元的约束
例1 : 令 P(x, y):“ x<y ”, Q(x):x是有理数; F(x):x可以表示为分数。
判断下列式子那些是命题函数,那些是命题?
P(x, y)
P(x, y)∧Q(x)
Q(x) → F(x) x(Q(x)→ F(x)) x Q(x)→ F(x)
自由变元与约束变元
[定义] 紧接于量词之后最小的子公式称为量词的辖 域.(量词的辖域是紧接其后的公式,除非辖域是个 原子公式,否则应在公式的两侧插入圆括号。)
离散数学第二章谓词逻辑

第二章 谓 词 逻 辑
2.1 谓词的概念与表示
2.1 谓词的概念与表示
在谓词逻辑中,可将原子命题划分为个体和谓 词两部分。 个体:可以独立存在的具体事物的或抽象的概念。 例如,电子计算机、李明、玫瑰花、黑板、实数、
中国、思想、唯物主义等,客体也可称之为 主语。 谓词:用来刻划个体的性质或个体之间的相互关系 的词。
第二章 谓 词 逻 辑
命题逻辑的局限性: 在命题逻辑中,命题是命题演算的基本单位,不
再对原子命题进行分解,因而无法研究命题的内部结 构、成分及命题之间的内在联系,甚至无法处理一些 简单而又常见的推理过程。
1
第二章 谓 词 逻 辑
例如,下列推理: 所有的人都是要死的。 苏格拉底是人。 苏格拉底是要死的。 众所周知,这是真命题。但在命题逻辑中,如果
31
第二章 谓 词 逻 辑
2.2 命题函数与量词
(4) 一 般 来 说 , 当 多 个 量 词 同 时 出 现 时 ,
它们的顺序不能随意调换。 例如:在实数域上用H(x,y)表示x+y=5,
则命题“对于任意的x,都存在y使得 x+y=5”可符号化为:xyH(x,y),其真值 为1。若调换量词顺序后为: yxH(x,y) , 其真值为0。
(x)(M(x) F(x))
34
第二章 谓 词 逻 辑
2.2 命题函数与量词
(2) 令S(x): x吸烟。则符号化为: (x)(M(x)∧S(x))
(3) 令D(x): x登上过木星。则符号化为: (x)(M(x)∧D(x))
(4)令Q(x):x是清华大学的学生。H(x):x是高 素质的。则符号化为: (x)(Q(x) H(x))
35
第二章 谓 词 逻 辑
离散数学第五章__谓词逻辑详述

又如,在命题“武汉位于北京和广州之间” 中,武汉、北京和广州是三个个体,而“…位 于…和…之间”是谓词,它刻划了武汉、北京和 广州之间的关系。设P:…位于…和…之间,a: 武汉,b:北京,c:广州,则
P(a,b,c):武汉位于北京和广州之间。
定义5.1.2 一个原子命题用一个谓词(如P)和n 个有次序的个体常元(如a1,a2,…,an)表示 成P(a1,a2,…,an),称它为该原子命题的谓 词形式或命题的谓词形式。
注意:
1. n元谓词不是命题,只有其中的个体变元用特定个体或个 体常元替代时,才能成为一个命题。
例如,令S(x):x是大学生,这是一元谓词,不是命题; S(c):张明是位大学生,这就是一个命题。 2. 个体变元在哪些论域取特定的值,对命题的真值有影响。
例如,令S(x):x是大学生。若x的论域为某大学的计 算机系中的全体同学,则S(x)是真的;若x的论域是某中 学的全体学生,则S(x)是假的;若x的论域是某剧场中的 观众,且观众中有大学生也有非大学生的其它观众,则 S(x)是真值是不确定的。
例如,著名的亚里士多德三段论苏格拉底推理: 所有的人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。
根据常识,认为这个推理是正确的。若用命题逻 辑来表示,设P、Q和R分别表示这三个原子命题, 则有
P,Q┣ R
(P∧Q)→P, (P∧Q)→Q都是永真式
然而,(P∧Q)→R并不是永真式,故上述推理形 式又是错误的。一个推理,得出矛盾的结论, 问题在哪里呢? 问题就在于这类推理中,各命题 之间的逻辑关系不是体现在原子命题之间,而 是体现在构成原子命题的内部成分之间,即体 现在命题结构的更深层次上。对此,命题逻辑 是无能为力的。所以,在研究某些推理时,有 必要对原子命题作进一步分析,分析出其中的 个体词,谓词和量词,研究它们的形式结构的 逻辑关系、正确的推理形式和规则,这些正是 谓词逻辑的基本内容。
离散数学 谓词逻辑

