2019学年高一数学下学期期末考试试题(扫描版)(1)
2019-2020学年内蒙古包头市高一下学期期末数学试卷 (解析版)

2019-2020学年内蒙古包头市高一第二学期期末数学试卷一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0 2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.44.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.25.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a226.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P与CQ所成角的大小为()A.B.C.D.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.411.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.3612.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是.15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是,最小的是.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.参考答案一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0解:设直线3x﹣4y+5=0点Q(x1,y1)关于点M(0,0)对称的直线上的点P(x,y),∵所求直线关于点M(0,0)的对称直线为3x﹣4y+5=0,∴由中点坐标公式得=0,=0;解得x1=﹣x,y1=﹣y代入直线3x﹣4y+5=0,得3(﹣x)﹣4(﹣y)+5=0,整理得:3x﹣4y﹣5=0,即所求直线方程为:3x﹣4y﹣5=0.故选:D.2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<解:A.c=0时不成立;B.成立.C.a<b<0,则a2>ab>b2.因此不成立.D.a<b<0,则>.因此不成立.故选:B.3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.4解:用斜二测画法画水平放置的平面图形直观图时,对于①,平行的线段在直观图中仍然是平行线段,所以①正确;对于②,相等的线段在直观图中不一定相等,如平行于x轴的线段,长度不变,平行于y轴的线段,变为原来的,所以②错误;对于③,相等的角在直观图中不一定相等,如直角坐标系内两个相邻的直角,在斜二测画法内是45°和135°,所以③错误;对于④,正方形在直观图中不是正方形,是平行四边形,所以④错误;综上知,正确的命题序号是①,共1个.故选:A.4.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.2解:∵点P(x,y)在直线x+y﹣2=0上,O是坐标原点,∴|OP|的最小值是点O到直线x+y﹣2=0的距离,∴则|OP|的最小值是d==.故选:B.5.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a22解:根据题意,依次分析选项:对于A,若q=﹣1,则有a1=a3,但a1=﹣a2,A错误;对于B,若a1<0,且q=﹣1,则有a2>0>a1,但a3<0<a2,B错误;对于C,若a1<0,且q<0时,a1+a3<0,a2>0,则有a1+a3<2a2,C错误;对于D,由基本不等式的性质可得:a12+a32≥2a1a3=2a22,D正确;故选:D.6.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.解:设三角形的三边长分别为a,b,c,根据正弦定理化简已知的等式得:a:b:c=7:3:5,设a=7k,b =3k,c=5k,可得a为最大边,A为三角形最大角,根据余弦定理得cos A===﹣,∵A∈(0,π),∴A=.则这个三角形的最大角为.故选:B.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.解:设正方体的棱长为a,由几何体的三视图得到截去的部分为三棱锥,作出几何体的直观图如图所示,∴截去几何体的体积V1=,剩余几何体的体积为V2=a3﹣V1==,∴截去几何体的体积与剩余几何体的体积比值为:==.故选:C.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P 与CQ所成角的大小为()A.B.C.D.解:取AA1中点E,AE中点F,连结BE,PF,FC1,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点P,Q分别为线段AB,DD1的中点,∴PF∥BF∥CQ,∴∠FPB1是异面直线B1P与CQ所成角(或所成角的补角),PF==,PB1==2,FC1==5,∴PF2+B1P2=FB12,∴异面直线B1P与CQ所成角为.故选:A.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)解:直线y=kx+2经过定点M(0,2),点A(﹣4,0),B(3,﹣1),直线MA的斜率为=,直线MB的斜率为=﹣1,∵直线y=kx+2与线段AB恒有公共点,故k≥,或k≤﹣1,故选:D.10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.4解:如图,令O(0,0),C(0,1),A(1,0),B(1,1),可得+++=|PO|+|PC|+|PA|+|PB|,又|PO|+|PC|+|PA|+|PB|≥|AC|+|OB|=2.则+++的最小值为2.故选:B.11.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.36解:若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,如图所示:所以CD=,所以S表面积=6×2×2=24.故选:C.12.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34解:∵a n=f(0)+f()+f()+…+f()+f(1),∴a n=f(1)+f()+f()+…+f()+f(0),又f(x)+f(1﹣x)=1,∴+…+=n+1,∴.∴数列{a n}的首项a1=1,公差为d=.则数列{a n}的前10项和为.故选:A.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为﹣3.解:由约束条件作出可行域如图,联立,解得A(﹣1,﹣1).化z=x+2y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最小,z有最小值为﹣1+2×(﹣1)=﹣3.故答案为:﹣3.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是(﹣∞,﹣1)∪().解:由于关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,故它的判别式△=(1﹣m)2﹣4m•m<0,且m≠0,求得m>或m<﹣1,故m的范围为(﹣∞,﹣1)∪().故答案为:(﹣∞,﹣1)∪().15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.解:设每人分得的数量构成等差数列{a n},d>0,则a5+a4+a3=7(a1+a2),S5=100,所以,解可得,a1=,d=,∴a5==.故答案为:16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是α,最小的是β.解:如图,取BC中点D,作SO⊥平面ABC于点O,由题意知O在AD上,且AO=2OD,作PE∥AC,PE∩SC=E,作PF⊥AD于F,则PF⊥平面ABC,取AC中点M,连结BM,SM,设SM交PE于点H,连结BH,由题意知BH⊥PE,作PG⊥AC于点G,连结FG,由面面垂直的性质定理可得FG⊥AC,作FN⊥BM于点N,由作图知平面PGF∥平面SMB,PH∥FN,∴PH=FN,∴直线PB与直线AC所成角α=∠BPE,直线PB与平面ABC所成角β=∠PBF,二面角P﹣AC﹣B的平面角γ=∠PGF,cosα==cosβ,∵α,β∈[0,],∴α>β,∵tanγ=>=tanβ,且γ∈[0,],∴γ>β,设AB=2,则PH=,PB=BH=SN=BM==,PG==,GF===,BH==,cosα==<cosγ===,∴α>γ.∴a,β,γ中最大的是α,最小的是β.故答案为:α;β.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.【解答】证明:(1)因为x>y>0,∴,∴,∴,又z>0,∴<.(2)∵x>y>0,z>0,∴,∴,当且仅当x=y=z时,等号成立,∵x>y,∴上式中等号不能同时取得,∴(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.解:(1)已知sinα=,α∈(,π),所以,由于cosβ=﹣,β是第三象限角.所以.故:cos(α+β)=.(2)由于,,故=19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.解:(1)由正弦定理知,=,因为B=2A,所以=,所以cos A=,因为A∈(0,π),所以sin A==.(2)由余弦定理知,a2=b2+c2﹣2bc cos A,所以,整理得,2c2﹣5c+2=0,解得c=2或.当c=2=a时,有A=C,因为B=2A,所以A=C=,所以sin A=,与(1)中结论相矛盾,不符合题意,故c=.所以△ABC的面积==.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.解:∵A(﹣3,0),B(1,0),C(0,3),设D(x,y),若AB∥DC,则,解得,或(此时,ABCD为平行四边形,故舍去).若AD∥BC,则,求得,或(此时,ABCD为平行四边形,故舍去).当AC∥BD时,根据四边形ABCD字母顺序可得,它根本不会是梯形,不满足条件.综上,点D的坐标为(﹣2,3)、(﹣,).21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.解:(1)由题意,设等差数列{a n}的公差为d,则,整理,得,解得,∴a n=1+2(n﹣1)=2n﹣1,n∈N*.(2)由题意,令b n=,则b n==,则T n=b1+b2+b3+…+b n=1+++…+,T n=++…++,两式相减,可得T n=1+++…+﹣=1+(1++…+)﹣=1+﹣=3﹣,∴T n=6﹣.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.解:(1)证明:由长方体的性质可知,BC⊥平面ABB1A1,∵B1E⊂平面ABB1A1,∴BC⊥B1E,∵B1E⊥EC,BC∩EC=C,BC、EC⊂平面EBC,∴B1E⊥平面EBC.(2)(i)由(1)知,∠BEB1=90°,由题设可知,Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=2,AA1=2AE=4,∵在长方体ABCD﹣A1B1C1D1中,AA1∥平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴点E到平面BB1C1C的距离d=AB=2,∴四棱锥E﹣BB1C1C的体积V=•d•==.(ii)取棱BB1的中点F,连接EF、C1F,则EF∥AB,EF=AB=2,∵AB⊥平面BB1C1C,∴EF⊥平面BB1C1C,则∠EC1F为直线EC1与平面BB1C1C所成的角.在Rt△FB1C1中,FC1===,∴tan∠EC1F===,∴sin∠EC1F=.故直线EC1与平面BB1C1C所成角的正弦值为.。
