2018年高考数学(理)二轮复习教师用书:第1部分 重点强化专题 专题3 第7讲 回归分析、独立性检验
2018年高考数学理科山东专版二轮专题复习与策略教师用

突破点7用样本估计总体(对应学生用书第167页)(1)频率分布直方图中横坐标表示组距,纵坐标表示组距,频率=组距×频率组距.(2)频率分布直方图中各小长方形的面积之和为1.(3)利用频率分布直方图求众数、中位数与平均数,在频率分布直方图中:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.(1)(2)可以帮助分析样本数据的大致频率分布情况.(1)(2)样本平均数x=1n(x1+x2+…+x n).(3)样本方差s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(4)样本标准差s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].回访1频率分布表或频率分布直方图1.(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图7-1所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()图7-1A.56B.60C.120D.140D[由直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]2.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚,如图7-2是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有()图7-2A.30辆B.40辆C.60辆D.80辆B[由题图可知,车速大于或等于70 km/h的汽车的频率为0.02×10=0.2,则将被处罚的汽车大约有200×0.2=40(辆).]回访2茎叶图3.(2015·山东高考)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图7-3所示的茎叶图.考虑以下结论:图7-3①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④B[甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.]4.(2015·湖南高考)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图7-4所示.图7-4若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3 B.4C.5 D.6B[35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.](对应学生用书第167页)热点题型1频率分布直方图题型分析:频率分布直方图多以生活中的实际问题为背景,考查学生运用已知数据分析问题的能力,难度中等.(2016·潍坊模拟)某高中为了解全校学生每周参与体育运动的情况,随机从全校学生中抽取100名学生,统计他们每周参与体育运动的时间如下:(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;②若该校有学生3 000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数.[解] (1)频率分布直方图如图所示:(2)①由数据估计中位数为4+2640×4=6.6,8分估计平均数为2×0.24+6×0.4+10×0.28+14×0.06+18×0.02=6.88.10分 ②将频率看作概率知P (t ≥8)=0.36,∴3 000×0.36=1 080.12分解决该类问题的关键是正确理解已知数据的含义.掌握图表中各个量的意义,通过图表对已知数据进行分析.提醒:(1)小长方形的面积表示频率,其纵轴是频率组距,而不是频率. (2)各组数据频率之比等于对应小长方形的高度之比.[变式训练1] 某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2015年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:图7-5电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.[解](1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:50×400+100×300+150×280+200×201 000=96.4分(2)由获得优惠券金额y与购物金额x的对应关系,有P(y=150)=P(0.6≤x<0.8)=(2+0.8)×0.1=0.28,P(y=200)=P(0.8≤x≤0.9)=0.2×0.1=0.02,10分从而,获得优惠券不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.12分热点题型2茎叶图题型分析:结合样本数据和茎叶图对总体作出估计是高考命题的热点,应引起足够的重视,难度中等.(2016·福州模拟)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图7-6所示(图中的茎表示十位数字,叶表示个位数字).图7-6(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均上网时间较长;(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机提取一个不超过21的数据记为b,求a>b的概率.[解](1)A班样本数据的平均值为15(9+11+14+20+31)=17.3分由此估计A班学生每周平均上网时间17小时;B班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B班学生每周平均上网时间较长.6分(2)A班的样本数据中不超过19的数据a有3个,分别为9,11,14,B班的样本数据中不超过21的数据b也有3个,分别为11,12,21,从A班和B班的样本数据中各随机抽取一个共有:9种不同情况,分别为(9,11),(9,12),(9,21),(11,11),(11,21),(11,21),(14,11),(14,12),(14,21),其中a>b的情况有(14,11),(14,12)两种,故a>b的概率P=29.12分作茎叶图时先要弄清“茎”和“叶”分别代表什么,根据茎叶图,可以得到数据的众数、中位数,也可从图中直接估计出两组数据的平均数大小与稳定性.[变式训练2] (名师押题)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.[解] (1)由题表中的数据易知,这20名工人年龄的众数是30,极差为40-19=21.2分(2)这20名工人年龄的茎叶图如下:6分(3)这20名工人年龄的平均数x =120(19×1+28×3+29×3+30×5+31×4+32×3+40×1)=30,8分故方差s 2=120[1×(19-30)2+3×(28-30)2+3×(29-30)2+5×(30-30)2+4×(31-30)2+3×(32-30)2+1×(40-30)2]=120×(121+12+3+0+4+12+100)=12.6.12分专题限时集训(七) 用样本估计总体[建议A 、B 组各用时:45分钟][A组高考达标]一、选择题1.(2016·山西考前模拟)某同学将全班某次数学考试成绩整理成频率分布直方图后,并将每个小矩形上方线段的中点连接起来得到频率分布折线图(如图7-7所示),据此估计此次考试成绩的众数是()图7-7A.100B.110C.115 D.120C[分析频率分布折线图可知众数为115,故选C.]2.(2016·济南模拟)某校高一、高二、高三年级学生人数分别是400,320,280.采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高三年级的人数是()A.20 B.16C.15 D.14D[样本中高三年级的人数为280400+320+280×50=14.]3.(2016·青岛模拟)已知数据x1,x2,x3,…,x50,500(单位:kg),其中x1,x2,x3,…,x50是某班50个学生的体重,设这50个学生体重的平均数为x, 中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x,y 比较,下列说法正确的是() 【导学号:67722030】A.平均数一定变大,中位数一定变大B.平均数一定变大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小B[显然500大于这50个学生的平均体重,则这51个数据的平均数一定增大,中位数可能增大也可能不变,故选B.]4.(2016·沈阳模拟)从某小学随机抽取100名同学,现已将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图7-8).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( )图7-8A .2B .3C .4D .5B [依题意可得10×(0.005+0.010+0.020+a +0.035)=1,解得a =0.030,故身高在[120,130),[130,140),[140,150]三组内的学生比例为3∶2∶1,所以从身高在[140,150]内的学生中选取的人数应为3.]5.(2016·郑州模拟)某车间共有6名工人,他们某日加工零件个数的茎叶图如图7-9所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为( )图7-9A.815B.49C.35D.19 C [依题意,平均数x =20+60+30+(7+9+1+5)6=22,故优秀工人只有2人,从中任取2人共有C 26=15种情况,其中至少有1名优秀工人的情况有C 26-C24=9种,故至少有1名优秀工人的概率P=915=35,故选C.]二、填空题6.某中学共有女生2 000人,为了了解学生体质健康状况,随机抽取100名女生进行体质监测,将她们的体重(单位:kg)数据加以统计,得到如图7-10所示的频率分布直方图,则直方图中x的值为________;试估计该校体重在[55,70)的女生有________人.图7-100.024 1 000[由5×(0.06+0.05+0.04+x+0.016+0.01)=1,得x=0.024.在样本中,体重在[55,70)的女生的频率为5×(0.01+0.04+0.05)=0.5,所以该校体重在[55,70)的女生估计有2 000×0.5=1 000人.]7.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图7-11所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.图7-111[当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,∴89+89+92+93+92+91+x+907=91,∴x=1.]8.(2016·淄博模拟)从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图7-12.根据茎叶图,树苗的平均高度较高的是__________种树苗,树苗长得整齐的是__________种树苗.【导学号:67722031】图7-12乙 甲 [根据茎叶图可知,甲种树苗中的高度比较集中,则甲种树苗比乙种树苗长得整齐;而通过计算可得,x 甲=27,x 乙=30,即乙种树苗的平均高度大于甲种树苗的平均高度.]三、解答题9.(2016·泰安二模)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成如下六段:[40,50),[50,60),…,[90,100],得到如图7-13所示的频率分布直方图.图7-13(1)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(2)在抽取的40名学生中,若从数学成绩在[40,50)与[90,100]两个分数段内随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.[解] (1)由10×(0.005+0.01+0.02+a +0.025+0.01)=1, 得a =0.03.2分 根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.4分估计期中考试数学成绩不低于60分的人数约为640×0.85=544(人).6分(2)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A1,A2,在[90,100]分数段内的同学为B1,B2,B3,B4.若从这6名学生中随机抽取2人,则总的取法共有15种.8分如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值不大于10,则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共7种取法,所以所求概率为P=715.12分10.(2016·郑州一模)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将先取的200人中会闯红灯的市民分为两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少.[解](1)设“当罚金定为10元时,闯红灯的市民改正行为”为事件A,2分则P(A)=40200=15.4分所以当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低15.6分(2)由题可知A类市民和B类市民各有40人,故分别从A类市民和B类市民中各抽出2人,设从A类市民中抽出的2人分别为A1,A2,从B类市民中抽出的2人分别为B1,B2.设“A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷”为事件M,8分则事件M中首先抽出A1的事件有:(A1,A2,B1,B2),(A1,A2,B2,B1),(A1,B1,A2,B2),(A1,B1,B2,A2),(A1,B2,A2,B1),(A1,B2,B1,A2),共6种.同理首先抽出A 2,B 1,B 2的事件也各有6种. 故事件M 共有24种.10分设“抽取4人中前两位均为B 类市民”为事件N ,则事件N 有(B 1,B 2,A 1,A 2),(B 1,B 2,A 2,A 1),(B 2,B 1,A 1,A 2),(B 2,B 1,A 2,A 1).∴P (N )=424=16.12分[B 组 名校冲刺]一、选择题1.已知甲、乙两组数据的茎叶图如图7-14所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值mn =( )图7-14A .1 B.13 C.38D.29C [由茎叶图可知乙的中位数是32+342=33,根据甲、乙两组数据的中位数相同,可得m =3,所以甲的平均数为27+33+393=33,又由甲、乙两组数据的平均数相同,可得20+n +32+34+384=33,解得n =8,所以m n =38,故选C.]2.(2016·烟台模拟)如图7-15茎叶图记录了甲、乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则成绩较为稳定(方差较小)的那位运动员成绩的方差为( )图7-15A .4B .3C .2D .1C [根据茎叶图中的数据,得: 甲、乙二人的平均成绩相同,即15×(87+89+90+91+93)=15(88+89+90+91+90+x ), 解得x =2,所以平均数为x =90.根据茎叶图中的数据知乙的成绩波动性小,较为稳定(方差较小), 且乙成绩的方差为s 2=15[(88-90)2+(89-90)2+(90-90)2+(91-90)2+(92-90)2]=2.] 3.为了了解某城市今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图7-16),已知图中从左到右的前3个小组的频率之比为1∶ 2∶ 3,第2小组的频数为120,则抽取的学生人数是( )图7-16A .240B .280C .320D .480D [由频率分布直方图知:学生的体重在65~75 kg 的频率为(0.012 5+0.037 5)× 5=0.25,则学生的体重在50~65 kg 的频率为1-0.25=0.75.从左到右第2个小组的频率为0.75×26=0.25.所以抽取的学生人数是120÷0.25=480, 故选D.]4.3个老师对某学校高三三个班级各85人的数学成绩进行分析,已知甲班平均分为116.3分,乙班平均分为114.8分,丙班平均分为115.5分,成绩分布直方图如图7-17,据此推断高考中考生发挥差异较小的班级是( )图7-17A .甲B .乙C .丙D .无法判断C [由于平均分相差不大,由直方图知丙班中,学生成绩主要集中在110~120区间上且平均分较高,其次是乙,分数相对甲来说比较集中,相对丙而言相对分散.数据最分散的是甲班,虽然平均分较高,但学生两极分化,彼此差距较大,根据标准差的计算公式和性质知甲的方差大于乙的方差大于丙的方差,所以丙班的学生发挥差异较小.故选C.]二、填空题5.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________; (2)分别统计这5名职工的体重(单位:kg),获得体重数据的茎叶图如图7-18所示,则该样本的方差为________.图7-18(1)2,10,18,26,34 (2)62 [(1)分段间隔为405=8,则所有被抽出职工的号码为2,10,18,26,34.(2)x =15(59+62+70+73+81)=69.s 2=15[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62.] 6.如图7-19是某个样本的频率分布直方图,分组为[100,110),[110,120),[120,130),[130,140),[140,150),已知a ,b ,c 成等差数列,且区间[130,140)与[140,150)上的数据个数相差10,则区间[110,120)上的数据个数为__________.图7-1920[由频率分布直方图得[130,140)上的频率为0.025×10=0.25,[140,150)上的频率为0.015×10=0.15.设样本容量为x,则由题意知0.25x-0.15x=0.1x=10,解得x=100.因为a,b,c成等差数列,则2b=a+c.又10a+10b+10c=1-0.25-0.15=0.6⇒a+b+c=0.06⇒3b=0.06,解得b=0.02.故区间[110,120)上的数据个数为10×0.020×100=20.]三、解答题7.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图7-20所示).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列各题.图7-20(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?[解](1)依题意可算出第三组的频率为42+3+4+6+4+1=1 5,设共有n 件作品参加评比,则12n =15,所以n =60.5分 (2)由频率分布直方图,可看出第四组上交作品数量最多, 共有60×620=18(件).8分 (3)第四组获奖率为1018=59, 第六组获奖率为260×120=23=69.所以第六组获奖率较高.12分8.有同一型号的汽车100辆.为了解这种汽车每耗油1 L 所行路程的情况,现从中随机抽出10辆在同一条件下进行耗油1 L 所行路程试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4.其分组如下:(1)(2)根据频率分布表,在给定坐标系(如图7-21)中画出频率分布直方图,并根据样本估计总体数据落在[12.95,13.95)中的概率.图7-21[解] (1)频率分布表:6分(2)频率分布直方图如图:估计总体数据落在[12.95,13.95)中的概率为(0.6+0.8)×0.5=0.7.12分。
高考数学第1部分 重点强化专题 专题3 突破点8 独立性检验与回归分析

10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
2.在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.
[变式训练1]二手车经销商小王对其所经营的A型号二手汽车的使用年数x与销售价格y(单位:万元/辆)进行整理,得到如下数据:
使用年数x
2
3
4
5
6
7
售价y
[高考真题回访]
回访1变量的相关性
1.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()
图8 1
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
D[对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确.对于B选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确.对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.]
