“抽屉原理”教学资料及作用
抽屉原理及其应用

抽屉原理及其应用
抽屉原理(也称鸽笼原理、容斥原理)是离散数学中的一个基本原理,它描述了把若干个物体放入若干个容器中时,如果物体数量多于容器数量,那么至少有一个容器必须放多于一个物体。
抽屉原理可以应用在多个领域,包括:
1. 计算概率:假设有n个鸽巢和m个鸽子,如果将m个鸽子平均放入n个鸽巢中,那么至少有一个鸽巢中会放多于一个鸽子。
2. 计算排列组合:假设将n个物品分成m堆,至少有一堆中包含的物品数量不少于⌈n/m⌉(向上取整)。
3. 求解问题:当问题本身的解法很难找到时,可以利用抽屉原理削减解空间,锁定可能的解,减少求解难度。
4. 数据存储:在计算机程序设计中,抽屉原理可以用来优化数据存储和搜索。
将数据划分多个小区域同时进行搜索,可以减少搜索空间,提高效率。
总之,抽屉原理是一种非常实用的思想工具,可以帮助我们解决各种实际问题。
抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。
此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。
在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。
这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。
让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。
另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。
并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。
课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。
”这是为什么?学生很惊讶。
六年级数学数学广角抽屉原理

六年级数学数学广角抽屉原理抽屉原理是数学中的一条重要原理,它在解决计数问题中起到了至关重要的作用。
在数学广角中,抽屉原理被广泛应用于解决各种排列组合、鸽巢原理等问题。
本文将详细介绍六年级数学中的抽屉原理以及其应用。
一、抽屉原理的概述抽屉原理,又称鸽巢原理或箱子原理,是由数学家约翰·拉默尔(Joseph-Louis Lagrange)在18世纪末提出的。
它基本思想是:如果有n+1个物体放入n个抽屉,那么至少有一个抽屉里会放置多于一个物体。
这条原理旨在说明当物体数量超过容器数量时,必然存在容器里有多个物体的情况。
二、六年级数学中的抽屉原理应用1. 排列组合问题在六年级数学中,有很多排列组合问题可以通过抽屉原理来解决。
例如,考虑如下问题:将8个苹果放入3个篮子里,每个篮子至少要放2个苹果,问有多少种放置方式?通过抽屉原理,我们可以将这个问题转化为将8-2×3=2个苹果放入3个篮子里的问题,即将2个相同的苹果和3个篮子进行排列组合,解得答案。
这个问题的解题思路正是基于抽屉原理的应用。
2. 数字盒子问题在六年级数学中,常常会涉及到将数字放入盒子的问题。
例如,有一组数字{1, 2, 3, 4, 5, 6, 7, 8, 9},我们需要从中选取至少5个数字,使得选取的数字之和能够被3整除。
这个问题可以通过抽屉原理来解决。
我们将这组数字中的每个数字除以3得到的余数作为抽屉,将数字放入对应的抽屉中,根据抽屉原理,至少存在一个抽屉里放置了至少5个数字。
将这些数字相加即可得到满足条件的数字之和。
3. 奇偶数问题六年级数学中,奇偶数问题也是抽屉原理的常见应用之一。
例如,考虑以下问题:将六个不同的奇数放入三个盒子里,使得每个盒子里的数字之和都是偶数,问有多少种放置方式。
通过抽屉原理,我们可以将这个问题转化为将三个偶数和六个奇数放入三个盒子里,并满足每个盒子里的数字之和都是偶数的问题。
然后通过排列组合的思路,得到问题的解答。
六年级数学教案《抽屉原理》