2019-2020学年江苏省南通市通州区高一下学期期末数学试卷 (解析版)

2019-2020学年江苏省南通市通州区高一第二学期期末数学试卷一、选择题(共8小题).1.已知,是单位向量,且⊥,则•(﹣)=()A.﹣1B.0C.1D.2.在△ABC中,若sin A:sin B:sin C=3:5:7,则C=()A.30°B.60°C.120°D.150°3.使式子有意义的x的取值范围是()A.(﹣2,3)B.(2,3)C.[﹣2,3]D.(2,3]4.已知角α的终边为,则=()A.B.C.﹣D.﹣5.设集合,则A∩B中的元素个数为()A.0B.1C.2D.36.我国古代典籍《周易》中用“卦”描述万物的变化,每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,如图就是一个重卦,已知某重卦从上到下排列的前3个爻均为阴爻,若后3个爻随机产生,则该重卦恰含2个阳爻的概率为()A.B.C.D.7.已知球O的表面积为16π,球心O到球内一点P的距离为1,则过点P的截面的面积的最小值为()A.3πB.4πC.6πD.8π8.设直线l过点P(1,2),在两坐标轴上的截距的绝对值相等,则满足题设的直线l的条数为()A.1B.2C.3D.4二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.某篮球运动员8场比赛中罚球次数的统计数据分别为:2,6,8,3,3,4,6,8,关于该组数据,下列说法正确的是()A.中位数为3B.众数为3,6,8C.平均数为5D.方差为4.810.设a,b均为正数,且a+2b=1,则下列结论正确的是()A.ab有最大值B.有最大值C.a2+b2有最小值D.a2﹣b2有最小值11.在棱长为1的正方体ABCD﹣A1B1C1D1中,下列结论正确的是()A.异面直线BD1与B1C所成的角大小为90°B.四面体D1DBC的每个面都是直角三角形C.二面角D1﹣BC﹣B1的大小为30°D.正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为12.某同学在研究函数f(x)=+|x﹣1|的性质时,联想到两点间的距离公式,从而将函数变形为f(x)=,则下列结论正确的是()A.函数f(x)在区间(﹣∞,0)上单调递减,(1,+∞)上单调递增B.函数f(x)的最小值为,没有最大值C.存在实数t,使得函数f(x)的图象关于直线x=t对称D.方程f(x)=2的实根个数为2三、填空题:本大题共4小题,每小题5分,共20分.13.在空间中,已知直线l,两个不同的平面α,β,下列三个条件中,一定能推出“α∥β”的条件序号是.①l∥α,l∥β;②l⊥α,l⊥β;③l⊥α,l∥β14.圆C1:x2+(y﹣1)2=4与圆C2:(x﹣3)2+y2=1的公切线共有条.15.函数的图象上一点到坐标原点的距离的平方的最小值为.16.某地积极创建全国文明城市,考虑环保和美观,为城区街道统一换置了新型垃圾桶(如图),已知该垃圾桶由上、下两部分组成(上部为多面体,下部为长方体,高度比为1:2),垃圾桶最上面是正方形,与之相邻的四个面都是全等三角形,垃圾投入口是边长为a的正六边形,该垃圾桶下部长方体的容积为,该垃圾桶的顶部面积(最上面正方形及与之相邻的四个三角形的面积之和)为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①sin A=ab这三个条件中选择两个,补充在下面问题中,使得△ABC存在且唯一,并解答补充完整后的问题.问题:在△ABC中,已知内角A,B,C的对边分别为a,b,c,且cos B=,____,____,求△ABC的面积.18.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如图:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在60~90分钟的选修物理的学生中任选2人,求至少有1人阅读时间在75~90之间的概率.19.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:气温x(℃)272930323335数量y121520272836(1)画出散点图,并求出y关于x的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据(x1,y1),(x2,y2),…,(x n,y n)的回归直线y=a+bx的斜率和截距的最小二乘估计为=,a=﹣.20.如图,已知四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=BC=1,AD=2,PA=PD,点M为AD中点,平面PAD⊥平面ABCD,直线PB与平面ABCD所成角的正切值为.(1)求证:BM∥平面PCD;(2)求四棱锥P﹣ABCD的体积;(3)用一个平面去截四棱锥P﹣ABCD,请作出一个平行四边形截面(无须证明),并写出你能作出的平行四边形截面的个数.21.在平面直角坐标系xOy中,已知圆C的圆心在直线上,且圆心的横坐标为整数,圆C被x轴截得的弦长为8,点M(7,7)在圆C上.(1)求圆C的方程;(2)已知直线l的斜率为,在y轴上的截距t(t为常数),与圆C相交于点A,B.问:直线OA,OB是否关于x轴对称?若对称,请证明;若不对称,请说明理由.22.已知函数f(x)=,其中a>0.(1)若f(f(0))=1,求a的值;(2)若函数f(x)的图象在x轴的上方,求a的取值范围.参考答案一、选择题(共8小题).1.已知,是单位向量,且⊥,则•(﹣)=()A.﹣1B.0C.1D.【分析】由已知结合向量的数量积的性质即可求解.解:∵,是单位向量,且⊥,∴=0,•(﹣)==﹣1.故选:A.2.在△ABC中,若sin A:sin B:sin C=3:5:7,则C=()A.30°B.60°C.120°D.150°【分析】利用正弦定理把已知比例中的角的正弦化成边,分别设出三边的长,利用余弦定理求得答案.解:由正弦定理知=2R,∴sin A=,sin B=,sin C=,∵sin A:sin B:sin C=3:5:7,∴a:b:c=3:5:7,设a=3t,b=5t,c=7t,∴cos C===﹣,∵0°<C<180°,∴C=120°.故选:C.3.使式子有意义的x的取值范围是()A.(﹣2,3)B.(2,3)C.[﹣2,3]D.(2,3]【分析】由题意可得,,解不等式即可求解.解:由题意可得,,解可得2<x<3.故选:B.4.已知角α的终边为,则=()A.B.C.﹣D.﹣【分析】由题意利用任意角的三角函数的定义,同角三角函数的基本关系,二倍角的正弦公式,求得sin2α的值.解:∵角α的终边落在射线y=x(x≥0)上,∴tanα=,可得cosα=,又∵sin2α+cos2α=sin2α+()2=1,解得sinα=,则=﹣sinα=﹣.故选:D.5.设集合,则A∩B中的元素个数为()A.0B.1C.2D.3【分析】列方程组,求出A∩B,由此能求出A∩B中的元素的个数.解:∵集合,∴A∩B={(x,y)|}={(﹣1,0),(0,1),(1,0)}.∴A∩B中的元素个数为3.故选:D.6.我国古代典籍《周易》中用“卦”描述万物的变化,每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,如图就是一个重卦,已知某重卦从上到下排列的前3个爻均为阴爻,若后3个爻随机产生,则该重卦恰含2个阳爻的概率为()A.B.C.D.【分析】基本事件总数n=23=8,该重卦恰含2个阳爻包含的基本事件个数m=,由此能求出该重卦恰含2个阳爻的概率.解:每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,某重卦从上到下排列的前3个爻均为阴爻,后3个爻随机产生,基本事件总数n=23=8,该重卦恰含2个阳爻包含的基本事件个数m=,则该重卦恰含2个阳爻的概率为P=.故选:B.7.已知球O的表面积为16π,球心O到球内一点P的距离为1,则过点P的截面的面积的最小值为()A.3πB.4πC.6πD.8π【分析】由题意可得当OP垂直于截面时,截面的半径最小,即截面的面积最小,先球的表面积求出球的帮忙,再由r2=R2﹣OP2求出截面的半径r2,进而求出截面的最小面积.解:设球的半径为R,截面面积最小的半径为r,由题意可得r2≥R2﹣OP2所以当OP垂直于截面时,截面的半径最小,即截面的面积最小,由题意可得4πR2=16,所以R2=4,由r2=R2﹣OP2=4﹣1=3,所以截面的面积的最小值为S=πr2=3π,故选:A.8.设直线l过点P(1,2),在两坐标轴上的截距的绝对值相等,则满足题设的直线l的条数为()A.1B.2C.3D.4【分析】分两种情况考虑:当直线在坐标轴上的截距为0,则可设y=kx,当直线在坐标轴上的截距不为0,则可设,由题意可得|a|=|b|且,可求.解:当直线在坐标轴上的截距为0,则可设y=kx,因为直线过P(2,1),则1=2k即k=,此时直线方程为y=,当直线在坐标轴上的截距不为0,则可设,由题意可得|a|=|b|且,解可得,a=b=3或b=1,a=﹣1,综上可得,满足条件的直线有3条.故选:C.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.某篮球运动员8场比赛中罚球次数的统计数据分别为:2,6,8,3,3,4,6,8,关于该组数据,下列说法正确的是()A.中位数为3B.众数为3,6,8C.平均数为5D.方差为4.8【分析】先将原数据按照从小到大的顺序进行排列,再根据中位数、众数、平均数和方差的计算方法逐一求解即可.解:将原数据按从小到大的顺序进行排列:2,3,3,4,6,6,8,8,所以中位数为,众数为3,6,8,平均数为=5,方差为×[(2﹣5)2+(3﹣5)2×2+(4﹣5)2+(6﹣5)2×2+(8﹣5)2×2]=4.75.故选:BC.10.设a,b均为正数,且a+2b=1,则下列结论正确的是()A.ab有最大值B.有最大值C.a2+b2有最小值D.a2﹣b2有最小值【分析】由已知结合基本不等式及二次函数的性质分别检验各选项即可判断.解:因为a>0,b>0,a+2b=1,由基本不等式可得1=a+2b,解可得,ab,当且仅当a=2b=即a=,b=时取等号,故A正确;∵()2=×2=1+2≤2,∴,即最大值,故B正确;∵,∴,结合二次函数的性质可知,a2+b2=(1﹣2b)2+b2=5b2﹣4b+1,故C正确;因为,结合二次函数的性质可得,a2﹣b2=(1﹣2b)2﹣b2=3b2﹣4b+1>,故D错误.故选:ABC.11.在棱长为1的正方体ABCD﹣A1B1C1D1中,下列结论正确的是()A.