2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题5 第13讲 圆锥曲线中的综合问题 含答案 精品

第13讲 圆锥曲线中的综合问题题型1 圆锥曲线中的定值问题(对应学生用书第43页)■核心知识储备………………………………………………………………………·解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.■典题试解寻法………………………………………………………………………·【典题】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.[类题通法] 定值问题的常见方法 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. ■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-6,0),e =22.图131(1)求椭圆C 的方程;(2)如图131,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.[解] (1)由题意得,c =6,e =22,解得a =23, ∴椭圆C 的方程为x 212+y 26=1.(2)由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12.(3)|OP |2+|OQ |2是定值18.设P (x 1,y 1),Q (x 2,y 2),联立得⎩⎪⎨⎪⎧y =k 1x x 212+y26=1,解得⎩⎪⎨⎪⎧x 21=121+2k 21y 21=12k211+2k21,∴x 21+y 21=+k 211+2k 21, 同理,可得x 22+y 22=+k 221+2k 22. 由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=+k 211+2k 21++k 221+2k 22=+k 211+2k 21+12⎣⎢⎢⎡⎦⎥⎥⎤1+⎝⎛⎭⎪⎫-12k 121+2⎝ ⎛⎭⎪⎫-12k 12=18+36k 211+2k 21=18.综上:|OP |2+|OQ |2=18.■题型强化集训………………………………………………………………………·(见专题限时集训T 3)题型2 圆锥曲线中的最值、范围问题(对应学生用书第44页)■核心知识储备………………………………………………………………………· 1.解决圆、圆锥曲线范围问题的方法(1)圆、圆锥曲线自身范围的应用,运用圆锥曲线上点的坐标的取值范围. (2)参数转化:利用引入参数法转化为三角函数来解决.(3)构造函数法:运用求函数的值域、最值以及二次方程实根的分布等知识. 2.求最值的方法(1)代数法:设变量、建立目标函数、转化为求函数的最值.注意灵活运用配方法、导数法、基本不等式法等.(2)几何法:若题中的条件与结论有明显的几何特征和意义,则考虑利用图形的几何性质来解决.■典题试解寻法………………………………………………………………………·【典题】 如图132,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图132(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【导学号:07804094】[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0. ①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2,代入直线方程y =mx +12,解得b =-m 2+22m 2. ②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.[类题通法]在研究直线与圆锥曲线位置关系时,常涉及弦长、中点、面积等问题.一般是先联立方程,再根据根与系数的关系,用设而不求,整体代入的技巧进行求解.易错警示:在设直线方程时,若要设成y =kx +m 的形式,注意先讨论斜率是否存在;若要设成x =ty +n 的形式,注意先讨论斜率是否为0.■对点即时训练………………………………………………………………………·如图133,点F 1为圆(x +1)2+y 2=16的圆心,N 为圆F 1上一动点,且F 2(1,0),M ,P 分别是线段F 1N ,F 2N 上的点,且满足MP →·F 2N →=0,F 2N →=2F 2P →.图133(1)求动点M 的轨迹E 的方程;(2)过点F 2的直线l (与x 轴不重合)与轨迹E 交于A ,C 两点,线段AC 的中点为G ,连接OG 并延长交轨迹E 于点B (O 为坐标原点),求四边形OABC 的面积S 的最小值. [解] (1)由题意,知MP 垂直平分F 2N , 所以|MF 1|+|MF 2|=4.所以动点M 的轨迹是以F 1(-1,0),F 2(1,0)为焦点的椭圆, 且长轴长为2a =4,焦距2c =2, 所以a =2,c =1,b 2=3. 轨迹E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),C (x 2,y 2),G (x 0,y 0). 设直线AC 的方程为x =my +1,与椭圆方程联立, 可得(4+3m 2)y 2+6my -9=0,所以y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m2.由弦长公式可得|AC |=1+m 2|y 1-y 2|=+m 24+3m2,又y 0=-3m 4+3m 2,所以G ⎝ ⎛⎭⎪⎫44+3m2,-3m 4+3m 2.直线OG 的方程为y =-3m 4x ,与椭圆方程联立得x 2=164+3m 2,所以B ⎝ ⎛⎭⎪⎫44+3m 2,-3m 4+3m 2.点B 到直线AC 的距离d 1=4+3m 2-11+m 2, 点O 到直线AC 的距离d 2=11+m2. 所以S 四边形OABC =12|AC |(d 1+d 2)=613-1+3m2≥3,当且仅当m =0时取得最小值3. ■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 4)题型3 圆锥曲线中的探索性问题(答题模板)(对应学生用书第45页)圆锥曲线中的存在性(探索性)问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否存在.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(2015·全国Ⅰ卷T20、2015·全国Ⅱ卷T20) ■典题试解寻法………………………………………………………………………· 【典题】 (本小题满分12分)(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a a >交于M ,N 两点.①(1)当k =0时,分别求C 在点M 和N 处的切线方程②;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ③?说明理由. [审题指导]或M (-2a ,a ),N (2a ,a ).2分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,④C 在点(2a ,a )处的切线方程为 y -a =a (x -2a ),即ax -y -a =0.4分y =x 24在=-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0或ax +y +a =0.⑤6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 8分故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2⑥=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.[阅卷者说][类题通法] 1.定点问题的解法:(1)直线过定点:化为y -y 0=k (x -x 0), 当x -x 0=0时与k 无关.(2)曲线过定点:利用方程f (x ,y )=0对任意参数恒成立得出关于x ,y 的方程组,进而求出定点.2.存在性问题的解题步骤:一设:设满足条件的元素(点、直线等)存在;二列:用待定系数法设出,列出关于待定系数的方程组;三解:解方程组,若方程组有实数解,则元素(点、直线等)存在;否则,元素(点、直线等)不存在.■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得EA →2+EA →·AB →为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.【导学号:07804095】[解] (1)由e =63,得c a =63,即c =63a , ① 又以原点O 为圆心,椭圆C 的长半轴长为半径的圆为x 2+y 2=a 2,且该圆与直线2x -2y +6=0相切, 所以a =|6|22+-22=6,代入①得c =2,所以b 2=a 2-c 2=2,所以椭圆C 的标准方程为x 26+y 22=1.(2)由⎩⎪⎨⎪⎧x 26+y 22=1,y =k x -,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2.根据题意,假设x 轴上存在定点E (m,0),使得EA →2+EA →·AB →=(EA →+AB →)·EA →=EA →·EB →为定值,则EA →·EB →=(x 1-m ,y 1)·(x 2-m ,y 2)=(x 1-m )(x 2-m )+y 1y 2=(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2)=m 2-12m +k 2+m 2-1+3k2,要使上式为定值,即与k 无关,只需3m 2-12m +10=3(m 2-6),解得m =73,此时,EA →2+EA →·AB →=m 2-6=-59,所以在x 轴上存在定点E ⎝ ⎛⎭⎪⎫73,0使得EA →2+EA →·AB →为定值,且定值为-59.■题型强化集训………………………………………………………………………·(见专题限时集训T 2) 三年真题| 验收复习效果 (对应学生用书第46页)1.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程.(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.∴动圆圆心M 的轨迹C 的方程为y 2=4x .(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧ y =k x -,x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3. 所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN || PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).。
2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

专题六函数与导数建知识网络明内在联系[高考点拨]函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14 函数的图象和性质(对应学生用书第52页)[核心知识提炼]提炼1函数的奇偶性(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.提炼2 函数的周期性(1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )⎝⎛⎭⎪⎫或f a +x =1f x (a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1 函数的性质1.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B.]2.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|D [取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误; 取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )=x +1,则对任意x ∈R 都有f (x 2+2x )=x 2+2x +1=|x +1|,故选项D 正确. 综上可知,本题选D.]3.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.2 [若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a = 2.若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.0 22-3 [∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0. ∴f (x )的最小值为22-3.] 回访2 函数的图象5.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )图141D [观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A 、C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.]6.(2015·浙江高考)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )D [函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.]7.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )D [法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a与y =log a x 均为增函数,但y =x a递增较快,排除C ;当0<a <1时,y =x a为增函数,y =log a x 为减函数,排除A ,由于y =x a递增较慢,所以选D. 法二:幂函数f (x )=x a的图象不过(0,1)点,排除A ;B 项中由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a的图象应是增长越来越快的变化趋势,故C 错.](对应学生用书第54页)热点题型1 函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】 (1)函数y =2x 2-e |x |在[-2,2]的图象大致为()(2)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( )A .0B .mC .2mD .4m(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D. (2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.] [方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置. 2.根据函数的单调性,判断图象的变化趋势. 3.根据函数的奇偶性,判断图象的对称性. 4.根据函数的周期性,判断图象的循环往复. 5.取特殊值代入,进行检验.[变式训练1] (1)函数f (x )=|x |+ax(其中a ∈R )的图象不可能是()图142(2)如图141,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(1)C (2)C [(1)当a =0时,f (x )=|x |,故A 可能;由题意得f (x )=⎩⎪⎨⎪⎧x +ax,x >0,-x +ax ,x <0,则当x >0时,f ′(x )=1-a x 2=x 2-a x 2,当x <0时,f ′(x )=-1-a x 2=-x 2-ax 2,若a >0,易知当x >0,0<x <a 时,f (x )为减函数,x >a 时,f (x )为增函数,x <0时,f (x )为减函数,故B 可能;若a <0,易知x <0,--a <x <0时,f (x )为增函数,x <--a 时,f (x )为减函数,x >0时,f (x )为增函数,故D 可能,故选C.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】 (1)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ (2)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________. 【导学号:68334135】(1)A (2)-14 [(1)法一:∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A. 法二:令x =0,此时f (x )=f (0)=-1<0,f (2x -1) =f (-1)=ln 2-12=ln 2-ln e>0,∴x =0不满足f (x )>f (2x -1),故C 错误.令x =2,此时f (x )=f (2)=ln 3-15,f (2x -1)=f (3)=ln 4-110.∵f (2)-f (3)=ln 3-ln4-110,其中ln 3<ln 4,∴ln 3-ln 4-110<0,∴f (2)-f (3)<0,即f (2)<f (3),∴x =2不满足f (x )>f (2x -1), 故B ,D 错误.故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14. [方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2017·浙江五校联考)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )【导学号:68334136】A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0.给出下列命题:①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 014是函数y =f (x )图象的一条对称轴. 则正确命题的序号是________.(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),∴⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1, 解得1e<x <e ,故选C.(2)令f (x -1)=f (x +1)中x =0, 得f (-1)=f (1). ∵f (-1)=-f (1), ∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2), ∴f (x )是周期为2的周期函数, ∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。
2018届高考数学(理)二轮复习教师用书:第一部分 层级三 30分的拉分题因人而定 酌情自选