例1 给定解释I1如下:
(1)个体域为自然数集合N; (2)N中的特定元素a=0; (3)F(x,y):x大于或等于y. 在解释I1下,求下列各式的真值: (1)(∀x)F(x,a);(2)(∀x∃y)F(x,y) 解 在解释I1下,公式分别解释为: (1)任何自然数都大于或等于零, 为真命题.
(2)对任一自然数x,都存在一自然数y使得x≥y, 为真命题.
4
例子
[例2-1.1] 张明是位大学生。 解:设S(x):x是大学生,c:张明, 一元谓词:表 则原句的谓词形式为S(c)。 示客体性质 [例2-1.2]我坐在张三和李四中间。 解:设S(x,y,z):x坐在y和z之间,i:我,z:张 三,l:李四, 多元谓词:表 示客体间关系 则原句的谓词形式为S(i,z,l)。
★从以上两命题的符号化可以看出,同一命题在不同个体域下 符号化的形式可能不同。
11
这里,M(x)称为特性谓词。应该注意 的是,全称量词和存在量词符号化时,引入 特性谓词时的形式是不同的。 用全称量词 符号化时,特性谓词作为条 件式的前件; 用存在量词符号化时则作为合取式的一 项。
12
对于任一给定的实数x,都存在着一个实数y,使得 x+y=0。 如果取个体域为实数集合 ∀ x ∃ y H(x, y ) 然而 ∃ y ∀ x H(x, y ): 存在着一个少数y,对于任一实数x,使得x+y=0
3
谓词的表示
客体词有两种:客体常元和客体变元。客体常 元表示具体的或特定的客体,一般用小写字母 a、b、c等表示;表示抽象的或泛指的客体的 词称为客体变元,常用小写字母x、y、z等表 示。 谓词,通常用大写的字母A、B、C等表示。
谓词填式:单独一个谓词不是完整的命题, 把谓词字母后填以客体所得的式子。
离散数学L4谓词

谓词是命题函数
• 一元谓词P可视为从个体域D到集合{T,F} 上的映射:
P: D {T,F}
• n元谓词也是一样:
P: Dn {T,F}
• 注意:P(x)是命题形式但不是命题,因为其 真值不确定.
– 仅当P取定为谓词常项,x取定为个体常项时, P(x)才成为命题.
Lu Chaojun, SJTU
谓词逻辑的基本概念
本章主要内容
• 谓词 • 量词 • 一阶谓词公式 • 自然语句的形式表示 • 公式的解释及真假性
Lu Chaojun, SJTU
谓词逻辑与命题逻辑的区别
• 命题逻辑:简单命题是分析的基本单元,不再对 简单命题的内部结构进行分析.
– 例如P:“柏拉图是人”和Q:“亚里士多德是人”是两个 相互独立的命题,看不出P和Q有什么联系.
Lu Chaojun, SJTU
14
量词的辖域
• 量词所约束的范围称为量词的辖域.即:
(x) (…辖域…) (x) (…辖域…)
• 在x(或x)的辖域内的自由x都被该量词 约束.
– 例如(x)(P(x) Q(x)) – 但在(x)(P(x) (x)Q(x))中, Q(x)还处于最近
的(x)的辖域中,此x非自由,故不被(x)约束.
Lu Chaojun, SJTU
15
命题形式P(x)如何化为命题?
• 假设P含义确定,是谓词常项
– 若x用个体常项代入,则P(x) 真假就定了; – 或者将x量化,形如(x)P(x)或(x)P(x),这时也
确定了真假.
• 总之:命题中是不能有自由变元的. • 变元易名规则:约束变元改名不改变命题
的真值,即(x)P(x) = (y)P(y).
离散数学19.谓词公式与翻译

解:(1)令F(x): x是正数.M(x):x大于零.
则符号化为:(x)(F(x)M(x)).
(2)令E(x): x小于2. S(x):x是素数.则符号化为:
(x)(E(x)∧S(x)).
(3)令D(x): x是有理数.F(x):x能表示成分数.则符号化为:
学情分析
学生已经掌握谓词的概念和表示方法,能充分理解量词的含义并能合理运用。
教学评价
师生互动,启发式教学引导学生思考并进而解决问题;深入分析,用例题加深学生对知识点的理解。
课程资源
参考书目,网上教学视频,网络微课。
教学过程:
一、谓词合式公式
定义:称n元谓词A(x1,x2,...,xn)为原子谓词公式,其中x1,x2,...,xn是客体变元。
4)如果A是合式公式,x是A中的任何客体变元,则(x) A和(x) A也是合式公式;
5)只有经过有限次地应用规则(1)-(4)所得的公式是合式公式.
谓词合式公式也叫谓词公式,简称公式.
下面都是合式公式:
P,(P→Q),(Q(x)∧P),(x)(A(x)→B(x)),(x)C(x)
而下面都不是合式公式:
教学设计
课程名称
《离散数学》
教师姓名
授课题目
谓词公式与翻译
授课章节
§2.3谓词公式与翻译
授课对象
数学与应用数学专业
教学目标
熟练掌握量词与联结词在谓词翻译里面的使用
教学方式
启发式
教学内容
谓词中量词与联结词的使用
教学重点
量词与联结词的使用
教学难点
谓词函数的使用
教学方法和策略
采用多媒体课件辅助,通过例子说明量词和联结词的使用方法;注意师生互动,以学生为教学主体,共同完成教学目标。
离散数学逻辑公式大全化简