异面直线BD1与B1C所成的角大小为90°B.四面体D1DBC的每个面都是直角三角形C.二面角D1﹣BC﹣B1的大小为30°D.正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为【分析】证明线面垂直,得到线线垂直判定A;由正方体的结构特征及直线与平面垂直的性质判断B;求出二面角D1﹣BC﹣B1的大小判断C;分别求出正方体ABCD﹣A1B1C1D1的内切球与外接球的半径,作差判断D.解:如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,D1C1⊥平面BB1C1C,则D1C1⊥B1C,又B1C⊥BC1,D1C1∩BC1=C1,∴B1C⊥平面BC1D1,则B1C⊥BD1,即异面直线BD1与B1C所成的角大小为90°,故A正确;∵DD1⊥底面ABCD,∴DD1⊥DB,DD1⊥DC,再由BC⊥平面DD1C1C,可得BC⊥DC,BC⊥D1C,得四面体D1DBC的每个面都是直角三角形,故B正确;由BC⊥平面DD1C1C,可得BC⊥D1C,BC⊥CC1,即∠D1CC1为二面角D1﹣BC﹣B1的平面角,大小为45°,故C错误;正方体ABCD﹣A1B1C1D1的内切球的半径为,外接球的半径为,则正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为,故D正确.故选:ABD.12.某同学在研究函数f(x)=+|x﹣1|的性质时,联想到两点间的距离公式,从而将函数变形为f(x)=,则下列结论正确的是()A.函数f(x)在区间(﹣∞,0)上单调递减,(1,+∞)上单调递增B.函数f(x)的最小值为,没有最大值C.存在实数t,使得函数f(x)的图象关于直线x=t对称D.方程f(x)=2的实根个数为2【分析】由题意画出图形,利用动点到两定点距离和的变化判断A;求出最小值,分析无最大值判断B;由对称性的定义判断C;由单调性与函数值的关系判断D.解:f(x))=可理解为动点P(x,0)到两个定定点A(0,1),B(1,0)的距离和.如图:当x<0时,随着x的增大,P越靠近原点O,PA越小,PB越小,则PA+PB越小,即f(x)越小,函数f(x)在区间(﹣∞,0)上单调递减,当x>1时,随着x的增大,P越远离点B,PA越大,PB越大,则PA+PB越大,即f (x)越大,函数f(x)在区间(1,+∞)上单调递增,故A正确;当P与B重合时,PA+PB最小为,P越向左远离O或向右远离B,PA+PB越大,无最大值,即函数f(x)的最小值为,没有最大值,故B正确;当P与B重合时,PA+PB最小为,若函数f(x)有对称轴,则对称轴方程为x=1,而f(0)=2,f(2)=,f(0)≠f(2),则x=1不是对称轴,∴存在实数t,使得函数f(x)的图象关于直线x =t对称错误,故C错误;∵当P与O重合时,f(x)=2,当x<0时,f(x)>2,当0<x<1时,f(x)∈(,2),当x>1时,f(x)>.由f(x)在(1,+∞)上单调递增,∴有一个x0>,使得f(x)=2,则方程f(x)=2的实根个数为2,故D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.在空间中,已知直线l,两个不同的平面α,β,下列三个条件中,一定能推出“α∥β”的条件序号是②.①l∥α,l∥β;②l⊥α,l⊥β;③l⊥α,l∥β【分析】对于①,α与β相交或平行;对于②,由面面平行的判定定理得α∥β;对于③,α与β相交或平行.解:由直线l,两个不同的平面α,β,知:对于①,l∥α,l∥β,则α与β相交或平行,故①错误;对于②,l⊥α,l⊥β,由面面平行的判定定理得α∥β,故②正确;对于③,l⊥α,l∥β,则α与β相交或平行,故③错误.故答案为:②.14.圆C1:x2+(y﹣1)2=4与圆C2:(x﹣3)2+y2=1的公切线共有4条.【分析】根据题意,分析两个圆的圆心以及半径,由圆与圆的位置关系分析可得两圆相离,据此分析可得答案.解:圆C1:x2+(y﹣1)2=4,圆心C1(0,1),半径为2,圆C2:(x﹣3)2+y2=4,圆心C2(3,0),半径为1,两圆的圆心距为>2+1=3,正好大于两圆的半径之和,故两圆相离,故两圆的公切线有4条,故答案为:4.15.函数的图象上一点到坐标原点的距离的平方的最小值为2.【分析】由题意利用点到直线的距离公式、基本不等式,求得结果.解:设函数的图象上一点A(a,a﹣),则A到坐标原点的距离的平方的为a2+=2a2+﹣2≥2﹣2=2﹣2,当且仅当a2=时,取等号,故答案为:2﹣2.16.某地积极创建全国文明城市,考虑环保和美观,为城区街道统一换置了新型垃圾桶(如图),已知该垃圾桶由上、下两部分组成(上部为多面体,下部为长方体,高度比为1:2),垃圾桶最上面是正方形,与之相邻的四个面都是全等三角形,垃圾投入口是边长为a的正六边形,该垃圾桶下部长方体的容积为12a3,该垃圾桶的顶部面积(最上面正方形及与之相邻的四个三角形的面积之和)为a2.【分析】由正六边形的边长求出下部长方体的底面边长及高,再求出上面正方形的对角线长,得到正方形的边长,然后利用长方体体积公式及正方形与三角形的面积公式求解.解:如图,由正六边形边长为a,可得AD=,则AC=,OB=a.由题意,下部长方体的底面为边长是a的正方形,高为4a,∴下部长方体的体积为;最上面正方形的对角线长为,则正方形边长为.∴每一个小三角形是等腰三角形,底边长为,腰长为a,则一个小三角形的面积为=.∴垃圾桶的顶部面积为=.故答案为:12a3;.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①sin A=ab这三个条件中选择两个,补充在下面问题中,使得△ABC存在且唯一,并解答补充完整后的问题.问题:在△ABC中,已知内角A,B,C的对边分别为a,b,c,且cos B=,____,____,求△ABC的面积.【分析】选①②,由已知结合正弦定理可得a,b关系,然后结合余弦定理即可求解;选①③结合已知及正弦定理进行化简即可判断;选②③,由余弦定理可得cos C=﹣,结合范围0<C<π,可求C的值,利用同角三角函数基本关系式可求sin B的值,在△ABC中,由正弦定理可得b的值,可得a2+a ﹣4=0,解方程可求a的值,进而根据三角形的面积公式即可求解.解:选①②由sin A=sin B,结合正弦定理可得a=,因为c=,cos B===,解可得,b=1或b=5,此时三角形的解不唯一,选①③由sin A=sin B,结合正弦定理可得a=,因为a2+b2+c2=﹣ab,联立此时a,b不存在,选②③,在△ABC中,由余弦定理可得cos C=,因为a2+b2+c2=﹣ab,①所以cos C=﹣,又0<C<π,可得C=,因为sin2B+cos2B=1,cos B=,由于0<B<π,所以sin B=,在△ABC中,由正弦定理,可得b===1,又c=,代入①中,可得a2+a﹣4=0,解得a=(负值舍去),于是△ABC存在且唯一,所以S△ABC=ab sin C==.18.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如图:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在60~90分钟的选修物理的学生中任选2人,求至少有1人阅读时间在75~90之间的概率.【分析】(1)利用分层抽样能估计该校高二年级选修物理和选修历史的人数.(2)样本中,阅读时间在60分钟以上的人数为22人,样本总数为50,由此能求出样本中阅读时间在60分钟以上的频率.(3)样本中阅读时间在60~90分钟的选修物理的学生分两类:一类是阅读时间在60~75分钟的共有3人,记为a1,a2,a3,另一类是阅读时间在75~90分钟的共有2人,记为b1,b2,从这5人中任选2人,利用列举法能求出至少有1人阅读时间在75~90之间的概率.解:(1)∵以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样,∴该校高二年级选修物理的人数约为:(6+9+9+3+2+1)×10=300(人),∴该校高二年级选修历史的人数约为:500﹣300=200(人).(2)样本中,阅读时间在60分钟以上的人数为:(3+2+1)+(9+6+1)=22(人),∵样本总数为:10%×500=50,∴样本中阅读时间在60分钟以上的频率为:.(3)样本中阅读时间在60~90分钟的选修物理的学生分两类:一类是阅读时间在60~75分钟的共有3人,记为a1,a2,a3,另一类是阅读时间在75~90分钟的共有2人,记为b1,b2,从这5人中任选2人,共有10种等可能基本事件,分别为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),记事件A为:“至少有1人阅读时间在75~90之间”,则事件为:“2人阅读都在60~75之间”,且包含3个基本事件:(a1,a2),(a1,a3),(a2,a3),∴至少有1人阅读时间在75~90之间的概率为:P=1﹣P()=1﹣.19.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:气温x(℃)272930323335数量y121520272836(1)画出散点图,并求出y关于x的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据(x1,y1),(x2,y2),…,(x n,y n)的回归直线y=a+bx的斜率和截距的最小二乘估计为=,a=﹣.【分析】(1)根据题意画出散点图,计算、,求出回归系数、,写出回归方程;(2)计算x=36.6时的值,即可预测这天小卖部卖出的冷饮数量.解:(1)根据题意画出散点图,如图所示;根据销量与气温对照表知,=×(27+29+30+32+33+35)=31,=×(12+15+20+27+28+36)=23;所以====,=﹣=23﹣×31=﹣;所以y关于x的线性回归方程是=x﹣,(2)计算x=36.6时,=×36.6﹣=40.2≈40,所以当气温为36.6℃时,可预测这天小卖部卖出的冷饮数量为40.20.如图,已知四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=BC=1,AD=2,PA=PD,点M为AD中点,平面PAD⊥平面ABCD,直线PB与平面ABCD所成角的正切值为.(1)求证:BM∥平面PCD;(2)求四棱锥P﹣ABCD的体积;(3)用一个平面去截四棱锥P﹣ABCD,请作出一个平行四边形截面(无须证明),并写出你能作出的平行四边形截面的个数.【分析】(1)推导出BC∥MD,BC=MD,四边形BCDM是平行四边形,从而BM∥CD,由此能证明BM∥平面PCD.(2)连结PM,推导出PM⊥AD,PM⊥平面ABCD,四棱锥P﹣ABCD的体积为V P﹣ABCD =.(3)取PD、PA的中点E,F,连结CE,EF,FB,则截面BCEF是平行四边形截面,作出的平行四边形截面的个数是无数个.解:(1)证明:∵AD∥BC,BC=1,AD=2,点M为AD的中点,∴BC∥MD,BC=MD,∴四边形BCDM是平行四边形,∴BM∥CD,∵BM⊄平面PCD,CD⊂平面PCD,∴BM∥平面PCD.(2)解:连结PM,∵PA=PD,M为AD的中点,∴PM⊥AD,又平面PAD⊥平面ABC,平面PAD∩平面ABCD=AD,PM⊂平面PAD,∴PM⊥平面ABCD,∴直线PB与平面ABCD所成角为∠PBM,且tan∠PBM==,∵∠BAD=90°,AB=AM=1,∴BM=,PM=1,∴四棱锥P﹣ABCD的体积为:V P﹣ABCD==.