[全国卷3年考情分析][典例] (2016·四川高考)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-x x 2+y2;当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线. 其中的真命题是________(写出所有真命题的序号).[解析] 对于①,特殊值法.取A (1,1),则A ′⎝ ⎛⎭⎪⎫12,-12,A ′的“伴随点”为点(-1,-1).故①为假命题.对于②,单位圆的方程为x 2+y 2=1,设其上任意一点(x ,y )的“伴随点”为(x ′,y ′),则⎩⎪⎨⎪⎧x ′=yx 2+y 2=y ,y ′=-xx 2+y 2=-x ,∴y 2+(-x )2=y 2+x 2=1.故②为真命题.③设A (x ,y ),B (x ,-y ),则它们的伴随点分别为A ′⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,B ′⎝ ⎛⎭⎪⎫-yx 2+y 2,-x x 2+y 2,A ′与B ′关于y 轴对称,故③为真命题. ④设共线的三点A (-1,0),B (0,1),C (1,2),则它们的伴随点分别为A ′(0,1),B ′(1,0),C ′⎝ ⎛⎭⎪⎫25,-15,此三点不共线,故④为假命题.故真命题为②③. [答案] ②③[针对训练]1.(2018届高三·湘中高三联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ,①则当n ≥2时,(n -1)·2n=a 1+2a 2+…+2n -2a n -1,②①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,令b n =a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧b 5≥0,b 6≤0,即⎩⎪⎨⎪⎧-k +2≥0,62-k+2≤0,解得73≤k ≤125.答案:⎣⎢⎡⎦⎥⎤73,125[典例] (2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.[解析] 求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. [答案] 1-ln 2[针对训练]2.(2017·郑州质检)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y22x -1≥a 恒成立,则a 的最大值为( )A .2 2B .4 2C .8D .16解析:选 C 法一:依题意得,2x -1>0,y -1>0,4x 2y -1+y22x -1=x -+1]2y -1+y -+1]22x -1≥x -y -1+y -2x -1≥4×22x -1y -1×y -12x -1=8,即4x 2y -1+y22x -1≥8,当且仅当⎩⎪⎨⎪⎧2x -1=1,y -1=1,2x -1y -1=y -12x -1,即⎩⎪⎨⎪⎧x =1,y =2时,取等号,因此4x 2y -1+y22x -1的最小值是8,即a ≤8,故a 的最大值是8.法二:令m =2x -1,n =y -1,则m >0,n >0,x =m +12,y =n +1,4x 2y -1+y22x -1=4⎝⎛⎭⎪⎫m +122n+n +2m=m +2n+n +2m≥4m n +4n m ≥24mn×4nm=8,当且仅当m =1且n =1,即x =1,y =2时取等号, 即4x 2y -1+y 22x -1≥8, 故a ≤8,所以a 的最大值是8.[典例] (2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x,x ≥1.设a ∈R ,若关于x的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A .[-2,2]B .[-23,2]C .[-2,2 3 ]D .[-23,2 3 ][解析] 选A 法一:作出f (x )的图象如图所示.当y =⎪⎪⎪⎪⎪⎪x2+a 的图象经过点(0,2)时,可知a =±2.当y =x 2+a 的图象与y =x +2x 的图象相切时,由x 2+a =x +2x,得x 2-2ax +4=0,由Δ=0, 并结合图象可得a =2.要使f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,当a ≤0时,需满足-a ≤2,即-2≤a ≤0, 当a >0时,需满足a ≤2,即0<a ≤2, 综上可知,-2≤a ≤2.法二:∵f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,∴-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立.①令g (x )=-f (x )-x2.当0≤x<1时,f(x)=x+2,g(x)=-x-2-x2=-32x-2≤-2,即g(x)max=-2.当x<0时,f(x)=-x+2,g(x)=x-2-x2=x2-2,即g(x)<-2. 当x≥1时,f(x)=x+2x,g(x)=-x-2x-x2=-32x-2x≤-23,即g(x)max=-2 3. ∴a≥-2.②令h(x)=f(x)-x 2 .当0≤x<1时,f(x)=x+2,h(x)=x+2-x2=x2+2≥2,即h(x)min=2. 当x<0时,f(x)=-x+2,h(x)=-x+2-x2=-32x+2>2,即h(x)>2. 当x≥1时,f(x)=x+2x,h(x)=x+2x-x2=x2+2x≥2,即h(x)min=2. ∴a≤2.综上可知,-2≤a ≤2.法三:若a =23,则当x =0时,f (0)=2,而⎪⎪⎪⎪⎪⎪x2+a =23,不等式不成立,故排除选项C ,D. 若a =-23,则当x =0时,f (0)=2,而⎪⎪⎪⎪⎪⎪x2+a =23,不等式不成立,故排除选项B.故选A.[针对训练]3.(2017·东北四市高考模拟)已知函数f (x )=cos x +mcos x +2,若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫54,6B.⎝ ⎛⎭⎪⎫53,6C.⎝ ⎛⎭⎪⎫75,5D.⎝ ⎛⎭⎪⎫54,5 解析:选C f (x )=cos x +m cos x +2=1+m -2cos x +2,令t =cos x +2,由于-1≤cos x ≤1,因此1≤t ≤3,设g (t )=1+m -2t(1≤t ≤3). 法一:若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,不妨设a <c ,b <c ,则只需满足f (a )+f (b )>f (c )恒成立,故只需2f (x )min >f (x )max 即可,即2g (t )min >g (t )max .当m =2时,f (a )=f (b )=f (c )=1,成立,故m =2符合题意;当m <2时,g (t )=1+m -2t在[1,3]上单调递增,则⎩⎪⎨⎪⎧m -+m -23,m <2,解得75<m <2;当m >2时,g (t )=1+m -2t在[1,3]上单调递减,则⎩⎪⎨⎪⎧2⎝⎛⎭⎪⎫1+m -23>m -1,m >2,解得2<m <5.综上,75<m <5.法二:令m =5,则g (t )=1+3t(1≤t ≤3),∴2≤g (t )≤4.取f (a )=f (b )=2,f (c )=4.不合题意,排除A 、B ;取m =1310,则g (t )=1-710t (1≤t ≤3),∴310≤g (t )≤2330,取f (a )=310,f (b )=310,f (c )=2330,不合题意,排除D ,故选C.[典例] (2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m (x i +y i )=( ) A .0 B .m C .2mD .4m[解析] 法一:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i+y i )=m .法二:因为f (-x )=2-f (x ),所以f (-x )+f (x )= 2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.可设y =f (x )=x +1,由⎩⎪⎨⎪⎧y =x +1,y =x +1x ,得交点(-1,0),(1,2),则x 1+y 1+x 2+y 2=2,结合选项,应选B.[答案] B[针对训练]4.(2017·沈阳质检)已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则PA ―→·PB ―→的值是( )A .-38B.316C .-38D.38解析:选A 法一:令点P (x 0,y 0),因为该双曲线的渐近线分别是x3-y =0,x3+y =0,所以可取|PA |=⎪⎪⎪⎪⎪⎪x 03-y 013+1,|PB |=⎪⎪⎪⎪⎪⎪x 03+y 013+1,又cos ∠APB =-cos ∠AOB =-cos2∠AOx =-cos π3=-12,所以PA ―→·PB ―→=|PA ―→|·|PB ―→|·cos∠APB =⎪⎪⎪⎪⎪⎪x 203-y 2043·⎝ ⎛⎭⎪⎫-12=34×⎝ ⎛⎭⎪⎫-12=-38.法二:如图,由题意知,双曲线的渐近线方程为y =±33x , ∴∠AOB =60°, ∴∠APB =120°, ∴PA ―→·PB ―→<0.取P 点为双曲线右顶点. 则|PA |=|PB |=12|OP |=32,∴PA ―→·PB ―→=-38.[专题过关检测] 一、选择题1.设a 1,a 2,a 3,…,a n ∈R ,n ≥3.若p :a 1,a 2,a 3,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选A (特殊数列)取大家最熟悉的等比数列a n =2n,代入q 命题(不妨取n =3)满足,再取a n =3n代入q 命题(不妨取n =3)也满足,反之取a 1=a 2=a 3=…=a n =0时,满足q 命题,但不满足p 命题,故p 是q 的充分条件,但不是q 的必要条件.2.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C .12D .1解析:选C 法一:由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e1-x+ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.3.已知函数f (x )在(-1,+∞)上单调,且函数y =f (x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50解析:选B 因为函数y =f (x -2)的图象关于直线x =1对称,则函数f (x )的图象关于直线x =-1对称.又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=a 1+a 1002=50(a 50+a 51)=-100.4.(2017·贵州适应性考试)已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足|PA |=m |PF |,当m 取最大值时,|PA |的值为( )A .1B . 5 C. 6D .2 2解析:选D 设P (x ,y ),由抛物线的定义知|PF |=y +1,|PA |=x 2+y +2,所以m =x 2+y +2y +1,平方得m 2=x 2+y +2y +2,又x 2=4y ,当y =0时,m =1,当y ≠0时,m 2=4y +y +2y +2=4y y +2+1=1+4y +1y+2,由基本不等式可知y +1y ≥2,当且仅当y =1时取等号,此时m 取得最大值2,故|PA |=4++2=2 2.5.对任意实数a ,b ,c ,d ,定义⎝⎛⎭⎪⎫a b c d =⎩⎪⎨⎪⎧ad -bc ,ad ≥bc ,12bc -ad ,ad <bc ,已知函数f (x )=⎝⎛⎭⎪⎫x41x ,直线l :kx -y +3-2k =0,若直线l 与函数f (x )的图象有两个交点,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1,23∪⎝ ⎛⎭⎪⎫34,1B.⎝⎛⎭⎪⎫-1,1724 C.⎝⎛⎭⎪⎫-1,1724∪⎝ ⎛⎭⎪⎫34,1 D .(-1,1)解析:选A 由题意知,f (x )=⎝ ⎛⎭⎪⎫x 41 x =⎩⎪⎨⎪⎧x 2-4,x ≤-2或x ≥2,124-x 2,-2<x <2,直线l :y =k (x -2)+3过定点A (2,3),画出函数f (x )的图象,如图所示,其中f (x )=x 2-4(x ≤-2或x ≥2)的图象为双曲线的上半部分,f (x )=12 4-x 2(-2<x <2)的图象为椭圆的上半部分,B (-2,0),设直线AD 与椭圆相切,D 为切点.由图可知,当k AB <k <1或-1<k <k AD 时,直线l 与f (x )的图象有两个交点.k AB =3-02--=34,将y =k AD (x -2)+3与y =124-x 2(-2<x <2)联立消去y ,得(1+4k 2AD )x 2+8k AD (3-2k AD )x +16k 2AD -48k AD +32=0,令Δ=0,解得k AD =23.综上所述,k 的取值范围是⎝ ⎛⎭⎪⎫-1,23∪⎝ ⎛⎭⎪⎫34,1. 6.(2016·浙江高考)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:选D 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立,但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立,但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立,但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A 、B 、C 均不成立,所以选D.7.(2017·郑州质检)已知函数f (x )=sin x2+cos x .若当x >0时,函数f (x )的图象恒在直线y =kx 的下方,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤13,33 B.⎣⎢⎡⎭⎪⎫13,+∞ C.⎣⎢⎡⎭⎪⎫33,+∞ D.⎣⎢⎡⎦⎥⎤-33,32 解析:选B 由题意,当x >0时,f (x )=sin x2+cos x<kx 恒成立.由f (π)<k π,知k >0.又f ′(x )=1+2cos x2+cos x2,由切线的几何意义知,要使f (x )<kx 恒成立,必有k ≥f ′(0)=13.要证k ≥13时不等式恒成立,只需证g (x )=sin x 2+cos x -13x <0,∵g ′(x )=2cos x +12+cos x 2-13=-x -2+cos x2≤0,∴g (x )在(0,+∞)上单调递减,∴g (x )<g (0)=0,∴不等式成立.综上,k ∈⎣⎢⎡⎭⎪⎫13,+∞. 8.设D ,E 分别为线段AB ,AC 的中点,且BE ―→·CD ―→=0,记α为AB ―→与AC ―→的夹角,则下述判断正确的是( )A .cos α的最小值为22B .cos α的最小值为13C .sin ⎝⎛⎭⎪⎫2α+π2的最小值为825D .sin ⎝ ⎛⎭⎪⎫π2-2α的最小值为725解析:选D 依题意得CD ―→=12(CA ―→+CB ―→)=12[-AC ―→+(AB ―→-AC ―→)]=12(AB ―→-2AC ―→),BE ―→=12(BA ―→+BC ―→)=12[-AB ―→+(AC ―→-AB ―→)]=12(AC ―→-2AB ―→).由CD ―→·BE ―→=0,得14(AB ―→-2AC ―→)·(AC ―→-2AB ―→)=0,即-2AB ―→2-2AC ―→2+5AB ―→·AC ―→=0,整理得,|AB ―→|2+|AC ―→|2=52|AB ―→|·|AC ―→|cos α≥2|AB ―→|·|AC ―→|,所以cos α≥45,sin π2-2α=cos2α=2cos 2α-1≥2×⎝ ⎛⎭⎪⎫452-1=725,所以sin π2-2α的最小值是725.9.(2017·石家庄质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1,则CP AC=x3=PQ1,即PQ =x3, 又QR 1=BQ BC =AP AC=3-x 3,所以QR =3-x3, 所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=36 2x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,结合图象知选A.10.过坐标原点O 作单位圆x 2+y 2=1的两条互相垂直的半径OA ,OB ,若在该圆上存在一点C ,使得OC ―→=a OA ―→+b OB ―→(a ,b ∈R),则以下说法正确的是( )A .点P (a ,b )一定在单位圆内B .点P (a ,b )一定在单位圆上C .点P (a ,b )一定在单位圆外D .当且仅当ab =0时,点P (a ,b )在单位圆上解析:选B 使用特殊值法求解.设A (1,0),B (0,-1),则OC ―→=a OA ―→+b OB ―→=(a ,-b ).∵C 在圆上,∴a 2+b 2=1,∴点P (a ,b )在单位圆上,故选B. 二、填空题1.已知函数f (x )=⎩⎪⎨⎪⎧a x+1,x ≤0,|ln x |,x >0,当1<a <2时,关于x 的方程f [f (x )]=a 实数解的个数为________.解析:当1<a <2时,作出f (x )的图象如图所示,令u =f (x ),则f (u )=a ,由f (x )的图象可知,若u 满足u <0,此时f (x )=u 无解,若u >0,解得1e 2<u <1e<1或2<e<u <e 2,显然,当x <0时,不可能使得f (x )=u 有解,当x >0,1e 2<u <1e<1时,f (x )=u 有2个解,当x >0,2<e<u <e 2时,f (x )=u 也有2个解.因此f [f (x )]=a 有4个实数解.答案:42.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:(特殊图形)如图所示,延长BA ,CD 交于E ,平移AD ,当A与D 重合于E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得BCsin ∠E=BEsin ∠C,即2sin 30°=BEsin 75°,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,BFsin ∠FCB=BCsin ∠BFC,即BFsin 30°=2sin 75°,解得BF =6-2,所以AB 的取值范围是(6-2,6+2).答案:(6-2,6+2)3.设0<m <12,若1m +11-2m ≥k 恒成立,则实数k 的取值范围是________.解析:由题可知,k 的最大值即为1m+11-2m 的最小值.因为1m +11-2m=[2m +(1-2m )]⎝ ⎛⎭⎪⎫1m +11-2m =3+1-2m m +2m 1-2m ≥3+22,取等号的条件是当且仅当1-2m =2m ,即m =1-22∈⎝ ⎛⎭⎪⎫0,12时成立,所以k 的最大值为3+2 2.故所求实数k 的取值范围是(-∞,3+2 2 ].答案:(-∞,3+2 2 ]4.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________.解析:∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N , ∵f (x )的最小正周期大于2π,∴T =3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x 3+φ. 由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12. 答案:23 π125.已知向量a ,b ,c 满足|a |=2,|b |=a ·b =3,若(c -2a )·(2b -3c )=0, 则|b -c |的最大值是________.解析:设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,∴cos θ=a ·b |a ||b |=32×3=22,∵θ∈[0,π],∴θ=π4.设OA ―→=a ,OB ―→=b ,c =(x ,y ),建立如图所示的平面直角坐标系. 则A (1,1),B (3,0),∴c -2a =(x -2,y -2),2b -3c =(6-3x ,-3y ), ∵(c -2a )·(2b -3c )=0,∴(x -2)(6-3x )+(y -2)(-3y )=0. 即(x -2)2+(y -1)2=1. 又知b -c =(3-x ,-y ), ∴|b -c |=x -2+y 2≤-2+-2+1=2+1,即|b -c |的最大值为2+1. 答案:2+16.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积的最大值为________.解析:设AD =x ,则AB =AC =2x ,因为两边之和大于第三边,两边之差小于第三边,所以AB +AD >BD ,即2x +x >3,x >1,AB -AD <BD ,即2x -x <3,x <3,所以x ∈(1,3). 在△ABD 中,由余弦定理得9=(2x )2+x 2-2·2x ·x cos A ,即cos A =5x 2-94x2,S △ABC =2S △ABD =2×12×2x ×x ×sin A=2x21-⎝ ⎛⎭⎪⎫5x 2-94x 22=32-x 4-10x 2+,令t =x 2,则t ∈(1,9),S △ABC =32 -t -2+16,当t =5,即x =5时,S △ABC 有最大值6.答案:67.对于函数f (x )与g (x ),若存在λ∈{x ∈R|f (x )=0},μ∈{x ∈R|g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=ex -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.解析:易知函数f (x )为增函数,且f (2)=e2-2+2-3=0,所以函数f (x )=ex -2+x -3只有一个零点x =2,则取λ=2,由|2-μ|≤1,知1≤μ≤3.由f (x )与g (x )互为“零点密切函数”知函数g (x )=x 2-ax -x +4在区间[1,3]内有零点,即方程x 2-ax -x +4=0在[1,3]内有解,所以a =x +4x -1,而函数y =x +4x-1在[1,2]上单调递减,在[2,3]上单调递增,所以当x =2时,a 取最小值3,且当x =1时,a =4,当x =3时,a =103,所以a max =4,所以实数a 的取值范围是[3,4].答案:[3,4]8.对于数列{a n },定义{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).对正整数k ,规定{Δk a n }为数列{a n }的k 阶差分数列,其中Δk a n =Δk -1a n +1-Δk -1a n =Δ(Δk-1a n ).若数列{Δ2a n }的各项均为2,且满足a 11=a 2 015=0,则a 1的值为________.解析:因为数列{Δ2a n }的各项均为2,即Δa n +1-Δa n =2,所以Δa n =Δa 1+2n -2,即a n +1-a n =Δa 1+2n -2,所以a n -a 1=(n -1)Δa 1+(0+2+4+…+2n -4) =(n -1)Δa 1+(n -1)(n -2)(n ≥2),所以⎩⎪⎨⎪⎧a 11-a 1=10Δa 1+10×9,a 2 015-a 1=2 014Δa 1+2 014×2 013,即⎩⎪⎨⎪⎧0-a 1=10Δa 1+10×9,0-a 1=2 014Δa 1+2 014×2 013,解得a 1=20 140. 答案:20 1409.已知圆O :x 2+y 2=1 和点A (-2,0),若定点B (b,0)(b ≠-2) 和常数 λ满足:对圆 O 上任意一点 M ,都有|MB |=λ|MA |,则b =________ ;λ=________ .解析:法一:(三角换元)在圆O 上任意取一点M (cos θ,sin θ),则由|MB |=λ|MA |可得(cos θ-b )2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],整理得1+b 2-5λ2-(2b +4λ2)·cos θ=0,即⎩⎪⎨⎪⎧1+b 2-5λ2=0,2b +4λ2=0,解得⎩⎪⎨⎪⎧b =-12,λ=12.法二:(特殊点)既然对圆O 上任意一点M ,都有|MB |=λ|MA |,使得λ与b 为常数,那么取M (1,0)与M (0,1)代入|MB |=λ|MA |,得⎩⎪⎨⎪⎧b -2=9λ2,b 2+1=5λ2,解得⎩⎪⎨⎪⎧b =-12,λ=12.答案:-12 1210.(2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =q p,则10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x =0的解的个数为8.答案:8压轴专题(二) 第20题解答题“圆锥曲线的综合问题”的抢分策略[全国卷3年考情分析][常考题点逐一突破][典例] (2016·北京高考)已知椭圆C :x 2a 2+y 2b2=1,过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得,a =2,b =1,所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3,所以离心率e =c a =32. (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1),所以直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2, 从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.