离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。
2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。
3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。
二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。
2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。
3. 简单蕴涵:P→Q,Q即P的蕴涵结果。
三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。
2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。
3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。
四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。
2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。
3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 谓词公式及其解释
习题2.2
1. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀
(2))()(y x yQ y x xP ,,∃→∀ (3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀
解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →;x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;
)(y x Q ,中的x 是自由变元,y 是y ∃的约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,
)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21
{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀ (2)))()((x Q x P x ∧∃
解(1)解释1I :个体域}21
{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21
{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀
(2))),()()((y x R y Q x P y x →∧∀∀
解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
成假解释:个体域D ={1,2,3},0:)(>x x P ,2:)(>y y Q ,1:),(<+y x y x R 。
(2)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
成假解释:个体域D ={1,2,3},0:)(>x x P ,0:)(>y y Q ,1:),(<+y x y x R 。
4. 给定解释I 如下:
个体域R =D (这里R 为实数集合)。
个体常元0=a 。
二元函数y x y x f -=)(,。
二元谓词y x y x P =:,)(,y x y x Q <:,)(。
在解释I 下,下列公式的含义是什么?哪些成为命题哪些不成为?成为命题的其真值又
如何? (1)))()((y x P y x Q y x ,,⌝→∀∀
(2)))())(((y x Q a y x f P y x ,,,→∀∀
(3))))(()((a y x f P y x Q y x ,,,⌝→∀∀
(4)))())(((y x P a y x f Q y x ,,,→∀∀
解(1)公式被解释成“)(y x y x y x ≠→<∀∀”,为真命题。
(2)公式被解释成“)0(y x y x y x <→=-∀∀”,为假命题。
(3)公式被解释成“)0(≠-→<∀∀y x y x y x ”,为真命题。
(4)公式被解释成“)0(y x y x y x =→<-∀∀”,为假命题。
5. 判断下列谓词公式哪些是永真式,哪些是永假式,哪些是可满足式,并说明理由。
(1))()(x xP x P ∃→ (2))()(x P x xP →∃
(3))()(x xP x P ∀→ (4))()(x P x xP →∀
(5)))()((x P x P x ⌝→∀ (6))()(y x xP y y x yP x ,,∀∀→∀∀
(7))()(x y yP x y x yP x ,,∀∀→∀∀ (8))()(y x yP x y x yP x ,,∀∃→∃∀ (9))()(y x xP y y x yP x ,,∃∀→∀∃
(10)))()((x y P y x P y x ,,→∀∀ 解(1)因为当存在某个x 使)(x P 取1时)(x xP ∃一定取1,所以公式是为永真式。
(3)取解释1I :个体域为自然数集合,
0)(2≥x x P :。
在1I 下公式的前件与后件均为真,所以公式为真,即不是永假式。
取解释2I :个体域仍为自然数集合,但)(x P 取为0>x 。
在2I 下公式不成为命题,即不是永真式。
综合知公式为可满足式。
(5)取解释1I :个体域为自然数集合,
0)(2≥x x P :。
在1I 下,对任意的x ,)(x P 为真而)(x P ⌝为假,所以公式为假,即不是永真式。
取解释2I :个体域仍为自然数集合,
但)(x P 取为02<x 。
在2I 下,对任意的x ,)(x P 为假而)(x P ⌝为真,所以公式为真,即
不是永假式。
综合知公式为可满足式。
(7)公式为永真式,用非形式化的反证法证明如下:若公式非永真,则存在一个解释,使得)(y x yP x ,∀∀取1而)(x y yP x ,∀∀取0。
)(x y yP x ,∀∀取0表明存在某对00,y x 使得)(00x y P ,取0,从而)(y x yP x ,∀∀也应取0。
这与前面说)(y x yP x ,∀∀取1矛盾。
故
公式是永真式。
(9) 设I 为任意一个解释,个体域为D 。
若)(y x yP x ,∀∃取1,即存在D x ∈0,使得)(0y x yP ,∀为真,从而)(y x xP y ,∃∀为真,故)()(y x xP y y x yP x ,,∃∀→∀∃为真。
所以在解释I 下公式为真,由I 的任意性可知,公式为永真式。
(2)、(4)、(6)、(8)、(10)略。
6. 判断下列谓词公式哪些是永真式,哪些是永假式,哪些是可满足式,并说明理由。
(1)))()(())()((y yQ x xP x Q x P x ∀∧∀→∧∀
(2)))()(())()((y yQ x xP x Q x P x ∀∨∀→∨∀
(3))())()((y yQ y yQ x xP ∃∧∃→∀⌝
(4)))()(())()((x xQ y P x Q y P x ∀→→→∀
(5)))()(())()((x xQ x P x Q x P x ∀→→→∀
(6))))()(()((x P y x yQ x P →∀→⌝,
(7)))()(()(y x P y x Q y x P ,,,→→
解 略
7. 给出一个非闭式的永真式,给出一个非闭式的永假式,给出一个非闭式的可满足式。
解 略。