(3)解:取PD、PA的中点E,F,连结CE,EF,FB,则截面BCEF是平行四边形截面,作出的平行四边形截面的个数是无数个.21.在平面直角坐标系xOy中,已知圆C的圆心在直线上,且圆心的横坐标为整数,圆C被x轴截得的弦长为8,点M(7,7)在圆C上.(1)求圆C的方程;(2)已知直线l的斜率为,在y轴上的截距t(t为常数),与圆C相交于点A,B.问:直线OA,OB是否关于x轴对称?若对称,请证明;若不对称,请说明理由.【分析】(1)设圆C的标准方程,可得圆心坐标,由题意可得a,b的关系,再求出在x轴的弦长,由题意可得a,b,r的关系,再由点M在圆上,可得a,b,r的关系,由a为整数可得a,b,r的值,进而求出圆C的方程;(2)由题意可得直线l的方程,将直线l与圆联立求出两根之和及两根之积,进而求出直线OA,OB的斜率之和,代入整理可得斜率之和为0,可得直线OA,OB关于x轴对称.解:(1)设圆C的的方程为:(x﹣a)2+(y﹣b)2=r2(r>0),则圆心(a,b)在直线y=x,且圆心的横坐标为整数,所以b=a,①在方程(x﹣a)2+(y﹣b)2=r2中,令y=0,则x=a±,则圆C被x轴截得的弦长为2=4,即r2﹣b2=16 ②又M在圆C上,所以(7﹣a)2+(7﹣b)2=r2,③由①②③可得2a2﹣49a+164=0,所以a=4或a=(舍),所以b=3,r2=25,所以圆C的方程为(x﹣4)2+(y﹣3)2=25;(2)因为直线l的斜率为,在y轴上的截距t(t为常数),所以直线l的方程为:y=x+t,设A,B的坐标分别为(x1,y1),(x2,y2),联立直线l与圆的方程,整理可得:x2+(﹣16)x+t2﹣6t=0,则x1+x2=﹣,x1x2=,从而k OA+k OB=+====+=+t•=0,所以∠AOx=∠BOx,即直线OA,OB关于x轴对称.22.已知函数f(x)=,其中a>0.(1)若f(f(0))=1,求a的值;(2)若函数f(x)的图象在x轴的上方,求a的取值范围.【分析】(1)由已知分段函数求得f(0)=1,再对a分类利用f(f(0))=1求a的值;(2)函数f(x)的图象在x轴的上方,即对任意x∈R,f(x)>0成立,分x<与x≥求解函数的最小值,由最小值大于0求解a的范围.解:(1)∵a>0,∴>0,从而f(0)=1.当>1,即0<a<2时,f(f(0))=f(1)=1﹣a+1=1,解得a=1符合;当≤1,即a≥2时,f(f(0))=f(1)=1+a﹣3=1,解得a=3符合.∴a的值为1或3;(2)∵函数f(x)的图象在x轴的上方,∴对任意x∈R,f(x)>0成立.①当x<时,x2﹣ax+1>0恒成立,其中a>0.若<,即0<a<2,则>0,解得0<a<2;若≥,即a≥2,则,解得0<a≤2,∴a=2.∴0<a≤2;②当x≥时,x2+ax﹣3>0恒成立,其中a>0.则>0,解得0<a<2.综上,0<a<2,∴a的取值范围为(0,2).。
2019级高一下学期数学期末考试试卷答案

a1q 2
1 2
,
3 2
,解得 q
1 2
, a1
2.
综上所述:
a1
1 2
或
a1
2
.
16.【答案】5.设 m (2x y)2 , n (x 2 y)2 , 则 4 9 1 ,且 m n 5x2 5 y2 , mn
∴
x2
y2
m
n
m
n
(
4
9)
13 (4n m
9m ) n
3.【答案】D.利用赋值法:令 a 1, b 0 排除 A,B,C,选 D.
合 肥六中卫星 联 校 专用A
4.【答案】C .
m 1
n 3
,
m n
1. 3
5.【答案】B.根据几何概型概率计算公式,即可求出结果.
6.【答案】B.根据茎叶图中数据的分布可得, A 班学生的分数多集中在 70,80 之间, B 班
2
BC
1
BA
AB , AB
,所以选项
CE 0 ,所以选项
B 错误;
A
错误;
33
以 E 为原点,EA,EC 分别为 x 轴,y 轴正方向建立平面直角坐标系,
如图所示, E(0, 0), A(1, 0), B(1, 0),C(0, 3), D(1 , 2 3 ) ,
33
设 O(0, y), y (0,
综上所述,当 a 3时,不等式解集为 R ; 当 a 3时,不等式的解集为 (,3] [a, ) ; 当 a 3 时,不等式的解集为 (, a] [3, ) .…………………………………………12 分
3),
BO
(1,
y),
DO
2019-2020学年云南省云天化中学高中联盟学校高一下学期期末数学试卷 (解析版)

2019-2020学年云南省云天化中学高中联盟学校高一第二学期期末数学试卷一、选择题(共12小题).1.已知集合A={x|y=ln(x+1)},B={x|x2﹣4≤0},则A∩B=()A.{x|x≥﹣2}B.{x|﹣1<x≤2}C.{x|﹣1<x<2}D.{x|x≥2}2.已知直线l过圆x2+y2﹣2x=0的圆心,且与直线2x﹣y﹣1=0平行,则l的方程是()A.2x+y﹣2=0B.2x﹣y+2=0C.2x﹣y﹣3=0D.2x﹣y﹣2=0 3.已知=(4,2),=(3,9),则在方向上的投影为()A.﹣B.﹣C.﹣D.﹣4.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin A﹣a cos B=2b﹣c,则A=()A.B.C.D.5.函数y=sin2ωx(ω>0)的图象向左平移个单位长度,所得图象关于y轴对称,则ω的一个可能取值是()A.2B.C.D.6.等差数列{a n}中,a3+a9=12,则数列{a n}前11项和S11=()A.12B.60C.66D.727.已知a=()2,b=2,c=log2,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.a<c<b D.b<c<a8.已知圆x2+y2﹣2x+2y+a=0截直线x+y﹣2=0所得弦的长度为4,则实数a的值是()A.﹣8B.﹣6C.﹣5D.﹣49.已知△ABC中,AB=AC=3,且||=||,点D,E是BC边的两个三等分点,则=()A.3B.4C.5D.610.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣11.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.直线ax+by+c=0与圆O:x2+y2=4相交于M,N两点,若c2=a2+b2,P为圆O上任意一点,则的取值范围为()A.[﹣2,6]B.[﹣2,4]C.[1,4]D.[﹣1,4]二、填空题(共4小题.)13.设x,y满足约束条件,则z=3x﹣2y的最小值为.14.等比数列{a n}的各项均为正数,且a2a4=,则log2a1+log2a2+log2a3+log2a4+log2a5=.15.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=,∠ABC的平分线交AC于点D,且BD=2,则a+3c的最小值为.16.已知﹣,sin x+cos x=,则2sin x cos x﹣cos2x的值为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.圆C:x2+y2﹣2x﹣11=0内有一点P(2,2),过点P作直线l交圆C于A,B两点.(Ⅰ)当直线l的倾斜角为45°时,求弦AB的长;(Ⅱ)当弦AB被点P平分时,写出直线l的方程;18.已知函数f(x)=,数列{a n}满足:a1=1,a n+1=f().(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a,求数列{b n}的前n项和S n;(Ⅲ)若c n=,求数列{c n}的前n项和T n.19.在△ABC中,角A,B,C所对的边分别为a,b,c,它的面积为S且满足,.(1)求角B的大小;(2)当a+c=9时,求a,c的值.20.已知数列{a n}满足:a1=1,且﹣1,a n,a n+1成等差数列;(1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;(2)求数列{a n+n+1}的前n项和S n.21.已知向量=(m,cos2x),=(sin2x,n),设函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.22.已知圆C:x2+y2﹣2y﹣4=0,直线l:mx﹣y+1﹣m=0.(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同的交点;(Ⅱ)设l与圆C交于不同的两点A,B,求弦AB的中点M的轨迹方程;(Ⅲ)若定点P(1,1)分弦AB为=,求此时直线l的方程.参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=ln(x+1)},B={x|x2﹣4≤0},则A∩B=()A.{x|x≥﹣2}B.{x|﹣1<x≤2}C.{x|﹣1<x<2}D.{x|x≥2}【分析】可以求出集合A,B,然后进行交集的运算即可.解:∵A={x|x+1>0}={x|x>﹣1},B={x|﹣2≤x≤2},∴A∩B={x|﹣1<x≤2}.故选:B.2.已知直线l过圆x2+y2﹣2x=0的圆心,且与直线2x﹣y﹣1=0平行,则l的方程是()A.2x+y﹣2=0B.2x﹣y+2=0C.2x﹣y﹣3=0D.2x﹣y﹣2=0【分析】由圆的方程可得圆心坐标,再由两直线平行则斜率相等求得直线l的斜率,然后利用直线方程的点斜式得答案.解:圆x2+y2﹣2x=0的圆心为(1,0),由题意可知,所求直线l的斜率为2,则直线l的方程为y﹣0=2(x﹣1),即2x﹣y﹣2=0.故选:D.3.已知=(4,2),=(3,9),则在方向上的投影为()A.﹣B.﹣C.﹣D.﹣【分析】由题意可求=(1,﹣7),可求在方向上的投影为,代入数据即可计算得解.解:∵=(4,2),=(3,9),∴=(1,﹣7),∴在方向上的投影为===﹣.故选:A.4.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin A﹣a cos B=2b﹣c,则A=()A.B.C.D.【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin B≠0,可得2sin (A+)=2,根据题意可求范围A∈(0,π),根据正弦函数的图象和性质即可求解A的值.解:∵b sin A﹣a cos B=2b﹣c,∴由正弦定理可得:sin B sin A﹣sin A cos B=2sin B﹣sin C,∴sin B sin A﹣sin A cos B=2sin B﹣sin C=2sin B﹣(sin A cos B+cos A sin B),∴sin B sin A=2sin B﹣cos A sin B,又∵sin B≠0,∴sin A+cos A=2,∴2sin(A+)=2,可得A+=+2kπ,k∈Z,又A∈(0,π),∴A=.故选:C.5.函数y=sin2ωx(ω>0)的图象向左平移个单位长度,所得图象关于y轴对称,则ω的一个可能取值是()A.2B.C.D.【分析】由题意根据函数y=A sin(ωx+φ)的图象变换规律,三角函数的图象的对称性,得出结论.解:把函数y=sin2ωx(ω>0)的图象向左平移个单位长度,可得y=sin(2ωx+)的图象,根据所得图象关于y轴对称,可得=kπ+,k∈Z,则ω的一个可能取值为,6.