[针对训练]1.(2017·沈阳质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为(-6,0),e =22.(1)求椭圆C 的方程;(2)如图,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.解:(1)由题意得,c =6,e =22,解得a =23,b =6, ∴椭圆C 的方程为x 212+y 26=1.(2)证明:由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上, ∴x 2012+y 206=1,即y 20=6-12x 20, ∴k 1k 2=2-12x 2x 20-4=-12.故k 1k 2为定值.(3)|OP |2+|OQ |2是定值. 设P (x 1,y 1),Q (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k 1x ,x 212+y 26=1,解得⎩⎪⎨⎪⎧x 21=121+2k 21,y 21=12k211+2k 21,∴x 21+y 21=+k 211+2k 21,同理,可得x 22+y 22=+k 221+2k 22.由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=+k 211+2k 21++k 221+2k 22=+k 211+2k 21+12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-12k 121+2⎝ ⎛⎭⎪⎫-12k 12=18+36k 211+2k 21=18. 综上,|OP |2+|OQ |2为定值,且为18.[典例] (2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值. [解] (1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则直线BQ 的斜率为-1k.则直线AP 的方程为y -14=k ⎝ ⎛⎭⎪⎫x +12,即kx -y +12k +14=0,直线BQ 的方程为y -94=-1k ⎝ ⎛⎭⎪⎫x -32,即x +ky -94k -32=0,联立⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +3k 2+.因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,在区间⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|PA |·|PQ |取得最大值2716.[针对训练]2.(2017·沈阳质检)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点分别为F 1,F 2,离心率e =22,短轴长为2. (1)求椭圆的方程;(2)点A 为椭圆上的一动点(非长轴端点),AF 2的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求△ABC 面积的最大值.解:(1)由题意得⎩⎪⎨⎪⎧e =c a =22,2b =2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,故椭圆的标准方程为x 22+y 2=1.(2)①当直线AB 的斜率不存在时,不妨取A ⎝ ⎛⎭⎪⎫1,22,B ⎝ ⎛⎭⎪⎫1,-22,C ⎝⎛⎭⎪⎫-1,-22, 故S △ABC =12×2×2= 2.②当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立方程⎩⎪⎨⎪⎧y =k x -,x 22+y 2=1,消去y ,化简得(2k 2+1)x 2-4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,|AB |=+k2·[x 1+x 22-4x 1x 2]= 错误!=22·k 2+12k 2+1,点O 到直线kx -y -k =0的距离d =|-k |k 2+1=|k |k 2+1, ∵O 是线段AC 的中点,∴点C 到直线AB 的距离为2d =2|k |k 2+1,∴S △ABC =12|AB |·2d =12·⎝ ⎛⎭⎪⎫22·k 2+12k 2+1·2|k |k 2+1=2 2k 2k 2+2k 2+2=2 214-1k 2+2< 2.综上,△ABC 面积的最大值为 2.[典例] (2016·全国卷Ⅱ)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. [解] 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t -tk 23+tk2, 故|AM |=|x 1+t |1+k 2=6t 1+k23+tk2.由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t 1+k23k 2+t.由2|AM |=|AN |,得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k 2k -k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=k -k 2+k 3-2<0,即k -2k 3-2<0. 因此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.故k 的取值范围是(32,2).解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出参数的取值范围; (4)利用已知不等关系构造不等式,从而求出参数的取值范围; (5)利用函数值域的求法,确定参数的取值范围. [题后悟通][针对训练]3.已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率等于32,以椭圆E 的长轴和短轴为对角线的四边形的周长为4 5.直线l :y =kx +m 与y 轴交于点P ,与椭圆E 相交于A ,B 两个点.(1)求椭圆E 的方程;(2)若AP ―→=3PB ―→,求m 2的取值范围.解:(1)根据已知设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),焦距为2c ,由已知得c a =32,∴c =32a ,b 2=a 2-c 2=a 24.∵以椭圆E 的长轴和短轴为对角线的四边形的周长为45, ∴4a 2+b 2=25a =45, ∴a =2,b =1.∴椭圆E 的方程为x 2+y 24=1.(2)根据已知得P (0,m ),设A (x 1,kx 1+m ),B (x 2,kx 2+m ),由⎩⎪⎨⎪⎧y =kx +m ,4x 2+y 2-4=0消去y ,得(k 2+4)x 2+2mkx +m 2-4=0.由已知得Δ=4m 2k 2-4(k 2+4)(m 2-4)>0, 即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4.由AP ―→=3PB ―→,得x 1=-3x 2. ∴3(x 1+x 2)2+4x 1x 2=12x 22-12x 22=0. ∴12k 2m 2k 2+2+m 2-k 2+4=0,即m 2k 2+m 2-k 2-4=0.当m 2=1时,m 2k 2+m 2-k 2-4=0不成立, ∴k 2=4-m 2m 2-1.∵k 2-m 2+4>0, ∴4-m 2m 2-1-m 2+4>0,即-m 2m2m 2-1>0.解得1<m 2<4.∴m 2的取值范围为(1,4).[典例] (2017·全国卷Ⅰ)已知椭圆C :a 2+b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得 (4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l过定点(2,-1).[题后悟通]直线过定点问题的解题模型[针对训练]4.(2017·郑州模拟)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.解:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明:设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2), 则C (-x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2=4y ,y =kx -2消去y ,得x 2-4kx +8=0,∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1-x 24x 1+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,即直线AC 恒过定点(0,2).[典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.[解] (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上, 所以2a =|AF 1|+|AF 2|=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,证明如下:假设存在斜率为2的直线,满足条件,则设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1消去x ,得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t9,且-3<t <3. 由PM ―→=NQ ―→,得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.也可由PM ―→=NQ ―→,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t9,⎭⎪⎫可得y 4=2t -159又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.[针对训练]5.(2017·郑州质检)已知椭圆x 2+2y 2=m (m >0),以椭圆内一点M (2,1)为中点作弦AB ,设线段AB 的中垂线与椭圆相交于C ,D 两点.(1)求椭圆的离心率;(2)试判断是否存在这样的m ,使得A ,B ,C ,D 在同一个圆上,并说明理由.解:(1)将方程化成椭圆的标准方程x 2m +y 2m2=1(m >0),则a =m ,c =m -m 2=m2,故e =c a =22. (2)由题意,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -2)+1,代入x 2+2y 2=m (m >0),消去y ,得(1+2k 2)x 2+4k (1-2k )x +2(2k -1)2-m =0(m >0).所以x 1+x 2=4k 2k -1+2k2=4,即k =-1,此时,由Δ>0,得m >6.则直线AB 的方程为x +y -3=0,直线CD 的方程为x -y -1=0.由⎩⎪⎨⎪⎧x -y -1=0,x 2+2y 2=m 得3y 2+2y +1-m =0,y 3+y 4=-23,故CD 的中点N 为⎝ ⎛⎭⎪⎫23,-13.由弦长公式,可得|AB |= 1+k 2|x 1-x 2|=2·m -3.|CD |=2|y 3-y 4|=2·12m -83>|AB |,若存在圆,则圆心在CD 上, 因为CD 的中点N 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪23-13-32=423.|NA |2=|NB |2=⎝ ⎛⎭⎪⎫4232+⎝⎛⎭⎪⎫|AB |22=6m -49, 又⎝ ⎛⎭⎪⎫|CD |22=14⎝ ⎛⎭⎪⎫2·12m -832=6m -49,故存在这样的m (m >6),使得A ,B ,C ,D 在同一个圆上.[高考大题通法点拨] 圆锥曲线问题重在“设”——设点、设线[思维流程]。
2018年高考数学(理)二轮复习教师用书:第1部分 重点强化专题 专题6 第15讲 函数与方程

第15讲 函数与方程题型1 函数零点个数的判断 (对应学生用书第50页)■核心知识储备………………………………………………………………………· 1.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.■典题试解寻法………………………………………………………………………·【典题1】 (考查数形结合法判断函数的零点个数)已知定义在R 上的函数f (x )满足:①图象关于(1,0)点对称;②f (-1+x )=f (-1-x );③当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧1-x 2,x ∈[-1,0],cos π2x ,x ,1],则函数y =f (x )-⎝ ⎛⎭⎪⎫12|x |在区间[-3,3]上的零点个数为( )A .5B .6C .7D .8[思路分析] 函数y =f (x )-⎝ ⎛⎭⎪⎫12|x |在区间[-3,3]上的零点个数――――→等价转化函数y =f (x )与函数y =⎝ ⎛⎭⎪⎫12|x |在[-3,3]上的图象交点个数―――――→数形结合下结论.[解析] 因为f (-1+x )=f (-1-x ),所以函数f (x )的图象关于直线x =-1对称,又函数f (x )的图象关于点(1,0)对称,如图,画出f (x )以及g (x )=⎝ ⎛⎭⎪⎫12|x |在[-3,3]上的图象.由图可知,两函数图象的交点个数为5,所以函数y =f (x )-⎝ ⎛⎭⎪⎫12|x |在区间[-3,3]上的零点个数为5,故选A. [答案] A【典题2】 (考查应用零点存在性定理判断函数的零点个数)已知函数f n (x )=x ln x -x 2n(n ∈N *,e =2.718 28…为自然对数的底数).(1)求曲线y =f 1(x )在点(1,f 1(1))处的切线方程; (2)讨论函数f n (x )的零点个数.【导学号:07804105】[解] (1)因为f 1(x )=x ln x -x 2, 所以f 1′(x )=ln x +1-2x , 所以f 1′(1)=1-2=-1.又f 1(1)=-1,所以曲线y =f 1(x )在点(1,f 1(1))处的切线方程为y +1=-(x -1),即y =-x .(2)令f n (x )=0,得x ln x -x 2n=0(n ∈N *,x >0),所以n ln x -x =0.令g (x )=n ln x -x ,则函数f n (x )的零点与函数g (x )=n ln x -x 的零点相同. 因为g ′(x )=n x -1=n -xx,令g ′(x )=0,得x =n , 所以当x >n 时,g ′(x )<0;当0<x <n 时g ′(x )>0,所以函数g (x )在区间(0,n ]上单调递增,在区间[n ,+∞)上单调递减. 所以函数g (x )在x =n 处有最大值,且g (n )=n ln n -n .①当n =1时,g (1)=ln 1-1=-1<0,所以函数g (x )=n ln x -x 的零点个数为0; ②当n =2时,g (2)=2ln 2-2<2ln e -2=0,所以函数g (x )=n ln x -x 的零点个数为0; ③当n ≥3时,g (n )=n ln n -n =n (ln n -1)≥n (ln 3-1)>n (ln e -1)=0, 因为g (e 2n)=n ln e 2n-e 2n<2n 2-4n =2n 2-(1+3)n <2n 2-⎣⎢⎡⎦⎥⎤1+3n +n n -2×9<2n 2-[1+3n +3n (n -1)]=-n 2-1<0,且g (1)<0,所以由函数零点的存在性定理,可得函数g (x )=n ln x -x 在区间(1,n )和(n ,+∞)内都恰有一个零点.所以函数g (x )=n ln x -x 的零点个数为2.综上所述,当n =1或n =2时,函数f n (x )的零点个数为0;当n ≥3且n ∈N *时,函数f n (x )的零点个数为2. [类题通法]1.求函数零点个数的两种方法:由函数零点存在性定理,结合函数的单调性判断; 由函数的单调性及函数极值的正负来确定.2.零点个数的讨论,对于不可求的零点,需要通过方程转化为初等函数的交点个数判断.3.零点讨论中的参数,针对参数的讨论有两个方向:一是方程根的个数;二是参数对构造的初等函数图象形状的影响.■对点即时训练………………………………………………………………………· 1.已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( ) A .4 B .5 C .6D .7A [(数形结合思想)令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0有根的问题.令y =f (t )-2t -32=0,即f (t )=2t+32,如图(1),由数形结合得t 1=0,1<t 2<2,如图(2),再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以F (x )=f [f (x )]-2f (x )-32共有4个零点. 故选A.]图(1) 图(2)2.函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33-x 44+…-x 2 0162 016+x 2 0172 017cos 2x 在区间[-3,3]上零点的个数为( ) A .3 B .4 C .5D .6C [设函数g (x )=1+x -x 22+x 33-x 44+…-x 2 0162 016+x 2 0172 017,h (x )=cos 2x ,则f (x )=g (x )h (x ),g ′(x )=1-x +x 2-x 3+…-x 2 015+x 2 016=(1-x )+x 2(1-x )+…+x 2 014(1-x )+x2 016.当-3≤x ≤1时,显然g ′(x )≥0;g ′(x )=1+x (x -1)+x 3(x -1)+…+x2 015(x-1),当1<x ≤3时,显然g ′(x )>0,所以g (x )在区间[-3,3]上是增函数,又g (-1)<0,g (0)=1>0,所以g (x )在区间[-3,3]上有且只有1个零点x 0∈(-1,0),且x 0≠-π4.h (x )=cos 2x 在区间[-3,3]上有4个零点:-3π4,-π4,π4,3π4,所以函数f (x )=g (x )h (x )在区间[-3,3]上有5个零点.]■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 5、T 6、T 13、T 14) 题型2 已知函数的零点个数求参数的取值范围(对应学生用书第51页)■核心知识储备………………………………………………………………………·已知函数有零点(方程有根或图象有交点)求参数的值或取值范围常用的方法:①直接法:直接根据题设条件构建关于参数的方程或不等式,再通过解方程或不等式确定参数的值或取值范围.②分离参数法:先将参数分离,转化成求函数最值问题加以解决.③数形结合法:在同一平面直角坐标系中画出函数的图象,然后数形结合求解. ■典题试解寻法………………………………………………………………………·【典题1】 (考查已知函数的零点个数求参数范围)(2017·太原二模)已知f (x )=x 2e x,若函数g (x )=f 2(x )-kf (x )+1恰有四个零点,则实数k 的取值范围是( )A .(-∞,-2)∪(2,+∞) B.⎝ ⎛⎭⎪⎫2,4e 2+e 24C.⎝ ⎛⎭⎪⎫8e 2,2 D .⎝ ⎛⎭⎪⎫4e 2+e 24,+∞ [思路分析] f (x )=x 2e x―――――→求f x 画f (x )的图象――――――→令f x =t 数形结合g (x )有四个零点――――→等价转化方程t 2-kt +1=0在⎝ ⎛⎭⎪⎫0,4e 2和⎝ ⎛⎭⎪⎫4e 2,+∞各有1解――――――――→二次函数根的分布实数k 的取值范围.[解析] (数形结合思想)f ′(x )=x e x(x +2),令f ′(x )>0,得f (x )的单调递增区间为(-∞,-2),(0,+∞),令f ′(x )<0,得f (x )的单调递减区间为(-2,0),所以f (-2)=4e -2>0为函数f (x )的极大值,f (0)=0为函数f (x )的极小值,故f (x )≥0,作出其函数图象如图所示.因为函数g (x )=f 2(x )-kf (x )+1恰有四个零点,令f (x )=t ,则关于t 的方程t 2-kt +1=0有两个不相同的根,记为t 1,t 2,且0<t 1<4e-2,4e -2<t 2,所以⎩⎪⎨⎪⎧Δ=k 2-4>016e -4-4k e -2+1<0,解得k >4e 2+e24,故选D.[答案] D【典题2】 (考查已知方程根的个数求参数范围)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.【导学号:07804106】[思路分析] 方程f (x )=b 有三个不同的根――――→等价转化函数f (x )与函数y =b 有三个不同的交点――――→分类讨论依据m 的取值画函数f (x )的图象――――→数形结合求m 的取值范围.[解析] f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,当x >m 时,f (x )=x 2-2mx +4m =(x -m )2+4m -m 2,其顶点为(m,4m -m 2);当x ≤m 时,函数f (x )的图象与直线x =m 的交点为Q (m ,m ). ①当⎩⎪⎨⎪⎧m >0,4m -m 2≥m ,即0<m ≤3时,函数f (x )的图象如图(1)所示,易得直线y =b 与函数f (x )的图象有一个或两个不同的交点,不符合题意;②当⎩⎪⎨⎪⎧4m -m 2<m ,m >0,即m >3时,函数f (x )的图象如图(2)所示,则存在实数b 满足4m -m 2<b ≤m ,使得直线y =b 与函数f (x )的图象有三个不同的交点,符合题意.综上,m 的取值范围为(3,+∞).图(1) 图(2)[答案] (3,+∞)【典题3】 (考查导数在函数零点中的应用)(2016·全国Ⅰ卷节选)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点,求a 的取值范围.[思路分析] 求f ′(x )――――――――――→分a =0,a >0,a <0求函数的单调性及极值――――――→由f x 有2个零点确定a 的取值范围.