一、教学目标1.理解抽屉原理的基本概念和应用。
2.掌握运用抽屉原理解决问题的方法。
3.培养学生的逻辑思维能力和问题解决能力。
二、教学重点1.抽屉原理的概念和应用。
2.运用抽屉原理解决问题。
三、教学难点1.运用抽屉原理解决复杂问题的能力。
四、教学准备1.教师准备好教学课件和教学实例。
2.学生准备好教科书、笔记本和铅笔。
五、教学过程Step 1 导入(5分钟)2.学生提示回答,教师出示抽屉原理表述:“如果将n+1个物体放入n个盒子中,则至少有一个盒子中的物体的数目多于1个。
”3.教师解释,抽屉原理就是讲将若干个物体放入若干个地方,那么至少有一个地方是存放了两个或两个以上的物体。
Step 2 探究(20分钟)1.教师用3个抽屉和8对袜子的实例,引导学生自行思考和发现抽屉原理的应用。
2.学生完成思考后,教师请学生发表观点。
3.教师引导学生总结抽屉原理的应用:分析物体和盒子的关系,然后运用抽屉原理来解题。
Step 3 巩固(15分钟)1.教师出示一些具体题目,引导学生运用抽屉原理解题。
2.学生个人完成练习题,然后与同学进行比较和分享。
3.教师对学生的答案进行讲解和总结。
Step 4 拓展(15分钟)1.教师出示一些更复杂的问题,要求学生运用抽屉原理解答。
2.学生个人或小组完成拓展题目。
3.学生汇报答案,教师进行点评和引导。
Step 5 归纳总结(10分钟)1.教师和学生共同总结抽屉原理的概念和应用。
2.教师与学生讨论抽屉原理在实际生活中的应用。
六、课堂小结通过本节课的学习,我们知道了抽屉原理的概念和应用。
抽屉原理是解决问题的一种基本方法,可以帮助我们更好地分析和解决问题。
下节课我们将继续学习数学中的其他原理和方法。
七、课后作业1.完成课后练习题目。
2.思考生活中还有哪些问题可以应用抽屉原理来解决,并写一篇小结。
教学实例:例1:有20个学生共坐在三排座位上,也就是有三个抽屉,排列方式是第一排5个座位、第二排7个座位、第三排8个座位。
抽屉原理教案

抽屉原理教案一、教学目标1.了解抽屉原理的概念和应用;2.掌握抽屉原理的证明方法;3.能够运用抽屉原理解决实际问题。
二、教学内容1. 抽屉原理的概念和应用抽屉原理,又称为鸽巢原理,是一种基本的计数原理。
它的基本思想是:如果有n个物体放入m个容器中,且n>m,则至少有一个容器中必须放置两个或两个以上的物体。
抽屉原理的应用非常广泛,例如在密码学、图论、计算机科学等领域都有着重要的应用。
2. 抽屉原理的证明方法抽屉原理的证明方法有多种,这里介绍其中一种常用的证明方法。
假设有n个物体和m个容器,且n>m。
将n个物体放入m个容器中,每个容器最多放1个物体。
则至少有一个容器中必须放置两个或两个以上的物体。
证明:假设所有容器中都最多只放置1个物体,则最多只能放置m个物体。
但是,n>m,因此必有至少一个物体无法放入容器中,与假设矛盾。
因此,假设不成立,必有至少一个容器中必须放置两个或两个以上的物体。
3. 运用抽屉原理解决实际问题抽屉原理可以用来解决很多实际问题,例如:•在一群人中,如果每个人都有两个朋友以上,则至少有两个人有相同的朋友;•在一年中的365天中,如果有至少两个人生日相同,则至少需要有多少人在一起才能保证这种情况的发生?三、教学方法本课程采用讲授、演示和练习相结合的教学方法。
1.讲授:通过讲解抽屉原理的概念、证明方法和应用,使学生了解抽屉原理的基本思想和应用场景;2.演示:通过具体的例子,演示如何运用抽屉原理解决实际问题;3.练习:通过练习题,让学生巩固抽屉原理的应用能力。
四、教学步骤1. 导入通过一个生动的例子,引出抽屉原理的概念和应用。
例如:在一个班级中,如果每个人都有两个朋友以上,则至少有两个人有相同的朋友。
请问,为什么会出现这种情况?2. 讲授讲解抽屉原理的概念、证明方法和应用。
3. 演示通过具体的例子,演示如何运用抽屉原理解决实际问题。
例如:在一年中的365天中,如果有至少两个人生日相同,则至少需要有多少人在一起才能保证这种情况的发生?4. 练习通过练习题,让学生巩固抽屉原理的应用能力。
抽屉原理优秀教案

抽屉原理优秀教案
简介
抽屉原理(Pigeonhole Principle)是一种非常基础的组合数学原理,也是解决问题的常用思路。
在高中数学的课程中,抽屉原理也是非常重要的一部分。
下面将介绍一份优秀的抽屉原理教案,帮助老师更好地让学生掌握该原理。
教材准备
•白板、白板笔、橡皮擦、教材
•尺子、铅笔、草稿纸
教学目标
•理解抽屉原理的概念和应用条件;
•运用抽屉原理解决实际问题;
•提高学生的组合数学思维和解决问题的能力。
教学过程
1. 引入
1.1 翻译和解释抽屉原理的概念。
1.2 提示学生,抽屉原理能够帮助解决哪些问题,引出本课核心内容。
2. 案例练习
2.1 由老师出题,引导学生使用抽屉原理解决有关组合数学的实际问题。
2.2 根据题目难易程度逐步提高练习难度,帮助学生逐步掌握使用抽屉原理的方法。
3. 归纳
3.1 学生归纳抽屉原理的应用范围和方法,并在白板上进行讲解。
3.2 带领学生解决课堂上未完成的案例,检测学生对抽屉原理的掌握程度。
4. 课后练习
4.1 布置课后练习,让学生巩固抽屉原理的应用。
4.2 课后批改作业,对学生掌握程度进行检测和评价。
教学评估
•课堂互动表现
•课堂练习和课后作业完成情况
•学生对课程知识点的掌握和理解
小结
本教案针对高中生,以案例练习为主,教师通过引入案例和逐步讲解抽屉原理的方法,帮助学生掌握该原理的应用方法,提高学生的组合数学思维和解决问题的能力。
同时,通过课堂互动和课后练习等方式进行评估,帮助学生巩固和深化所学知识,从而达到提高教学质量的目的。
抽屉原理的讲解和应用