等差数列{a n}中,a3+a9=12,则数列{a n}前11项和S11=()A.12B.60C.66D.72【分析】由等差数列的求和公式和性质可得S11==,代入已知条件化简即可.解:由等差数列的求和公式可得S11====66故选:C.7.已知a=()2,b=2,c=log2,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.a<c<b D.b<c<a【分析】利用指数函数、对数函数的单调性直接求解.解:∵0<a=()2<()0=1,b=2>20=1,c=log2<log1=0,∴a,b,c的大小关系为c<a<b.故选:B.8.已知圆x2+y2﹣2x+2y+a=0截直线x+y﹣2=0所得弦的长度为4,则实数a的值是()A.﹣8B.﹣6C.﹣5D.﹣4【分析】根据题意,将圆的方程变形为标准方程,分析其圆心与半径,求出圆心到直线的距离,结合直线与圆的位置关系可得r2=d2+()2,计算可得答案.解:根据题意,圆x2+y2﹣2x+2y+a=0,即(x﹣1)2+(y+1)2=2﹣a,其圆心为(1,﹣1),半径r=,圆心到直线x+y﹣2=0的距离d==,又由圆截直线x+y﹣2=0所得弦的长度为4,则有r2=d2+()2=2+2=2﹣a,解可得a=﹣4;9.已知△ABC中,AB=AC=3,且||=||,点D,E是BC边的两个三等分点,则=()A.3B.4C.5D.6【分析】由||=||知,•=0;根据平面向量的线性运算可推出=+,=+;故=(+)•(+),展开后代入数据进行运算即可.解:∵||=||,∴•=0,∵点D是BC边的三等分点,∴=+=+=+=+,同理可得,=+,∴=(+)•(+)=()==4.故选:B.10.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣【分析】先利用同角三角函数的基本关系分别求得sin(+α)和sin(﹣)的值,进而利用cos(α+)=cos[(+α)﹣(﹣)]通过余弦的两角和公式求得答案.解:∵0<α<,﹣<β<0,∴<+α<,<﹣<∴sin(+α)==,sin(﹣)==∴cos(α+)=cos[(+α)﹣(﹣)]=cos(+α)cos(﹣)+sin (+α)sin(﹣)=故选:C.11.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.12.直线ax+by+c=0与圆O:x2+y2=4相交于M,N两点,若c2=a2+b2,P为圆O上任意一点,则的取值范围为()A.[﹣2,6]B.[﹣2,4]C.[1,4]D.[﹣1,4]【分析】取MN的中点A,连接OA、OP,由点到直线的距离公式可得OA=1,于是推出cos∠AON=,cos∠MON=,而=cos∠MON=﹣2,故=()•()=+﹣=2﹣4cos∠AOP,其中cos∠AOP∈[﹣1,1],从而得解.解:取MN的中点A,连接OA、OP,则OA⊥MN,∵c2=a2+b2,∴点O到直线MN的距离OA==1,在Rt△AON中,cos∠AON=,∴cos∠MON=2cos2∠AON﹣1==,∴=cos∠MON=2×2×()=﹣2,∴=()•()=+﹣=﹣2+4﹣2=2﹣2cos∠AOP=2﹣4cos∠AOP,当,同向时,取得最小值,为2﹣4=﹣2;当,反向时,取得最大值,为2+4=6.∴的取值范围为[﹣2,6].故选:A.二、填空题(本大题共4小题,每小题5分,共20分.)13.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.14.等比数列{a n}的各项均为正数,且a2a4=,则log2a1+log2a2+log2a3+log2a4+log2a5=﹣5.【分析】由题意利用等比数列的性质求得a3的值,再利用对数的运算性质,求得结果.解:等比数列{a n}的各项均为正数,且a2a4==,∴a3=则log2a1+log2a2+log2a3+log2a4+log2a5==5log2a3=5•(﹣1)=﹣5,故答案为:﹣5.15.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=,∠ABC的平分线交AC于点D,且BD=2,则a+3c的最小值为8+4.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.解:如图所示,则△ABC的面积为ac sin120°=a•2sin60°+c•2sin60°,即ac=2a+2c,∴.∴a+3c=(a+3c)()×2=2×=8+4.当且仅当时取等号.所以,a+3c的最小值为8+4.答案为:8+4.16.已知﹣,sin x+cos x=,则2sin x cos x﹣cos2x的值为﹣.【分析】由已知可得|cos x|>|sin x|,可求范围﹣<2x<0,将已知等式两边平方,利用同角三角函数基本关系式可求sin2x,cos2x的值,根据二倍角公式化简所求即可计算求解.解:∵﹣,sin x+cos x=,∴|cos x|>|sin x|,∴﹣<x<0,﹣<2x<0,∵sin x+cos x=,两边平方,可得sin2x=﹣,cos2x=,∴2sin x cos x﹣cos2x=sin2x﹣=﹣.故答案为:﹣.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.圆C:x2+y2﹣2x﹣11=0内有一点P(2,2),过点P作直线l交圆C于A,B两点.(Ⅰ)当直线l的倾斜角为45°时,求弦AB的长;(Ⅱ)当弦AB被点P平分时,写出直线l的方程;【分析】(Ⅰ)化圆C的方程为标准方程,求得圆心坐标与半径,再求出直线l的方程,由点到直线的距离公式求得圆心到直线的距离,再由垂径定理求弦长;(Ⅱ)当弦AB被点P平分时,l⊥PC,求出PC所在直线当斜率,可得直线l的斜率,再由直线方程的点斜式得答案.解:(Ⅰ)化圆C:x2+y2﹣2x﹣11=0为(x﹣1)2+y2=12,圆心坐标为C(1,0),半径R=.直线l的倾斜角为45°,则斜率为1,又直线l过点P(2,2),则直线方程为y﹣2=x﹣2,即x﹣y=0.圆心C到直线l的距离d=,圆的半径为,则弦AB的长为;(Ⅱ)当弦AB被点P平分时,l⊥PC.又,∴直线l的斜率为,则直线l的方程为y﹣2=(x﹣2),即x+2y﹣6=0.18.已知函数f(x)=,数列{a n}满足:a1=1,a n+1=f().(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a,求数列{b n}的前n项和S n;(Ⅲ)若c n=,求数列{c n}的前n项和T n.【分析】(Ⅰ)直接利用函数的关系式和数列的递推关系式求出数列的通项公式.(Ⅱ)利用(Ⅰ)的结论,进一步利用乘公比错位相减法的应用求出数列的和.(Ⅲ)利用裂项相消法求出数列的和.解:(Ⅰ)函数,由于数列{a n}满足:a1=1,a n+1=f().所以a n+1﹣a n=1(常数),所以数列{a n}是以1为首项,1为公差的等差数列.所以a n=1+n﹣1=n.(Ⅱ)由(Ⅰ)得b n=a=n•2n,所以①,②,①﹣②得整理得.(Ⅲ)c n==所以=.19.在△ABC中,角A,B,C所对的边分别为a,b,c,它的面积为S且满足,.(1)求角B的大小;(2)当a+c=9时,求a,c的值.【分析】(1)利用已知条件,结合三角形的面积,通过余弦定理,转化求解B的大小即可.(2)利用余弦定理结合a+c=9,求解即可.解:(1)由,得:,化简得,∴,又0<B<π,∴B=60°.(2)由(1)及余弦定理得:21=a2+c2﹣2ac cos60°,∴a2+c2﹣ac=21,与a+c=9联立:,解之得:.20.已知数列{a n}满足:a1=1,且﹣1,a n,a n+1成等差数列;(1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;(2)求数列{a n+n+1}的前n项和S n.【分析】(1)直接利用等比数列的定义和构造新数列法求出数列的通项公式.(2)利用(1)的结论,进一步利用分组法求出数列的和.解:(1)数列{a n}满足:a1=1,且﹣1,a n,a n+1成等差数列;所以2a n=﹣1+a n+1,整理得a n+1=2a n+1,故a n+1+1=2(a n+1),所以(常数),所以数列{a n+1}是以2为首项,2为公比的等比数列.所以,整理得.(2)由(1)得:,所以=.21.已知向量=(m,cos2x),=(sin2x,n),设函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.【分析】(Ⅰ)首先根据向量的数量积的坐标运算求得f(x)=m sin2x+n cos2x,进一步根据图象经过的点求得:m和n的值.(Ⅱ)由(Ⅰ)得:=,f(x)向左平移φ个单位得到g(x)=2sin(2x+2Φ+)设g(x)的对称轴x=x0,最高点的坐标为:(x0,2)点(0,3)的距离的最小值为1,则:g(x)=2sin(2x+)=2cos2x,进一步求得单调区间.解:(Ⅰ)已知:,,则:=m sin2x+n cos2x,y=f(x)的图象过点y=f(x)的图象过点(,)和点(,﹣2).则:解得:,即:m=,n=1(Ⅱ)由(Ⅰ)得:=,f(x)向左平移φ个单位得到:g(x)=2sin(2x+2Φ+),设g(x)的对称轴x=x0,最高点的坐标为:(x0,2)点(0,3)的距离的最小值为1,则:,则:g(0)=2,解得:Φ=,所以:g(x)=2sin(2x+)=2cos2x.令:﹣π+2kπ≤2x≤2kπ(k∈Z)则:单调递增区间为:[](k∈Z)故答案为:(Ⅰ)m=,n=1(Ⅱ)单调递增区间为:[](k∈Z)22.已知圆C:x2+y2﹣2y﹣4=0,直线l:mx﹣y+1﹣m=0.(Ⅰ)求证:对m∈R,直线l与圆C总有两个不同的交点;(Ⅱ)设l与圆C交于不同的两点A,B,求弦AB的中点M的轨迹方程;(Ⅲ)若定点P(1,1)分弦AB为=,求此时直线l的方程.【分析】(Ⅰ)由直线系方程说明直线l过定点P(1,1),再由P在圆C内,说明直线l与圆C总有两个不同的交点;(Ⅱ)当M与P不重合时,连接CM,CP,则CM⊥MP,可得|CM|2+|MP|2=|CP|2,设M(x,y)(x≠1),代入整理可得M的轨迹方程;(Ⅲ)设A(x1,y1),B(x2,y2),由=,得,可得x2=3﹣2x1,联立直线方程与圆的方程,得到,解得,代入关于x的方程求得m值,则直线方程可求.【解答】(Ⅰ)证明:∵直线l:mx﹣y+1﹣m=0过定点P(1,1),而P(1,1)在圆C:x2+y2﹣2y﹣4=0内,∴对m∈R,直线l与圆C总有两个不同的交点;(Ⅱ)解:如图,当M与P不重合时,连接CM,CP,则CM⊥MP,∴|CM|2+|MP|2=|CP|2.设M(x,y)(x≠1),则x2+(y﹣1)2+(x﹣1)2+(y﹣1)2=1,化简得:x2+y2﹣x﹣2y+1=0(x≠1);当M与P重合时,x=1,y=1也满足上式,故弦AB的中点的轨迹为x2+y2﹣x﹣2y+1=0;(Ⅲ)解:设A(x1,y1),B(x2,y2),由=,得,∴,化简得x2=3﹣2x1,①又由,消去y得(1+m2)x2﹣2m2x+m2﹣5=0(*).∴,②由①②解得,代入(*)解得m=±1.∴直线l的方程为x﹣y=0或x+y﹣2=0.。
四川省德阳市2018-2019学年高一下学期期末数学(理)试题(解析版)word

7.已知 ,则 的值等于( )
A.2B. C. D.