[解] f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞). [类题通法]已知函数的零点个数求参数取值范围问题的关键有以下几点:一是将原函数的零点个数问题转化为方程根的个数问题,并进行适当化简、整理;二是构造新的函数,把方程根的个数问题转化为新构造的两个函数的图象交点个数问题;三是对新构造的函数进行画图;四是观察图象,得参数的取值范围.■对点即时训练………………………………………………………………………·1.设[x ]表示不小于实数x 的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f (x )=[x ]2-2[x ],若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有两个零点,则实数k 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-52,-1∪[2,5)B.⎣⎢⎡⎭⎪⎫-1,-23∪[5,10)C.⎝ ⎛⎦⎥⎤-43,-1∪[5,10) D.⎣⎢⎡⎦⎥⎤-43,-1∪[5,10)B [令F (x )=0,得f (x )=k (x -2)-2,作出函数y =f (x )和y =k (x -2)-2的图象如图所示.若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有两个零点,则函数f (x )和g (x )=k (x -2)-2的图象在(-1,4]上有两个交点.因为g (x )过定点P (2,-2),经计算可得k PA =5,k PB =10,k PO =-1,k PC =-23,所以k 的取值范围是⎣⎢⎡⎭⎪⎫-1,-23∪[5,10).故选B.]2.已知函数f (x )=e x ,若关于x 的不等式[f (x )]2-2f (x )-a ≥0在[0,1]上有解,则实数a 的取值范围为________.【导学号:07804107】(-∞,e 2-2e] [由[f (x )]2-2f (x )-a ≥0在[0,1]上有解,可得a ≤[f (x )]2-2f (x ),即a ≤e 2x -2e x .令g (x )=e 2x -2e x (0≤x ≤1),则a ≤g (x )max ,因为0≤x ≤1,所以1≤e x ≤e,则当e x =e ,即x =1时,g (x )max =e 2-2e ,即a ≤e 2-2e ,故实数a 的取值范围是(-∞,e 2-2e].]■题型强化集训…………………………………………………………………·(见专题限时集训T 1、T 3、T 4、T 7、T 8、T 9、T 10、T 11、T 12)三年真题| 验收复习效果 (对应学生用书第52页)1.(2017·全国Ⅲ卷)已知函数f (x )=x 2-2x +a (ex -1+e-x +1)有唯一零点,则a =( )A .-12B .13C .12D .1C [法一:(换元法)f (x )=x 2-2x +a (ex -1+e-x +1)=(x -1)2+a [ex -1+e-(x -1)]-1,令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t)-1. ∵g (-t )=(-t )2+a (e -t+e t)-1=g (t ), ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.故选C.法二:(等价转化法)f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 故选C.]2.(2014·全国Ⅰ卷)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )【导学号:07804108】A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)B [f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2), 则当x ∈(-∞,0)时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫0,23时,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫23,+∞时,f ′(x )>0,注意f (0)=1,f ⎝ ⎛⎭⎪⎫23=59>0,则f (x )的大致图象如图(1)所示.图(1)不符合题意,排除A 、C.当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈⎝⎛⎭⎪⎫-∞,-32时,f ′(x )<0,x ∈⎝⎛⎭⎪⎫-32,0时,f ′(x )>0,x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f ⎝⎛⎭⎪⎫-32=-54,则f (x )的大致图象如图(2)所示.图(2)不符合题意,排除D.]3.(2017·全国Ⅰ卷)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.[解] (分类讨论思想)(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).(ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ②当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1, 则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a-1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).。
高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验
专题限时集训(七) 回归分析、独立性检验(对应学生用书第91页)(限时:40分钟)1.(2017·某某一模)下列说法错误的是( )【导学号:07804050】A .回归直线过样本点的中心(x ,y )B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^就增加0.2个单位C [根据相关定义知选项A ,B ,D 均正确;选项C 中,对分类变量X 与Y ,随机变量K 2的观测值k 越大,对判断“X 与Y 有关系”的把握程度越大,故C 错误.选C.]2.(2017·某某名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为C .99.5%D .95%D [由图表中数据可得,当k >3.841时,有0.05的几率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的几率,也就是有95%的把握认为变量之间有关系,故选D.]3.(2017·某某七市联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为y ^=10.2x +a ^,据此模型,预测广告费为10万元时销售额约为( )【导学号:07804051】A .101.2万元B .108.8万元C .111.2万元D .118.2万元C [根据统计数据表,可得x =15×(2+3+4+5+6)=4,y =15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),∴50=10.2×4+a ^,解得a ^=9.2,∴回归方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.]4.(2017·某某二模)现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如图77所示的两个等高堆积条形图.图77根据这两幅图中的信息,下列哪个统计结论是不正确的( ) A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科D [由图2知,样本中的女生数量多于男生数量,样本中的男生、女生均偏爱理科;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故选D.] 5.(2016·某某模拟)对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )图78(1)图78(2)图78(3)图78(4)A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3A [由给出的四组数据的散点图可以看出,图(1)和图(3)是正相关,相关系数大于0,图(2)和图(4)是负相关,相关系数小于0,图(1)和图(2)的点相对更加集中,所以相关性要强,所有r 1接近于1,r 2接近于-1,由此可得r 2<r 4<r 3<r 1.故选A.] 6.(2017·某某一模)设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kgD [因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x ,y ),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加 1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.]7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是( )ABCDC[当残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的带状区域的宽度越窄.故选C.]8.(2017·某某南城一中、高安中学第九校3月联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线合计愿生452065不愿生132235合计5842100由K2=n ad-bc2a+b c+d a+c b+d,得K2=100×45×22-20×13265×35×58×42≈9.616.参照下表,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”C[K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选C.]二、填空题9.(2017·某某二模)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.【导学号:07804052】6 [x =5=5,y =5=5,代入回归直线方程,得14+c5=0.85×5-0.25,解得c =6.]10.(2017·某某百校联盟二模)已知x 、y 的取值为:从散点图可知y 与x 呈线性相关关系,且回归直线方程为y =1.2x +a ,则当x =20时,y 的取值为________.27.6 [由表格可知x =3,y =7.2,所以这组数据的样本点的中心是(3,7.2),根据样本点的中心在回归直线上,得7.2=a ^+1.2×3,得a ^=3.6,所以这组数据对应的回归直线方程是y ^=1.2x +3.6,将x =20代入,得y =1.2×20+3.6=27.6.]11.(2017·某某某某五中一模)某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:已知x ,y 的关系符合回归方程y =b x +a ,其中b =-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为________元. 3.75 [x =3.5,y =40,∴a ^=40-(-20)×3.5=110, ∴回归直线方程为:y ^=-20x +110,利润L =(x -2)(-20x +110)=-20x 2+150x -220, ∴x =15040=3.75元时,利润最大,故答案为3.75.]12.(2017·某某三中二模)以模型y =c e kx(e 为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z =ln y ,其变换后得到线性回归方程为z =0.4x +2,则c =________. e 2[∵y =c e kx,∴两边取对数,可得ln y =ln(c e kx )=ln c +ln e kx=ln c +kx , 令z =ln y ,可得z =ln c +kx , ∵z =0.4x +2, ∴ln c =2, ∴c =e 2.] 三、解答题13.(2017·某某一模)为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各20人组成一个样本,对他们的这项血液指标进行了检测,得到了如图79所示的茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.图79(1)依据上述样本数据研究此项血液指标与性别的关系,列出2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系? (2)以样本估计总体,视样本频率为概率,现从本地区随机抽取成年男性、女性各2人,求此项血液指标为正常的人数X 的分布列及数学期望. 附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.025 0.010 0.005 k 05.0246.6357.879正常 偏高 合计 男性 16 4 20 女性 12 8 20 合计281240K 2=n ad -bc 2a +bc +d a +cb +d =40×16×8-4×12220×20×28×12≈1.905<6.635,所以不能在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系. (2)由样本数据可知,男性正常的概率为45,女性正常的概率为35.此项血液指标为正常的人数X 的可能取值为0,1,2,3,4,P (X =0)=⎝⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫1-352=4625, P (X =1)=C 1245⎝⎛⎭⎪⎫1-45⎝⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-452C 1235·⎝ ⎛⎭⎪⎫1-35=44625, P (X =2)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-352+C 1245⎝ ⎛⎭⎪⎫1-45·C 1235·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫352=169625, P (X =3)=C 1245⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452C 1235·⎝⎛⎭⎪⎫1-35=264625, P (X =4)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫352=144625,所以X 的分布列为X 0 1 2 3 4 P462544625169625264625144625所以E (X )=0×625+1×625+2×625+3×625+4×625=2.8.14.(2017·某某三湘名校联盟三模)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y =C 1x 2+C 2与模型②:y =e C 3x +C 4作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.温度x /℃ 20 22 24 26 28 30 32 产卵数y /个6 10 21 24 64 113 322 t =x 2 400 484 576 676 784 900 1024 z =ln y1.792.303.043.184.164.735.77xtyz26692803.57错误! 错误! 错误! 错误!1157.540.430.32 0.00012其中t i =x 2i ,t =∑ni =1t i ,z i =ln y i ,z =∑ni =1z i ,附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=β^u +α^的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .图710(1)在答题卡中分别画出y 关于t 的散点图、z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).图711(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C 1,C 2,C 3,C 4与估计值均精确到小数点后两位)(参考数据:e 4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(3)若模型①、②的相关指数计算得分分别为R 21=0.82,R 22=0.96,请根据相关指数判断哪个模型的拟合效果更好.【导学号:07804053】[解] (1)画出y 关于t 的散点图,如图1;z 关于x 的散点图,如图2.图1 图2根据散点图可判断模型②更适宜作为回归方程类型. (2)对于模型①:设t =x 2,则y =C 1x 2+C 2=C 1t +C 2,其中C ^1=∑7i =1t i -ty i -y∑7i =1t i -t2=0.43,C ^2=y -C ^1t =80-0.43×692=-217.56,所以y =0.43x 2-217.56,当x =30时,估计温度为y 1=0.43×302-217.56=169.44. 对于模型②:y =e C 3x +C 4⇒z =ln y =C 3x +C 4,word 其中C ^3=∑7i =1 z i -z x i -x∑7i =1x i -x2=0.32,C ^4=z -C ^3x =3.57-0.32×26=-4.75.所以y =e 0.32x -4.75,当x =30时,估计温度为y 2=e0.32×30-4.75=e 4.85≈127.74. (3)因为R 21<R 22,所以模型②的拟合效果更好.。
2018年高考数学(理)二轮复习教师用书:第1部分重点强化专题专题1第1讲三角函数问题(含答案)
三角函数第1讲三角函数问题题型1 三角函数的图象问题(对应学生用书第1页)■核心知识储备………………………………………………………………………·1.“五点法”作图用五点法画y=A sin(ωx+φ)在一个周期内的简图时,一般先列表,后描点,连线,其中所列表如下:■典题试解寻法………………………………………………………………………【典题1】 (考查三角函数图象的平移变换)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2[思路分析] 异名三角函数――――――→诱导公式同名三角函数――――――――――→图象的伸缩和平移变换得结论. [解析] 因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x上各点的横坐标缩短到原来的12,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y =cos 2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝ ⎛⎭⎪⎫2x +π6.故选D. [答案] D【典题2】 (考查已知三角函数的图象求解析式)(2017·洛阳模拟)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<π2的部分图象如图11所示,已知图象经过点A (0,1),B ⎝ ⎛⎭⎪⎫π3,-1,则f (x )=________.图11[思路分析] 由图象得周期T ,利用T =2πω得ω→由特殊点A (0,1)得关于φ的三角方程→利用φ的范围确定φ的值→f (x ).[解析] 由已知得T 2=π3,∴T =2π3,又T =2πω,∴ω=3.∵f (0)=1,∴sin φ=12,又∵0<φ<π2,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫3x +π6(经检验满足题意). [答案] 2sin ⎝ ⎛⎭⎪⎫3x +π6 [类题通法]当原函数与所要变换得到的目标函数的名称不同时,首先要将函数名称统一,将y =sin ωx ω>的图象变换成y =ωx +φ的图象时,只需进行平移变换,应把ωx +φ变换成ω⎝ ⎛⎭⎪⎫x +φω,根据⎪⎪⎪⎪⎪⎪φω确定平移量的大小,根据φω的符号确定平移的方向.函数y =Aωx +φ的解析式的确定①A 由最值确定,A =最大值-最小值2;②ω由周期确定;φ由图象上的特殊点确定.通常利用峰点、谷点或零点列出关于φ的方程,结合φ的范围解得φ的值,所列方程如下:峰点:ωx +φ=π2+2k π;谷点:ωx +φ=-π2+2k π.,利用零点时,要区分该零点是升零点,还是降零点.升零点图象上升时与x 轴的交点:ωx +φ=2k π;降零点图象下降时与x 轴的交点:ωx +φ=π+2k π以上k ∈Z■对点即时训练………………………………………………………………………·1.已知函数f (x )=sin 2(ωx )-12(ω>0)的最小正周期为π2,若将其图象沿x 轴向右平移a (a >0)个单位,所得图象关于原点对称,则实数a 的最小值为( ) A .π4B .3π4C .π2D .π8D [依题意得f (x )=1-cos 2ωx 2-12=-12cos 2ωx ,最小正周期T =2π2ω=π2,ω=2,所以f (x )=-12cos 4x ,将f (x )=-12cos 4x 的图象向右平移a 个单位后得到函数g (x )=-12cos[4(x -a )]的图象.又函数g (x )的图象关于原点对称. 因此有g (0)=-12cos 4a =0,4a =k π+π2,k ∈Z ,即a =k π4+π8,k ∈Z ,因此正实数a的最小值是π8,选D.]2.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图12所示,则f ⎝ ⎛⎭⎪⎫π3的值为________.图121 [根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,ω=2πT=2. 又函数过点⎝ ⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π,所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.]■题型强化集训………………………………………………………………………·(见专题限时集训T 3、T 5、T 11) 题型2 三角函数的性质问题(对应学生用书第2页)■核心知识储备……………………………………………………………………… 1.