抽屉原理的讲解和应用1. 什么是抽屉原理?抽屉原理,又称为鸽巢原理、鸽笼原理,是一种数学上的原理。
简单来说,抽屉原理指的是将n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放置两个物体。
2. 抽屉原理的简单解释抽屉原理可以通过一个简单的例子来解释。
假设有10对袜子,每对袜子的颜色不同,共有10种颜色。
现在你要从这些袜子中选择11只袜子,无论怎么选择,必然会有两只袜子的颜色相同。
这是因为我们抽取的数量多于可供选择的不同颜色数目。
3. 抽屉原理的数学证明抽屉原理有一个简单的数学证明。
假设有n个抽屉和k个物体,如果每个抽屉中物体的平均数目为m,则总物体数恰好为n * m。
考虑特殊情况,假设所有抽屉中物体的数目都小于m,则总物体数小于n * m,与实际情况相矛盾。
因此,至少存在一个抽屉中物体的数目大于等于m。
4. 抽屉原理的应用抽屉原理在日常生活和科学研究中有着广泛的应用。
以下是一些常见的抽屉原理的应用场景:4.1. 数据库概念在数据库中,抽屉原理被应用于关系型模型的设计和查询优化。
关系型数据库的设计需要将数据存储在不同的表中,通过关系连接来实现数据的关联。
抽屉原理可以帮助我们确定存储数据的表结构,以及进行查询性能的优化。
4.2. 数学概念在数学中,抽屉原理经常被用于证明或推导数学定理。
例如,鸽巢原理可以用来证明素数的存在性,即任意大于1的整数集中,一定存在无穷多个素数。
4.3. 计算机科学在计算机科学中,抽屉原理常常被用于解决算法和数据结构中的问题。
例如,Hash函数中的哈希冲突问题是一个经典的抽屉原理应用。
当一组键被映射到有限的哈希表时,很可能会出现不同的键被映射到同一个槽位的情况。
4.4. 加密算法在加密算法中,抽屉原理被用于解决碰撞问题。
碰撞问题指的是存在不同的输入数据,但在加密过程中却生成相同的输出。
通过抽屉原理,我们可以证明在某种情况下,无论算法多么复杂,总会存在碰撞问题。
5. 总结抽屉原理是一种简单而强大的数学原理,通过它我们可以解决各种实际问题。
六年级下册第五单元 《抽屉原理》

六年级下册第五单元《抽屉原理》教学设计及反思教学目标:1、了解“抽屉原理”的特点,理解“抽屉原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、经历探究“抽屉原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、通过用“抽屉原理”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:引导学生把具体问题转化成“抽屉原理”。
教学难点:找出“抽屉原理”解决的窍门进行反复推理。
教具准备:多媒体课件教学过程:一、创设情境,导入新知师:我们班有16名同学,至少有2位同学在同一个出生。
老师这样说对不对呢?(让学生验证老师的话对于错)。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
-------出示课题二、合作交流,探究新知1、教学例1(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→认识“抽屉原理”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“抽屉原理”像上面的问题就是“抽屉原理”,也叫“鸽巢原理”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学资料
教学作用
Байду номын сангаас“抢椅子”
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。
猜扑克牌
学到抽屉原理的知识,同时锻炼了学生的思维。在教学活动中使学生感受了数学的魅力。
各类直观例子,借助实际操作
引导学生探究“抽屉原理”,初步经历“数学证明”的过程,并有意识的培养学生的“模型思想”。注重让学生充分体验猜测验证的推理过程,努力提高他们分析和解决问题的能力。通过实验操作、假设推理等活动,调动学生已有的生活经验,引导他们体验运用“抽屉原理”进行逆向思维的探究过程,培养学生观察比较、动手操作、逻辑推理以及语言表达等能力。让学生在应用“抽屉原理”的过程中,感受数学的魅力,激发他们学习数学的兴趣和探求数学知识的欲望。