8.已知偶函数 在区间 上单调递增,则满足 的 的取值范围是()
A B.
C D.
9.数列{an}中a1=﹣2,an+1=1 ,则a2019的值为()
A.﹣2B. C. D.
10.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为
阳市高中2018级第一学年统考数学试卷(理科)
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知直线y x+2,则其倾斜角为()
A.60°B.120°C.60°或120°D.150°
2.角 的终边过点 ,则 等于 ( )
∴ 2 ,∴t=2,即 (2,4).
(2)∵2| |=| | ,即| | .
∵ 2 与2 垂直,∴( 2 )•(2 )=2 3 2 0,
即8 3 • 2 0,即3 6 6 ,即 • ,
∴ 在 方向上的投影为 .
【点睛】本题主要考查两个向量坐标形式的运算,两个向量共线、垂直的性质,属于中档题.
20.
在 中,角A、B、C的对边分别为a、b、c,面积为S,已知
12.对任意实数x, 表示不超过x的最大整数,如 , ,关于函数 ,有下列命题:① 是周期函数;② 是偶函数;③函数 的值域为 ;④函数 在区间 内有两个不同的零点,其中正确的命题为( )
A.①③B.②④C.①②③D.①②④
第Ⅱ卷(非选择题 共90分)
二、填空题(共4小题,每小题5分,共20分.将答案填在答题卡上)
13.已知等差数列 的前 项和为 ,若 ,则 _____
2019学年高一数学下学期期末考试试题(含解析)

2019学年高一数学下学期期末考试试题(含解析)(考试时间为120分钟,满分为150分)一、选择题:本大题共25小题,每小题3分,共75分.1.在ABC △中,若222sin sin sin A B C +<,则ABC △的形状是().A .锐角三角形B .钝角三角形C .直角三角形D .无法确定【答案】B【解析】由正弦定理:222a b c +<, 故为2220a b c +-<,又∵222cos 2a b c c ab+-=,∴cos 0c <, 又∵0πc <<, ∴ππ2c <<, 故B .2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为1P ,2P ,3P ,则(). A .123P P P =< B .231P P P =< C .132P P P =< D .123P P P ==【答案】D【解析】无论三种中哪一抽法都要求个体被抽概率相同. 选D .3.若非零实数a ,b ,c 满足a b c >>,则一定成立的不等式是().A .ac bc >B .ab ac >C .||||a c b c ->-D .111a b c<< 【答案】C【解析】A .a b >,c 不一定为正,错;B .同A ,a 不一定为正,错;C .||||a b a c b c >⇒->-正确;D .反例:1a =,1b =-,2c =-,1111a b=>=-错误, 选C .4.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(,1)(1,)-∞-+∞B .(,0)(1,)-∞+∞C .(1,)+∞D .(1,0)-【答案】A【解析】由1n n a a +>,2n n a a >,∴(1)0n n a a ->, ∴1n a >或0n a <, 而[1,0]n a ∈-时, 1n n a a +>不对n 恒成立,选A .5.已知不等式501x x -<+的解集为P ,若0x P ∈,则“0||1x <”的概率为(). A .14B .13C .12D .23【答案】B【解析】()(1)050101x s x x x x -+<⎧-<⇒⎨+≠+⎩, ∴{}|1,15P x x x =≠-<<, ||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .6.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为().A .120B .240C .280D .60【答案】A【解析】选从5双中取1双,15C , 丙从剩下4双任取两双,两双中各取1只, 24C 2224⨯⨯=,∴15C 24120N =⨯=. 选A .7.设0a >,0b >,则下列不等式中不恒成立的是().A .12a a+≥B .222(1)a b a b ++-≥CD .3322a b ab +≥【答案】D【解析】332222()()a b ab a b a ab b +=-+--,当a b <<有3322a b ab +<, 故D 项错误,其余恒成立. 选D .8.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().A .02B .1429【答案】D【解析】从表第1行5列,6列数字开始由左到右依次选取两个数字中小于20的编号为: 08,02,14,29.∴第四个个体为29. 选D .9.执行如图所示的程序框图,输出的S 值为().A .1B .5C .14D .30【答案】C【解析】S K0 11 25 314 4⇒出14S =.选C .10.如图是1,2两组各7名同学体重(单位:千克)数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么().(注:标准差s =x 为1x ,2x ,,n x 的平均数)3272010*******7632组1组A .12x x <,12s s <B .12x x <,12s s >C .12x x >,12s s >D .12x x >,12s s <【答案】A【解析】第1组7名同学体重为: 53,56,57,58,61,70,72,∴11(535672)61kg 7x =+++=, 222211[(5361)(7261)]43kg 7S =-++-=,第2组7名同学体重为:72,73,61,60,58,56,54,21(545673)62kg 7x =+++=,222221[(5462)(7362)]63kg 7S =-++-=,∴12x x <,2212S S <.故选A .11.如图给出的是计算111112468100+++++的一个程序框图,则判断框内应填入关于i 的不等式为().A .50i <B .50i >C .51i <D .51i >【答案】B 【解析】11124100+++进行了50次, 第50次结束时,102n =,=51i , 此时输出,因此50i >. 选B .12.在()n x y +的展开式中,若第七项系数最大,则n 的值可能等于().A .13,14B .14,15C .12,13D .11,12,13【答案】D【解析】()n x y +的展开式第七项系数为6C n ,且最大, 可知此为展开式中间项, 当展开式为奇数项时:62n=,12n =, 当有偶数项时162n +=,11n =, 或172n +=,13n =, 故11n =,12,13. 选D .13.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色,现从袋中随机抽取3个小球,设每个小球被抽到的机会均等,则抽到白球或黑球的概率为().A .25B .35C .23D .910【答案】D【解析】从袋中5球随机摸3个, 有35C 10=,黑白都没有只有1种, 则抽到白或黑概率为1911010-=. 选D .14.已知数列{}n a 的前n 项的乘积为2n n T c =-,其中c 为常数,*n ∈N ,若43a =,则c =().A .4B .3C .2D .1【答案】A【解析】44433232T ca T c-===-, ∴4c =. 选A .15.组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司仪、司机思想不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这思想工作,则不同的选派方案共有().A .36种B .12种C .18种D .48种【答案】A【解析】若小张或小赵入选,有选法:113223C C C 24⋅⋅=种,若小张,小赵都入选,有:2323A A 12⋅=种,可知共有241236+=种. 选A .16.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为().A .1B .1-C .0D .2【答案】A【解析】令1x =,4014(2a a a +++=+,令1x =-,401234(2a a a a a -+-+=-+, 而2202413()()a a a a a ++-+024*******()()a a a a a a a a a a =++++-+-+444(2(2(34)1=-+=-=.选A .17.有4个人同乘一列有10节车厢的火车,则至少有两人在同一车厢的概率为().A .63125B .62125C .63250D .31125【答案】B【解析】4个人乘10节车厢的火车, 有41010000=种方法,没有两人在一车厢中有410A 10987=⨯⨯⨯种, ∴至少有两人在同一车厢概率为:4104A 49606211010000125p =-==. 选B .18.某车站,每天均有3辆开往省城的分为上、中、下等级的客车,某人某天准备在该车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略;先放过第一辆车,如果第二辆车比第一辆车则上第二辆,否则上第三辆车,那么他乘上上等车的概率为().A .14B .12C .23D .13【答案】B【解析】设三车等次为:下、中、上, 它们先后次序为6种: 下 中 上 ×→没乘上上等 下 上 中 √→乘上上等 中 下 上 √ 中 上 下 √ 上 下 中 × 上 中 下 × 情况数为3,12p =. 选B .19.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A .151B .168C .1306D .1408【答案】B【解析】共有318C 17163=⨯⨯种事件数, 选出火炬手编号为13(1)n a a n =+-,11a =,由1、4、7、10、13、16,可得4种, 12a =,由2、5、8、11、14、17,可得4种,3n a =,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B .20.已知数列1:A a ,2a ,,12(0,3)n n a a a a n <<<≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论:①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3 B .2 C .1 D .0【答案】A【解析】①数列0,2,4,6,j i a a +,(13)j i a a j i j -≤≤≤, 两数中都是该数列中项, 432a a -=,①正确,若{}n a 有P 性质,去{}n a 中最大项n a ,n n a a +与n n a a -至少一个为{}n a 中一项,2n a 不是,又由120n a a a ≤≤≤,则0是,0n a =,②正确,③1a ,2a ,3a 有性质P ,1230a a a <<≤, 13a a +,31a a -,至少有一个为{}n a 中一项,1︒.13a a +是{}n a 项,133a a a +=,∴10a =,则23a a +,不是{}n a 中项, ∴322a a a -=⇒∴1322a a a +=.2︒.31a a -为{}n a 中一项,则311a a a -=或2a 或3a ,①若313a a a -=同1︒;②若312a a a -=,则32a a =与23a a <不符; ③311a a a -=,312a a =. 