三角函数的单调区间:y =sin x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );y =tan x 的单调递增区间是⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z ). 2.三角函数的对称性y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.3.三角函数的最值(1)y =a sin x +b cos x +c 型函数的最值: 通过引入辅助角φ可将此类函数的最值问题转化为y =a 2+b 2sin(x +φ)+c ⎝⎛⎭⎪⎫其中tan φ=b a 的最值问题,然后利用三角函数的图象和性质求解. (2)y =a sin 2x +b sin x cos x +c cos 2x 型函数的最值:可利用降幂公式sin 2x =1-cos 2x 2,sin x cos x =sin 2x 2,cos 2x =1+cos 2x 2,将y =a sin 2x +b sin x cos x +c cos 2x 转化为y=A sin 2x +B cos 2x +C ,这样就可将其转化为(1)的类型来求最值. ■典题试解寻法………………………………………………………………………· 【典题1】 (考查三角函数图象的对称性)将函数f (x )=cos 2x 的图象向右平移π4个单位后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递增,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝ ⎛⎭⎪⎫3π8,0对称[解析] 由题意可得将f (x )=cos 2x 的图象向右平移π4个单位得到g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫π2-2x =sin 2x 的图象,因为函数g (x )为奇函数,所以排除C ,又当x =π2时函数值为0,当x =3π8时,函数值为22,所以A 和D 中对称的说法不正确,选B.[答案] B【典题2】 (考查三角函数的值域问题)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. [解析] f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. [答案] 1【典题3】 (考查三角函数的定义域、周期性及单调性的判断)已知函数f (x )=4tanx ·sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解] (1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z. f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3-3=4sin x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x - 3=sin 2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减. [类题通法]函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.■对点即时训练………………………………………………………………………·1.已知函数f (x )=sin(ωx +2φ)-2sin φcos(ωx +φ)(ω>0,φ∈R )在⎝ ⎛⎭⎪⎫π,3π2上单调递减,则ω的取值范围是( ) A .(0,2]B .⎝ ⎛⎦⎥⎤0,12C .⎣⎢⎡⎦⎥⎤12,1D .⎣⎢⎡⎦⎥⎤12,54 C [f (x )=sin(ωx +φ+φ)-2sin φcos(ωx +φ)=cos φsin(ωx +φ)-sin φcos(ωx +φ)=sin ωx ,π2+2k π≤ωx ≤3π2+2k π,k ∈Z ⇒π2ω+2k πω≤x ≤3π2ω+2k πω,k ∈Z ,所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π2ω+2k πω,3π2ω+2k πω,k ∈Z ,所以π2ω+2k πω≤π<3π2≤3π2ω+2k πω,k ∈Z ,由π2ω+2k πω≤π,可得12+2k ≤ω,k ∈Z ,由3π2≤3π2ω+2k πω,k ∈Z ,可得ω≤1+4k 3,k ∈Z ,所以12+2k ≤ω≤1+4k 3,k ∈Z ,又T 2≥3π2-π=π2,所以2πω≥π,因为ω>0,所以0<ω≤2,所以当k =0时,12≤ω≤1.故选C.]2.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)=( ) A .2 468 B .3 501 C .4 032D .5 739C [f (x )=A 2cos(2ωx +2φ)+A 2+1.由相邻两条对称轴间的距离为2,知T2=2,得T =4=2π2ω,∴ω=π4,由f (x )的最大值为3,得A =2.又f (x )的图象过点(0,2),∴cos 2φ=0,∴2φ=k π+π2(k ∈Z ),即φ=k π2+π4(k ∈Z ),又0<φ<π2,∴φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin πx 2+2.∴f (1)+f (2)+…+f (2 016)=(-1+2)+(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=2×2 016=4 032.]■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 4、T 6、T 7、T 8、T 12、T 13、T 14)题型3 三角恒等变换 (对应学生用书第4页)■核心知识储备………………………………………………………………………· 1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α. 3.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中tan φ=b a . ■典题试解寻法………………………………………………………………………·【典题1】 (考查给式求角问题)(2014·全国Ⅰ卷)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2[解析] 法一:(切化弦)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α. ∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:(弦化切)tan α=1+sin βcos β=1+cos ⎝ ⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2 =tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2 =tan ⎝ ⎛⎭⎪⎫π4+β2, ∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z , ∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,故选B. [答案] B【典题2】 (考查给值求值问题)(2016·江西八校联考)如图13,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α,若|BC |=1,则3cos2α2-sin α2cos α2-32的值为________.图13[解析] 由题意可知|OB |=|BC |=1,∴△OBC 为正三角形.由三角函数的定义可知,sin∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,∴3cos2α2-sin α2cos α2-32=3+cos α2-sin α2-32=32cos α-12sin α=sin ⎝ ⎛⎭⎪⎫π3-α=513. [答案]513[类题通法]解决三角函数式的化简求值要坚持“三看”原则:一看“角”,通过看角之间的差别与联系,把角进行合理的拆分;二是“函数名称”,是需进行“切化弦”还是“弦化切”等,从而确定使用的公式;三看“结构特征”,了解变式或化简的方向.■对点即时训练………………………………………………………………………· 1.对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝⎛⎭⎪⎫2α+π3=( )A .2425 B .38 C .28D .-2425D [由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝ ⎛⎭⎪⎫α-π12=45,那么cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎫2102-1=-2425.故选D.] 2.已知tan α=13,tan β=-17,且0<α<π2,π2<β<π,则2α-β的值为________.-3π4 [tan 2α=2tan α1-tan 2α=34, 又0<α<π2,所以2α∈⎝⎛⎭⎪⎫0,π2,又π2<β<π,所以2α-β∈(-π,0),又tan β=-17,则tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-328=1,故2α-β=-3π4.]■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 9、T 10) 三年真题| 验收复习效果 (对应学生用书第4页)1.(2015·全国Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]2.(2016·全国Ⅲ卷)若tan α=34,则cos 2α+2sin 2α=( )A .6425B .4825C .1D .1625A [因为tan α=34,则cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝ ⎛⎭⎪⎫342+1=6425.故选A.] 3.(2016·全国Ⅱ卷)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z )B [将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin 2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象.由2x +π6=kx +π2(k ∈Z ),得x =k π2+π6(k ∈Z ),即平移后图象的对称轴为x =k π2+π6(k ∈Z ).] 4.(2017·全国Ⅲ卷)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A项正确.B 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确.C 项,f (x +π)=cos ⎝⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎢⎡ 2k π+2π3,⎦⎥⎤2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.故选D.]5.(2015·全国Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图14所示,则f (x )的单调递减区间为( )图14A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z D [由图象知,最小正周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.]6.(2016·全国Ⅰ卷)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5B [因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图象的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数). 又函数f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则ω=-π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调的条件.故选B.]。
2018届高考数学(理)二轮复习教师用书:第一部分 层级二 75分的重点保分题精析精研 重点攻关
[全国卷3年考情分析][师生共研·悟通]指数与对数式的8个运算公式(1)a m·a n=a m+n;(2)(a m)n=a mn;(3)(ab)m=a m b m;(4)log a(MN)=log a M+log a N;(5)log a MN=log a M-log a N;(6)log a M n=n log a M;(7)a log a N=N;(8)log a N=log b Nlog b a.[注意] (1)(2)(3)中,a>0,b>0;(4)(5)(6)(7)(8)中,a>0且a≠1,b>0且b≠1,M>0,N>0.[典例] (1)(2017·全国卷Ⅰ)设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z[解析] 选D 由2x=3y=5z,可设(2)2x=(33)3y=(55)5z=t,因为x,y,z为正数,所以t>1,因为2=623=68,33=632=69,所以2<33;因为2=1025=1032,55=1025,所以2>55,所以55<2<33.分别作出y=(2)x,y=(33)x,y=(55)x的图象,如图.则3y<2x<5z,故选D.(2)已知f(x)=a x-2,g(x)=log a|x|(a>0且a≠1),若f(4)g(-4)<0,则y=f(x),y =g(x)在同一坐标系内的大致图象是( )[解析] 选B ∵f(x)=a x-2>0恒成立,又f(4)·g(-4)<0,∴g(-4)=log a|-4|=log a4<0=log a1,∴0<a<1.故函数y=f(x)在R上单调递减,且过点(2,1),函数y=g(x)在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B正确.[即学即用·练通]1.已知函数f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( )A.[1,81] B.[1,3]C.[1,9] D.[1,+∞)解析:选C 由f(x)的图象过点(2,1)可知b=2,∴f(x)=3x-2,其在区间[2,4]上是增函数,∴f(x)min=f(2)=30=1,f(x)max=f(4)=32=9.故f(x)的值域为[1,9].2.若函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析:选C 法一:由函数f (x )=x a满足f (2)=4,得2a=4,∴a =2,则g (x )=|log a (x +1)|=|log 2(x +1)|,将函数y =log 2x 的图象向左平移1个单位长度(纵坐标不变),然后将x 轴下方的图象翻折上去,即可得g (x )的图象,故选C.法二:由函数f (x )=x a满足f (2)=4,得2a=4,∴a =2,即g (x )=|log 2(x +1)|,由g (x )的定义域为{x |x >-1},排除B 、D ;由x =0时,g (x )=0,排除A.故选C.3.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b=________.解析:∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2,∴2b =b 2, ∴b =2,a =4. 答案:4 2[师生共研·悟通]1.函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.2.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典例] (1)已知f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2 018x+log 2 018x ,则函数f (x )的零点个数是( )A .1B .2C .3D .4[解析] 选C 在同一直角坐标系中作出函数y =2 018x和y =-log 2 018x 的图象如图所示,可知函数f (x )=2 018x+log 2 018x 在x ∈(0,+∞)上存在一个零点,又f (x )是定义在R 上的奇函数,∴f (x )在x ∈(-∞,0)上只有一个零点,又f (0)=0,∴函数f (x )的零点个数是3.(2)(2017·山东高考)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0, 2 ]∪[23,+∞)D .(0, 2 ]∪[3,+∞)[解析] 选B 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形:①当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意;②当m >1时,0<1m<1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去).综上所述,m ∈(0,1]∪[3,+∞).[类题通法]1.判断函数零点个数的3种方法2.利用函数零点的情况求参数值(或范围)的3种方法[即学即用·练通]1.函数f (x )=log 3x -x +2必有一个零点的区间是( )A.⎝ ⎛⎭⎪⎫19,13B.⎝ ⎛⎭⎪⎫13,59C.⎝ ⎛⎭⎪⎫59,79D.⎝ ⎛⎭⎪⎫79,1 解析:选A 因为f (x )=log 3x -x +2,所以f ⎝ ⎛⎭⎪⎫19=log 319-19+2=-2-19+2=-19<0,f ⎝ ⎛⎭⎪⎫13=log 313-13+2=-1-13+2=23>0,即f ⎝ ⎛⎭⎪⎫19·f ⎝ ⎛⎭⎪⎫13<0,所以函数f (x )=log 3x -x +2在⎝ ⎛⎭⎪⎫19,13上必有一个零点. 2.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(1,2)内单调递增,依题意有f (1)·f (2)<0,所以(-a )·(3-a )<0,所以0<a <3.3.设f 1(x )=|x -1|,f 2(x )=-x 2+6x -5,函数g (x )是这样定义的:当f 1(x )≥f 2(x )时,g (x )=f 1(x ),当f 1(x )<f 2(x )时,g (x )=f 2(x ),若方程g (x )=a 有四个不同的实数解,则实数a 的取值范围是( )A .(-∞,4)B .(0,4)C .(0,3)D .(3,4)解析:选D 作出f 1(x )=|x -1|,f 2(x )=-x 2+6x -5的图象如图,函数g (x )的图象为两函数中位置在上的部分(即图中实线部分),即g (x )=⎩⎪⎨⎪⎧-x +1,x ≤1,-x 2+6x -5,1<x ≤4,x -1,x >4,由⎩⎪⎨⎪⎧y =x -1,y =-x 2+6x -5,得A (4,3),f 2(x )=-x 2+6x -5的顶点坐标为B (3,4),要使方程g (x )=a 有四个不同的实数解,即函数g (x )的图象与函数y =a 的图象有四个不同交点,数形结合可得3<a <4,故选D.[师生共研·悟通][典例] (2017·湖北七市(州)联考)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.[解析] 前5小时污染物消除了10%,此时污染物剩下90%,即t =5时,P =0.9P 0,代入,得(e -k )5=0.9,∴e -k =0.915,∴P =P 0e -kt=P 0⎝ ⎛⎭⎪⎫0.915t .当污染物减少19%时,污染物剩下81%,此时P=0.81P 0,代入得0.81=⎝ ⎛⎭⎪⎫0.915t,解得t =10,即需要花费10小时.[答案] 10 [类题通法]应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇨建模数学语言⇨求解数学应用⇨反馈检验作答(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[即学即用·练通]1.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有某型号电脑6台,乙分公司现有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知从甲地运往A ,B 两地每台电脑的运费分别是40元和30元,从乙地运往A,B两地每台电脑的运费分别是80元和50元.若总运费不超过1 000元,则调运方案的种数为( )A.1 B.2C.3 D.4解析:选C 设甲地调运x台电脑至B地,则剩下(6-x)台电脑调运至A地;乙地应调运(8-x)台电脑至B地,运往A地12-(8-x)=(x+4)台电脑(0≤x≤6,x∈N).则总运费y=30x+40(6-x)+50(8-x)+80(x+4)=20x+960,∴y=20x+960(x∈N,0≤x≤6).若y≤1 000,则20x+960≤1 000,得x≤2.又0≤x≤6,x∈N,∴x=0,1,2,即有3种调运方案.2.某商场为了解商品的销售情况,对某种电器今年一至五月份的月销售量Q(x)(百台)进行统计,得数据如下:x(月份)变化关系的模拟函数是( )A.Q(x)=ax+b(a≠0)B.Q(x)=a|x-4|+b(a≠0)C.Q(x)=a(x-3)2+b(a≠0)D.Q(x)=a·b x(a≠0,b>0且b≠1)解析:选C 观察数据可知,当x增大时,Q(x)的值先增大后减小,且大约是关于Q(3)对称,故月销售量Q(x)(百台)与时间x(月份)变化关系的模拟函数的图象是关于x=3对称的,显然只有选项C满足题意,故选C.[专题过关检测]A级——常考点落实练1.幂函数y=f(x)的图象经过点(3,3),则f(x)是( )A.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数解析:选D 设幂函数f(x)=x a,则f(3)=3a=3,解得a=12,则f(x)=x12=x,是非奇非偶函数,且在(0,+∞)上是增函数.2.(2017·全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:选D 由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).3.