综上1322a a a +=,③正确, 选A .21.x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩≤≤≥,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为().A .12或1- B .2或12C .2或1D .2或1-【答案】D 【解析】观察选项有12,1-,1,2. 当2a =时,y ax z =+与22y x =+重合时,纵截距最大,符合, 1a =-时,y ax z =+与y x z =-+重合时,纵截距最大,符合, 12a -<<时,y ax z =+经过(0,2)B 时,纵截距最大,不符合,12,1舍去, 故2a =或1-, 选D .12x 222.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是().A .(2,)+∞B .(1,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】当12k ≤时,20x k -≥,因此(2)0f x k k --<, 可化为2(2)0x k k --<, 即存在[1,]x ∈+∞,使22()440f x x kx k k =-+-<成立,由于22()44f x x kx k k =-+-的对称轴为 21x k =≤,所以22()44f x x kx k k =-+-,连[1,]x ∈+∞单调递增,因此只要(1)0g <, 即21440k k k -+-<,解得114k <<, 又因12k ≤,所以1142k <≤,当12k >时,2(2)0(2)0f x k k x k k --<⇔---<恒成立,综上,14k >. 选D .23.设O 为坐标原点,点(4,3)A ,B 是x 正半轴上一点,则OAB △中OBOA的最大值为(). A .43B .53C .54D .45【答案】见解析 【解析】(4,3)A , 3sin 5AOB =∠,sin sin AB OBAOB A=∠,∴sin 5sin sin 3OB A A AB AOB ==∠, 由(0,π)A ∈得sin (0,1]A ∈, ∴当π2A =时55sin 33OB A AB ==, 为最大值:选B .24.数列{}n a 的通项公式为*||()n a n c n =-∈N ,则“1c ≤”是“{}n a 为递增数列”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】见解析【解析】若{}n a 递增, 1|1|||0n n a a n c n c +-=+--->22(1)()n c n c +->-.∴有12c n <+, ∵1322n +>, ∴1c ≤为{}n a 递增充分不必要条件. 选A .25.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考察每行中五个数之和,记这五个和的最小值为m ,则m 的最大值为().A .8B .9C .10D .11【答案】C【解析】1︒,5个1分在同列,5m =,2︒,5个1分在两列,则这两列出现最大数至多为3,故2515320m ⨯+⨯=≤,有10m ≤, 3︒,5个1在三列,3515253m ⨯+⨯+⨯≤,∴0m ≤,4︒,若5个1在至少四列中,其中某一列至少有一个数大于3,矛盾,∴1M ≤, 如图可取10. 故选C .二、填空题:本大题共11小题,每小题3分,共33分.把答案填在题中横线上.26.执行如图所示的程序框图,若1M =,则输出的S =__________;若输出的14S =,则整数M = __________.【答案】见解析 【解析】n S 0 01 2 1M =时,2S =, 2 63 14 当3n =时出来,故3M =.27.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________. 【答案】见解析【解析】7245%74(145%)72.1⨯+⨯-=.28.在一个有三个孩子的家庭中,(1)已知其中一个是女孩,则至少有一个男孩的概率是__________. (2)已知年龄最小的孩子是女孩,则至少有一个男孩的概率是__________. 【答案】见解析【解析】共有2228⨯⨯=种,只有男孩1种除去,只有女孩有1种, ∴161817p =-=-.29.在AOB △的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有__________个. 【答案】见解析【解析】3331267C C C 16S --=,连12个点中任取3个点,除去同一直线上点.30.如图,在23⨯的矩形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有__________个.【答案】见解析【解析】直角边长为1时,2464=⨯个,7214⨯=个, 直角边长为2时,248⨯=个,时,4个, ∴总共有24148450+++=.31.从{}1,2,3,4,5中随机选取一个数为a ,从{}2,4,6中随机选取一个数为b ,则b a >的概率是__________. 【答案】见解析【解析】共有5315⨯=种, b a >有共9种, ∴93155P ==.32.已知正方形ABCD .(1)在A ,B ,C ,D 四点中任取两点连线,则余下的两点在此直线异侧的概率是__________.(2)向正方形ABCD 内任投一点P ,则PAB △的面积大于正方形ABCD 面积四分之一的概率是__________. 【答案】见解析【解析】(1)共有24C 6=种, 异侧2种, ∴2163P ==.(2)在CDFE 内,14ABC PAB D S S >⋅平行四边形△,【注意有文字】而12CEDF ABCD S S =⋅,∴12P =. OF E CB A D33.已知当实数x ,y 满足12121x y x y x y +⎧⎪--⎨⎪-⎩≤≥≤时,1ax by +≤恒成立,给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3. ②22x y +的最大值等于2.③以a ,b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5. ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是__________. 【答案】见解析 【解析】①13322S ==≠,d =②当1x =-,1y =-时, 222x y +=取最大,②对;③1ax by +≤恒成立, 当且仅当111b a a b ⎧⎪⎨⎪--⎩≤≤≤,③193322S =⨯⨯=,③对;④1a b ==时,2a b +=最大, 12a b ==-时,1a b +=-最小,④对. 综上②③④.34.设M 为不等式组40400x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥,所表示的平面区域,N 为不等式组04t x t y t -⎧⎨-⎩≤≤≤≤所表示的平面区域,其中[0,4]t ∈,在M 内随机取一点A ,记点A 在N 内的概率为P .(ⅰ)若1t =,则P =__________. (ⅱ)P 的最大值是__________. 【答案】见解析【解析】①不等式组4040x y x y y +-⎧⎪-+⎨⎪⎩≤≥0≥平面区域为M ,184162M S =⨯⨯=,不等式组(04)04t x tt y t-⎧⎨-⎩≤≤≤≤≤≤, 表示的面积为2(4)t t - 22(2)8t =--+. 1t =时,283168P -+==. ②2t =时,081162P +==, 且2(4)t t -最大,P 最大.35.若不等式*1111()1232a n n n n n++++>∈+++N 恒成立,则a 的范围__________.【答案】见解析 【解析】设11()12f n n n=+++ 111(1)2212(1)f n n n n +=++++++ 111(1)()212(1)1f n f n n n n +-=+-+++ 1102122n n =->++. ∴()f n 是关于n 递增数列(,2)n n ∈N ≥, ∴7()(2)12f n f =≥, ∴712a <.36.当[1,9]x ∈时,不等式22|3|32x x x kx -++≥恒成立,则k 的取值范围是__________. 【答案】见解析【解析】等价为22|3|32x x x k x -++≥, 设22|3|32()x x x f x x-++=,当13x ≤≤,32()3f x x=+,在[1,3]上单减, min 41(3)3f f ==,当39x <≤,32()2323f x x x =+-≥, 当且仅当322x x=,4x =成立, ∴()f x 最小值为13. ∴13k ≤.三、解答题:(本大题共6小题,每题7分,共42分.解答应写出文字说明,证明过程或演算步骤.)37.已知ABC △为锐角三角形,a ,b ,c 分别为角A ,B ,C 2sin c A =. (1)求角C .(2)当c =ABC △面积的最大值. 【答案】见解析 【解析】(1)正弦定理:sin sin a cA c=,∵π02c <<,∴π3c =. (2)余弦定理是:2222cos c a b ab c =+-, ∴2212a b ab =+-, 又∵22a b ab ab +-≥, ∴12ab ≤,1sin 2ABC S ab c ==△≤当仅当a b =时取得∴max S =38.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠.(Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值. (Ⅱ)解关于x 的不等式()0f x >. 【答案】见解析【解析】(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦,0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦.39.在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.a(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数.(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率. 【答案】见解析【解析】(Ⅰ)10.30.150.10.050.05a =----- 0.035=.(Ⅱ)[40,50)有0.00510402⨯⨯=人, [59,60)有0.0110404⨯⨯=人,两名学生都在[50,60)概率为: 2426C 62C 155P ===, ∴23155P =-=求.【注意有文字】40.已知数列{}n a 的前n 项和31n n S =-,其中*n ∈N . (Ⅰ)求数列{}n a 的通项公式.(Ⅱ)若数列{}n b 满足11b =,13(2)n n n b b a n -=+≤. (ⅰ)证明:数列13n n b -⎧⎫⎨⎬⎩⎭为等差数列.(ⅱ)求数列{}n b 的前n 项和n T . 【答案】见解析【解析】(Ⅰ)11(31)(31)n n n n n a S S --=-=--- 123n -⋅,2n ≥,∴123(*)n n a n -=⋅∈N ,即11112323233n n n n n n n b b b b -----=+⋅⇔=+, ∴112233n n n n b b ----=, ∴13n n b -⎧⎫⎨⎬⎩⎭为首项为1,公差为2的等差数列. (Ⅱ)1nn i c T b ==∑,∴112(1)213nn b n n -=+-=-, ∴1(21)3n n b n -=-⋅, ∴11333(21)3n n T n -=⨯︒+⨯++-⋅ 231333(21)3n n T n =⨯+⨯++-⋅ ∴21212(333)(21)3n n n T n -=--++++-⋅(1)31n n T n =-⋅+,*n ∈N .41.