已知函数f(x)=a x,其中a>0且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)=( )A.1 B.aC.2 D.a2解析:选A ∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,∴x1+x2=0,又f(x)=a x,∴f(x1)·f(x2)=ax1·ax2=ax1+x2=a0=1.4.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A.4 B.5.5C .8.5D .10解析:选C 由题意可设定价为x 元/件,利润为y 元,则y =(x -3)[400-40(x -4)]=40(-x 2+17x -42),故当x =8.5时,y 有最大值.5.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).6.若函数f (x )与g (x )的图象关于直线y =x 对称,函数f (x )=⎝ ⎛⎭⎪⎫12-x,则f (2)+g (4)=( )A .3B .4C .5D .6解析:选D 法一:∵函数f (x )与g (x )的图象关于直线y =x 对称,又f (x )=⎝ ⎛⎭⎪⎫12-x=2x,∴g (x )=log 2x ,∴f (2)+g (4)=22+log 24=6.法二:∵f (x )=⎝ ⎛⎭⎪⎫12-x,∴f (2)=4,即函数f (x )的图象经过点(2,4),∵函数f (x )与g (x )的图象关于直线y =x 对称,∴函数g (x )的图象经过点(4,2),∴f (2)+g (4)=4+2=6.7.(2017·云南第一次统一检测)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b .8.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A 若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.9.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-,x ≥2,则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C 令2ex -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).10.已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3解析:选C 由于AB ―→=2BC ―→,则AC ―→=3BC ―→,则点A 的坐标为(m,3g (m )),又点A 在函数f (x )=log a x 的图象上,故log a m =3log b m ,即log a m =log b m 3,由对数运算可知b =a 3.B 级——易错点清零练1.已知函数f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)D.⎝ ⎛⎭⎪⎫-12,2 解析:选C 由题意,得⎩⎪⎨⎪⎧2x +1≠1,2x +1>0,解得x >-12且x ≠0.2.已知a >1,f (x )=a x 2+2x ,则使f (x )<1成立的一个充分不必要条件是( ) A .-1<x <0 B .-2<x <1 C .-2<x <0D .0<x <1解析:选A ∵a >1,∴y =a x在R 上为增函数,故f (x )<1⇔a x 2+2x <1⇔a x 2+2x <a 0⇔x 2+2x <0⇔-2<x <0,结合选项可知,使f (x )<1成立的一个充分不必要条件是-1<x <0.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.已知幂函数f (x )=(m -1)2x m 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x-k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是________.解析:∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2,f (x )在(0,+∞)上单调递减,不满足条件;若m =0,则f (x )=x 2,f (x )在(0,+∞)上单调递增,满足条件, 故f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),g (x )∈[2-k,4-k ), 即A =[1,4),B =[2-k,4-k ), ∵A ∪B =A ,∴B ⊆A ,则⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,解得0≤k ≤1.答案:[0,1]C 级——“12+4”高考练1.函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( )A .(0,0)B .(0,-1)C .(-2,0)D .(-2,-1)解析:选C 令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0且a ≠1)的图象恒过点(-2,0).2.“1a>1”是“函数f (x )=(3-2a )x单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由1a>1得0<a <1,若函数f (x )=(3-2a )x单调递增,则3-2a >1,解得a <1.故“1a>1”是“函数f (x )=(3-2a )x单调递增”的充分不必要条件.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D 因为lg 3361=361×lg 3≈361×0.48≈173,所以M ≈10173,则M N ≈101731080=1093.4.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.5.函数f (x )=x 2lg x -2x +2的图象( ) A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称解析:选 B 因为f (x )=x 2lgx -2x +2,所以其定义域为(-∞,-2)∪(2,+∞),所以f (-x )=x 2lgx +2x -2=-x 2lg x -2x +2=-f (x ),所以函数为奇函数,所以函数的图象关于原点对称.6.(2018届高三·济南质检)已知a =2-13,b =(2log 23)-12,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a>c>bB .b>a>cC .a>b>cD .c>b>a解析:选C 依题意得,a =2-13,b =3-12,c =-14cos x π0=12,所以a 6=2-2=14,b6=3-3=127,c 6=⎝ ⎛⎭⎪⎫126=164,则a>b>c.7.(2017·沈阳模拟)若函数y =log a x(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是( )A B C D解析:选B 由函数y =log a x(a>0,且a≠1)的图象可知,a =3,所以y =3-x,y =(-x)3=-x 3及y =log 3(-x)均为减函数,只有y =x 3是增函数,选B .8.(2017·保定二模)李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L 甲=-5x 2+900x -16 000,L 乙=300x -2 000(其中x 为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )A .11 000元B .22 000元C .33 000元D .40 000元解析:选C 设甲连锁店销售x 辆,则乙连锁店销售(110-x)辆,故利润L =-5x 2+900x -16 000+300(110-x)-2 000=-5x 2+600x +15 000=-5(x -60)2+33 000,∴当x =60时,有最大利润33 000元.9.(2018届高三·西安八校联考)已知在(0,+∞)上函数f(x)=⎩⎪⎨⎪⎧-2,0<x <1,1,x≥1,则不等式log 2x -(log 144x -1)·f(log 3x +1)≤5的解集为( )A .⎝ ⎛⎭⎪⎫13,1B .[1,4]C .⎝⎛⎦⎥⎤13,4 D .[1,+∞)解析:选C 原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝ ⎛⎭⎪⎫log 144x -1≤5或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2⎝ ⎛⎭⎪⎫log 144x -1≤5,解得1≤x≤4或13<x <1,所以原不等式的解集为⎝ ⎛⎦⎥⎤13,4. 10.已知函数f(x)是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB .(0,e)C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)解析:选C ∵函数f (x )是定义在R 上的奇函数,∴f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ),∴⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增, ∴-1<ln x <1,解得1e<x <e.11.(2017·南昌一模)已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x(e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C 当x >0时,f (x )=ln x -x +1,f ′(x )=1x-1=1-xx,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max=f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =ex的大致图象如图所示,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x(e 为自然对数的底数)有2个零点.12.已知定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,33 B.⎝ ⎛⎭⎪⎫0,22 C.⎝⎛⎭⎪⎫0,55 D.⎝⎛⎭⎪⎫0,66解析:选 A ∵f (x +2)=f (x )-f (1),f (x )是偶函数,∴f (1)=0,∴f (x +2)=f (x ),即f (x )是周期为2的周期函数,且y =f (x )的图象关于直线x =2对称,作出函数y =f (x )与g (x )=log a (x +1)的图象如图所示,∵两个函数图象在(0,+∞)上至少有三个交点,∴g (2)=log a 3>f (2)=-2,且0<a <1,解得0<a <33. 13.计算:2log 410-12log 225+823-(π-3)0=________.解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2017·宝鸡质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a=0有且只有一个实数根,则实数a 的取值范围是________.解析:依题意,由f (x )+x -a =0有且只有一个实数根得,函数y =f (x )的图象与直线y =-x +a 有唯一公共点.在同一平面直角坐标系中画出直线y =-x 与函数y =f (x )的大致图象如图所示,平移直线y =-x ,当平移到该直线在y 轴上的截距大于1时,相应直线与函数y =f (x )的图象有唯一公共点,即此时关于x 的方程有且只有一个实数根,因此a >1,即实数a 的取值范围是(1,+∞).答案:(1,+∞)16.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃ 时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少; ③到了此日13时,甲所购买的食品还在保鲜时间内; ④到了此日14时,甲所购买的食品已过了保鲜时间. 其中,所有正确结论的序号是________.解析:∵某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t=⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,∴24k +6=16,即4k +6=4,解得k =-12,∴t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414(小时),到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 所以正确结论的序号为①④. 答案:①④保分专题(二) 导数的简单应用[全国卷3年考情分析][师生共研·悟通]1.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).2.四个易误导数公式 (1)(sin x )′=cos x ; (2)(cos x )′=-sin x ; (3)(a x )′=a xln a (a >0);(4)(log a x )′=1x ln a(a >0,且a ≠1). [典例] (1)已知M 为不等式组⎩⎪⎨⎪⎧y ≤x 2,1≤x ≤2,y ≥0表示的平面区域,直线l :y=2x +a ,当a 从-2连续变化到0时,区域M 被直线l 扫过的面积为( )A.73 B .2C.32D .43[解析] 选D 作出图形可得区域M 被直线l 扫过的面积为S 2=⎠⎛12x 2d x -S 1=13x 321-12×1×2 =13×(8-1)-1 =43. (2)(2017·昆明质检)若函数f(x)=2cos ⎝⎛⎭⎪⎫ωx +π4的图象在x =0处的切线方程为y =-3x +1,则ω=___________________________________________________________.[解析] 由题意,得f ′(x )=-2ωsin ⎝⎛⎭⎪⎫ωx +π4,所以f′(0)=-2ωsin π4=-ω=-3,所以ω=3.[答案] 3(3)(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.[解析] 设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=ex -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. [答案] 2x -y =0[即学即用·练通]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.2.(2017·沈阳质检)设函数f (x )=g ⎝ ⎛⎭⎪⎫x 2+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________.解析:由已知得g ′(1)=-9,g (1)=-8, 又f ′(x )=12g ′⎝ ⎛⎭⎪⎫x 2+2x ,∴f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,∴所求切线方程为y +4=-12(x -2),即x +2y +6=0. 答案:x +2y +6=03.⎠⎛1-1(x 2+1-x 2)d x =________.解析:⎠⎛1-1x 2d x =13x 31-1=23,而根据定积分的定义可知⎠⎛1-11-x 2d x 表示圆心在原点的单位圆的上半部分的面积,即半圆的面积,∴⎠⎛1-1(x 2+1-x 2)d x =23+π2.答案:23+π2[师生共研·悟通] 导数与函数单调性的关系(1)f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.(2)f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常数,函数不具有单调性.[典例] (2017·全国卷Ⅰ)已知函数f (x )=e xe x-a-a 2x ❶.(1)讨论f (x )的单调性; (2)若fx ≥0❷,求a 的取值范围.[解答示范](一)搭桥——找突破口第(1)问:欲讨论f (x )的单调性,应先求f (x )的定义域及导数f ′(x ),再讨论f ′(x )的符号;第(2)问:欲求a 的取值范围,应想到找出有关a 的不等关系.由f (x )≥0,则应求f (x )的最小值,借助(1)的结论可得.(二)建桥——寻关键点[解] (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a2,+∞上单调递增.(2)①若a =0,则f (x )=e 2x,所以f (x )≥0.②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a . 从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.③若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2.从而当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即-2e 34≤a <0时,f (x )≥0.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-2e 34,1.[即学即用·练通]1.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,-2 6 ]B .⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g 1≥0⇔-26≤a ≤26或a ≥-4⇔a ≥-2 6.2.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A .⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞)C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d , 所以f ′(x )=3x 2+2bx +c , 由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1, 由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <-2时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y=log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).3.已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ×169+2×⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x.令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)上为减函数,在(-4,-1)和(0,+∞)上为增函数.[师生共研·悟通]函数f (x )在点x 0附近有定义,若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.[典例] (2017·北京高考)已知函数f x=e x cos x-x❶.(1)求曲线y=f x 在点0,f0处的切线方程❷;(2)错误!.[解答示范](一)搭桥——找突破口第(1)问:欲求函数在某点处的切线方程,应知切线的斜率,即求f(x)在此点处的导函数值;第(2)问:欲求函数在某区间上的最值,应知f(x)在此区间的单调性,即判断f′(x)在此区间上的正负.(二)建桥——寻关键点[解] (1)因为f(x)=e x cos x-x,所以f′(x)=e x(cos x-sin x)-1,f′(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e xsin x .当x ∈⎝⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎥⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.[即学即用·练通]1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:选A 因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1.2.已知函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1B.34C.43D.3+1解析:选A 由f (x )=xx 2+a 得f ′(x )=a -x 2x 2+a2,当a >1时,若x >a ,则f ′(x )<0,f (x )单调递减, 若1<x <a ,则f ′(x )>0,f (x )单调递增,故当x =a 时,函数f (x )有最大值12a =33,得a =34<1,不合题意;当a =1时,函数f (x )在[1,+∞)上单调递减,最大值为f (1)=12,不合题意;当0<a <1时,函数f (x )在 [1,+∞)上单调递减,此时最大值为f (1)=1a +1=33,得a =3-1,符合题意.故a 的值为3-1.3.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为(0,+∞),f ′(x )=a x +2=a +2xx.当a =-4时,f ′(x )=2x -4x.所以当0<x <2时,f ′(x )<0,即f (x )单调递减; 当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2.(2)因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0, 即f (x )在x ∈(0,+∞)上单调递增,没有最小值;当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝ ⎛⎭⎪⎫-a2,+∞上单调递增; 由f ′(x )<0得,x <-a2,所以f (x )在⎝⎛⎭⎪⎫0,-a 2上单调递减.所以当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a . 根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a ≥-a ,即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 所以实数a 的取值范围是[-2,0).[专题过关检测] 一、选择题1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1C .0D .不存在解析:选A ∵f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.2.函数f (x )=x +1x的极值情况是( )A .当x =1时,取极小值2,但无极大值B .当x =-1时,取极大值-2,但无极小值C .当x =-1时,取极小值-2;当x =1时,取极大值2D .当x =-1时,取极大值-2;当x =1时,取极小值2 解析:选D f ′(x )=1-1x2,令f ′(x )=0,得x =±1,函数f (x )在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减, 所以当x =-1时,取极大值-2,当x =1时,取极小值2.3.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( ) A .e -12B .2e -12C .e 12D .2e 12解析:选B 依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0,ax 0=2ln x 0+1,解得⎩⎪⎨⎪⎧x 0=e ,a =2e -12.4.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值为( )A .1B .2C .0D . 2解析:选B ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2.又∵g ′(x )=2x -a x,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1,2)上恒成立,有a ≤2,∴a =2.5.若函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,令当1-b x2=0,得b =x 2, 又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞). ∵b ∈(1,4),∴(-∞,-2)符合题意.6.已知f (x )=ln x -x 4+34x,g (x )=-x 2-2ax +4,若对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫54,+∞B.⎣⎢⎡⎭⎪⎫-18,+∞ C.⎣⎢⎡⎦⎥⎤-18,54 D.⎝⎛⎦⎥⎤-∞,-54解析:选A 因为f ′(x )=1x -14-34x 2=-x 2+4x -34x 2=-x -x -4x 2,易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,2]上单调递增, 故f (x )min =f (1)=12.对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下, 所以其在区间[1,2]上的最小值在端点处取得, 即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,只需f (x 1)min ≥g (x 2)min , 即12≥g (1)且12≥g (2), 所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54.二、填空题7.(2017·长春质检)⎠⎛1e ⎝ ⎛⎭⎪⎫x +1x d x =________. 解析:⎠⎛1e⎝ ⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫x 22+ln x e 1=e22+1-12=e 2+12.答案:e 2+128.已知函数f(x)=12x 2+2ax -ln x ,若f(x)在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f′(x)=x +2a -1x ≥0在区间⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a≥-x +1x 在区间⎣⎢⎡⎦⎥⎤13,2上恒成立.又∵y=-x +1x 在区间⎣⎢⎡⎦⎥⎤13,2上单调递减,∴⎝⎛⎭⎪⎫-x +1x max =83, ∴2a≥83,即a≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 9.已知函数f(x)=e x,g(x)=ln x 2+12的图象分别与直线y =m 交于A ,B 两点,则|AB|的最小值为________.解析:显然m >0,由e x=m 得x =ln m ,由ln x 2+12=m 得x =2e m -12,则|AB|=2e m -12-ln m .令h(m)=2e m -12-ln m ,由h′(m)=2e m -12-1m =0,求得m =12.当0<m <12时,h′(m)<0,函数h(m)在⎝ ⎛⎭⎪⎫0,12上单调递减;当m >12时,h′(m)>0,函数h(m)在⎝ ⎛⎭⎪⎫12,+∞上单调递增.所以h(m)min =h ⎝ ⎛⎭⎪⎫12=2+ln 2,因此|AB|的最小值为2+ln 2.答案:2+ln 2 三、解答题10.已知函数f(x)=xln x+ax ,x>1. (1)若f(x)在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f(x)的极小值.解:(1)f′(x)=ln x -1ln 2x+a , 由题意可得f′(x)≤0在(1,+∞)上恒成立,∴a≤1ln 2x -1ln x =⎝ ⎛⎭⎪⎫1ln x -122-14. ∵x∈(1,+∞), ∴ln x∈(0,+∞),∴当1ln x -12=0时,函数t =⎝ ⎛⎭⎪⎫1ln x -122-14的最小值为-14, ∴a≤-14,即实数a 的取值范围为⎝⎛⎦⎥⎤-∞,-14.(2)当a =2时,f(x)=xln x+2x(x>1), f′(x)=ln x -1+2ln 2xln 2x,令f′(x)=0得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍去),即x =e 12.当1<x<e 12时,f′(x)<0,当x>e 12时,f′(x)>0,∴f(x)的极小值为f(e 12)=e1212+2e 12=4e 12.11.(2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. 解:(1)f(x)的定义域为(0,+∞), f′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a .所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g(1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a-2.12.(2017·福州质检)已知函数f (x )=aln x +x 2-ax (a ∈R). (1)若x =3是f (x )的极值点,求f (x )的单调区间; (2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ). 解:(1)f (x )的定义域为(0,+∞),f ′(x )=a x +2x -a =2x 2-ax +ax,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a3=0,解得a =9, 所以f ′(x )=2x 2-9x +9x=x -x -x,所以当0<x <32或x >3时,f ′(x )>0;当32<x <3时,f ′(x )<0. 所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,32,(3,+∞),单调递减区间为⎝ ⎛⎭⎪⎫32,3. (2)g (x )=a ln x +x 2-ax -2x , 则g ′(x )=2x 2-ax +ax-2=x -ax -x.令g ′(x )=0,得x =a2或x =1.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎢⎡⎭⎪⎫1,a 2上为减函数,在⎝ ⎛⎦⎥⎤a2,e 上为增函数,h (a )=g ⎝ ⎛⎭⎪⎫a 2=a ln a 2-14a 2-a ;③当a2≥e,即a ≥2e 时,g (x )在[1,e]上为减函数, h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,-a +e 2-2e ,a ≥2e.保分专题(三) 三角函数的图象与性质[全国卷3年考情分析][师生共研·悟通]1.三角函数的定义若角α的终边过点P (x ,y ),则sin α=yr ,cos α=x r ,tan α=y x(其中r =x 2+y 2).2.利用诱导公式进行化简求值的步骤利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(注意“奇变偶不变,符号看象限”)3.基本关系sin 2x +cos 2x =1,tan x =sin xcos x. [典例] (1)若sin ⎝ ⎛⎭⎪⎫π2+α=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan(π-α)=( ) A.43 B .23 C .-23D .-43[解析] 选A 由sin ⎝ ⎛⎭⎪⎫π2+α=cos α=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,得sin α=1-cos 2α=45, 所以tan(π-α)=-tan α=-sin αcos α=-45-35=43.。
全国卷2018版高考英语二轮教师用书:第1部分 专题3 技法2 利用语义逻辑关系解题(含解析)
技法2| 利用语义逻辑关系解题[解题技法分述]文章的段与段、句与句之间通常具有一定的语义关系,如:并列关系、转折关系、递进关系、因果关系、目的关系、解释关系。
完形填空经常会考查学生对文章中的这些语义关系的把握。
因此,理清文章的语义关系是解题的关键。
[经典案例分析][例1](2017·浙江高考)...The books are in every language—new books,ancient books,40 a book on the history of Iraq that is seven hundred years old.She had asked the government for 41 to move the books to a 42 place,but they refused.So Alia took matters into her own hands.40.A.then B.still C.even D.rather41.A.permission B.confirmation C.explanation D.information 42.rge B.public C.distant D.safe解析:40空所在的句子在语义上表示递进,“有新书、古书,甚至还有700年前有关伊拉克历史的书籍”,故40空选C;42空后有but,应是转折关系,根据“但是他们拒绝了”,可知,她请求过政府的允许,故41空选A。
[例2](2016·全国卷Ⅰ)...They told her to stay 52 until the emergency personnel arrived,53 she thought the car was going to 54 .Larry told her that he had already put out the fire and she should not move 55 she injured her neck.52.A.quiet B.still C.away D.calm53.A.for B.so C.and D.but54.A.explode B.slip away C.fall apart D.crash55.A.as if B.unless C.in case D.after解析:53题前说他们让那位女士不要动,而53题后说那位女士担心汽车出状况,前后两部分之间是转折关系,应用but,故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 回归分析、独立性检验题型1 回归分析 (对应学生用书第23页)■核心知识储备………………………………………………………………………· 1.变量的相关性(1)正相关:在散点图中,点散布在从左下角到右上角的区域. (2)负相关:在散点图中,点散布在从左上角到右下角的区域.(3)相关系数r :当r >0时,两变量正相关;当r <0时,两变量负相关;当|r |≤1且|r |越接近于1,相关程度越高,当|r |≤1且|r |越接近于0,相关程度越低. 2.线性回归方程方程y ^=b ^x +a ^称为线性回归方程,其中b ^=∑i =1n x i y i -n x -y-∑i =1nx 2i -n x 2,a ^=y --b ^x -.(x -,y -)称为样本中心点.■典题试解寻法………………………………………………………………………·【典题】 (2015·全国Ⅰ卷)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图71表中w i =x i ,w ]=.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?【导学号:07804047】附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为,α^=v -β^u .[解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. [类题通法]求线性回归方程的步骤:■对点即时训练………………………………………………………………………·某品牌2017款汽车即将上市,为了对这款汽车进行合理定价,某公司在某市五家4S 店分别进行了两天试销售,得到如下数据:(1)分别以五家4S 店的平均单价与平均销量为散点,求出单价与销量的回归直线方程y =b x +a ^;(2)在大量投入市场后,销量与单价仍服从(1)中的关系,且该款汽车的成本为12万元/辆,为使该款汽车获得最大利润,则该款汽车的单价约为多少万元(保留一位小数)?附:b ^=∑ni=1x i -xy i -y∑ni =1x i -x2,a ^=y -b ^x .[解] (1)五家4S 店的平均单价和平均销量分别为(18.3,83),(18.5,80),(18.7,74),(18.4,80) ,(18.6,78),∴x =18.3+18.5+18.7+18.4+18.65=18.5,y =83+80+74+80+785=79,∴b ^=-0.2×4+0×1+-+-+-0.04+0+0.04+0.01+0.01=-20.1=-20. ∴a ^=y -b ^x =79-(-20)×18.5=79+370=449, ∴y ^=-20x +449.(2)设该款汽车的单价应为x 万元,设利润f (x )=(x -12)(-20x +449)=-20x 2+689x -5 388,f ′(x )=-40x +689,令-40x +689=0,解得x ≈17.2,故当x ≈17.2时,f (x )取得最大值.∴要使该款汽车获得最大利润,该款汽车的单价约为17.2万元. ■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 3、T 5、T 6、T 7、T 9、T 10、T 11、T 12、T 14)题型2 独立性检验 (对应学生用书第24页)■核心知识储备………………………………………………………………………·独立性检验的步骤(1)确定分类变量,获取样本频数,得到列联表. (2)求观测值:k =n ad -bc 2a +bc +d a +cb +d.(3)根据临界值表,作出正确判断.如果k ≥k α,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”.■典题试解寻法………………………………………………………………………·【典题】 (2017·郑州第一次质量预测)人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图72所示,将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.图72(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ). 附:K 2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .[思路分析] (1)频率分布直方图――→2×2列联表――→下结论; (2)频率计算――→概率模型二项分布――→求分布列计算E (X )、D (X ).[解] (1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人, 从而2×2列联表如下:K 2=n ad -bc 2a +bc +d a +cb +d=-245×55×75×25=10033≈3.030, 因为3.030<3.841,所以没有95%的把握认为“围棋迷”与性别有关.(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区学生中抽取一名“围棋迷”的概率为14.由题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=3×14=34,D (X )=3×14×34=916.[类题通法] 独立性检验的方法(1)在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0.|ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强. (2)解决独立性检验的应用问题,一定要按照独立性检验的步骤进行求解. ■对点即时训练………………………………………………………………………·某课题组对全班45名同学的饮食习惯进行了一次调查,并用如图73所示的茎叶图表示45名同学的饮食指数.说明:饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类.图73(1)根据茎叶图,完成下面2×2列联表,并判断是否有90%的把握认为“喜食蔬菜还是喜食肉类与性别有关”,说明理由;步调查,记抽到的喜食肉类的女同学的人数为ξ,求ξ的分布列和数学期望E (ξ).【导学号:07804048】附:K 2=n ad -bc 2a +bc +d a +cb +d.[计算得K 2=36×9×20×25=0.562 5<2.706,对照临界值得出,没有90%的把握认为“喜食蔬菜还是喜食肉类与性别有关”. (2)因为从喜食肉类的同学中抽取的人数为9×1545=3,所以ξ的可能取值有0,1,2,3.P (ξ=0)=C 36C 39=521,P (ξ=1)=C 26C 13C 39=1528,P (ξ=2)=C 16C 23C 39=314,P (ξ=3)=C 33C 39=184.所以ξ的分布列为所以ξ的数学期望E (ξ)=0×21+1×28+2×14+3×84=1.■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 4、T 8、T 13)三年真题| 验收复习效果 (对应学生用书第26页)1.(2015·全国Ⅱ卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )图74A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关D [对于A 选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A 正确.对于B 选项,由图知,由2006年到2007年矩形高度明显下降,因此B 正确.对于C 选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C 正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.]2.(2016·全国Ⅲ卷)如图75所示,是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.图75注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.【导学号:07804049】参考数据:y i =9.32,t i y i =40.17,=0.55,7≈2.646.参考公式:相关系数r =,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=,a ^=y --b ^t .[解] (1)由折线图中的数据和附注中的参考数据得t =4, (t i -t )2=28,=0.55,(t i -t )(y i -y )=t i y i -t y i =40.17-4×9.32=2.89,所以r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系. (2)由y =9.327≈1.331及(1)得b ^==2.8928≈0.103.a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.3.(2017·全国Ⅱ卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如76所示:图76(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)0.01).附:K 2=n ad -bc 2a +bc +d a +cb +d.[解] (1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”.由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得列联表K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为 (0.004+0.020+0.044)×5=0.34<0.5, 箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).。