某大学调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60),得到A餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:A 餐厅分数频率分布直方图频率分数B 餐厅分数频数分布表(Ⅰ)在抽样的100人中,求对A (Ⅱ)从该校在A ,B 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高的概率.(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由. 【答案】见解析【解析】(Ⅰ)(0.0030.0050.012)100.2P =++⨯=, 1000.220N =⨯=人.(Ⅱ)记A 指数比B 高为事件C ,A 评价指数为1为事件1A ,为2为事件2A ,B 评价指数数为0为事件0B ,为1为事件1B .∴1()(0.020.02)100.4P A =+⨯=,2()0.4P A =,0235()0.1100P B ++==, 14015()0.55100P B +==, 102021()()P C P A B A B A B =++,()0.40.10.40.10.40.550.3P C =⨯+⨯+⨯=.(Ⅲ)A :0.4 1.2⨯=, ()00.10.55120.35 1.25E Y =⨯+⨯+⨯=,EX EY <.选B .42.设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P .(Ⅲ)若{}|32x x P -<<⊆,求m 的取值范围. 【答案】见解析【解析】(Ⅰ)∵{}|12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -+++=的两根, 1x =-代入得(31)2(1)0m m m ++++=,∴12m =-.(Ⅱ)(2)[(1)]0x mx m --+>, 当0m >时,112x =,21m x m+=. ①12m m+=时,1m =,2x ≠; ②12m m +>时,01m <<,2x <或1m x m+>;③12m m +<时,1m >,2x >或1m x m+<. 综上01m <<,1|2,m P x x x m +⎧⎫=<>⎨⎬⎩⎭,1m =,{}|72,2P x x x =∈≠, 1m >,1|,2m P x x x m +⎧⎫=<>⎨⎬⎩⎭. (Ⅲ)(3,2)x ∈-时,2(31)2(1)0mx m x m -+++>恒成立, 0m =时,20x -+>,{}|2P x x =<合题, 0m >时,由(I )得01m <≤合题, 0m <时,1112m m m+=+<, ∴1|2m P x x m +⎧⎫=<<⎨⎬⎩⎭, 此时13m m +-≤,解得104m -<≤, 综上,1,14m ⎡⎤∈-⎢⎥⎣⎦.四、附加题43.已知数列{}n a 是首项为1,公比为q 的等比数列. (Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值. 【答案】见解析【解析】(Ⅰ)1n n a q -=, 111(1)n n n n n a a q q q q --+-=-=-,当01q <<时:有10n q ->,10q -<, ∴10n n a a +-<, ∴{}n a 为递减数列.(Ⅱ)∵k a ,2k a +,1k a +成等差数列, ∴112()0k k k q q q +--+=, 12(21)0k q q q -⋅--=,∵0q ≠, ∴2210q q --=,解得:1q =或12q =-.44.从某校高一年级随机抽取n 名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:频率(Ⅰ)求n 的值.(Ⅱ)若10a =,补全表中数据,并绘制频率分布直方图.(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为7.84,求a ,b 的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率. 【答案】见解析 【解析】(Ⅰ)2500.04n ==. (Ⅱ)组号 分组 频数 频率1 [5,6) 20.04 2[6,7) 10 0.20 3[7,8) 100.20 4[8,9) 20 0.40 5[9,10)80.16(Ⅲ)112 5.5+10 6.5+7.58.589.578450210950a b a b ⎧⨯⨯⨯+⨯+⨯=-⎪⎨⎪++++=⎩,1515a b =⎧⎨=⎩, ∴158230.465050P +===.频率睡眠时间45.已知关于x 的一元二次方程2220x ax b -+=,其中a ,b ∈R .(Ⅰ)若a 随机选自集合{}0,1,2,3,4,b 随机选自集合{}0,1,2,3,求方程有实根的概率. (Ⅱ)若a 随机选自区间[0,4],b 随机选自区间[0,3],求方程有实根的概率. 【答案】见解析【解析】(Ⅰ)可能发生有4520⨯=个, 有14个符合题意, ∴1472010P ==, 22(2)40a b ∆=-->,∴a b ≥, 此时符合题意.(Ⅱ)[0,4]a ∈,[0,3]b ∈,∴区域{}Ω=()|04,03a b a b ⋅≤≤≤≤, 面积Ω=3412μ⨯=,事件A 为有实根, {}()|04,03,A a b a b a b =⋅≤≤≤≤≥,153433212A μ=⨯-⨯⨯=, ∴1552()Ω128M P A μμ===.46.经统计,某校学生上学路程所需要时间全部介于0与50之间(单位:分钟).现从在校学生中随机抽取100人,按上学所学时间分组如下:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得打如图所示的频率分布直方图.(分钟)(Ⅰ)根据图中数据求a 的值.(Ⅱ)若从第3,4,5组中用分成抽样的方法抽取6人参与交通安全问卷调查,应从这三组中各抽取几人? (Ⅲ)在(Ⅱ)的条件下,若从这6人中随机抽取2人参加交通安全宣传活动,求第4组至少有1人被抽中的概率.【答案】见解析【解析】(Ⅰ)(0.0050.010.030.035)101a ++++⨯=, 0.02a =.(Ⅱ)第3组人数为1000.330⨯=人, 第4组人数为0.210020⨯=人, 第5组人数为0.110010⨯=人, ∴比例为3:2:1,∴第3组,4组,5组各抽3,2,1人. (Ⅲ)记3组人为1A ,2A ,3A ,4组人为1B ,2B ,5组人为1C ,共有28C 15=种, 符合有:11()A B 12()A B 21()A B 22()A B 31()A B 32()A B 12()B B 11(,)B C 21(,)B C 9种,∴93155P ==.47.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率.(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率. (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.(Ⅳ)若从袋中每次随机抽取1个球,有放回的抽取3次,记球的最大编号为X ,求随机变量X 的分布列. 【答案】见解析【解析】(Ⅰ)共有3666=⨯种, 和为6的共5种, ∴536P =. (Ⅱ)1526C 1C 3P ==为抽2个球,有6的概率,∴2232122C (1)3339P P -=⨯⨯=为所求. (Ⅲ)X 可取3,4,5,6, 3336C 1(3)C 20P x ===,2336C 3(4)C 20P x ===,2436C 63(5)C 2010P x ====,2336C 1(6)C 2P x ===.(Ⅳ)11(1)6216P X ⎛⎫=== ⎪⎝⎭,33321331117(2)C C 666216P X ⎛⎫⎛⎫⎛⎫==+⋅+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32221331121219(3)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331131337(4)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331141461(5)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,32221331151591(6)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.48.在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数,现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,随机抽取了20(Ⅰ)根据题中数据,估计这240(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X ,求X 的分布列和数学期望.(Ⅲ)试题的预估难度和实测难度之间会有偏差,设i P '为第i 题的实测难度,请用i P 和i P '设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理. 【答案】见解析 【解析】(Ⅰ)55540.220R P N ===, ∴2400.248N =⨯=人. (Ⅱ)X 可取0,1,2,216220C 12(0)C 19P X ===,11164220C C 32(1)C 95P X ⋅===,24220C 3(2)C 95P X ===.X 0 1 201219959595EX =⨯+⨯+⨯=. (Ⅲ)定义2121[()()]i i n n S P P P P n=-++-i P 为第i 题预估难度,且0.05S <,则合理222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=.∵0.0120.05S =<, ∴合理.49.已知数列{}n a 的通项公式为12(1)(1)n n a n n λ+=+-⋅+,其中λ是常数,*n ∈N . (Ⅰ)当21a =-时,求λ的值.(Ⅱ)数列{}n a 是否可能为等差数列?证明你的结论. (Ⅲ)若对于任意*n ∈N ,都有0n a >,求λ的取值范围. 【答案】见解析【解析】(Ⅰ)2n =时2321a λ=-=-, ∴2λ=.(Ⅱ)13a λ=+,232a λ=-,373a λ=+,474a λ=-, 若存在入使{}n a 为等差数列 有:2132a a a =+, 2(32)(3)(73)λλλ-=+++ ∴12λ=-,21332a a λ-=-=,43172a a λ--=-=, 矛盾,∴不存在入使{}n a 为等差数列. (Ⅲ)∵0n a >,∴12(1)(1)0n n n λ++-⋅+>,即1(1)(1)2n nnλ+--⋅<+,n ∈N .①当n 为正偶数:12nλ<-,随n 增大变大,13222λ<-=.②当n 为正奇数:12nλ<--,随n 变大而变大,2λ-≥. 综上:31,2λ⎡⎫∈-⎪⎢⎣⎭.50.设a ∈R ,*n ∈N ,求和:231n a a a a +++++=__________.【答案】见解析【解析】当0a =时,211n a a a ++++=,当1a =时,11n a a n +++=+,当0a ≠,且1a ≠时1111n na a a a+-++=-,∴11,11,11n n a a a a++=⎧⎪⎨-≠⎪-⎩.51.设数列{}n a 的通项公式为*3()n a n n =∈N ,数列{}n b 定义如下:对任意*m ∈N ,m b 是数列{}n a 中不大于23m 的项的个数,则3b =__________;数列{}m b 的前m 项和m S =__________. 【答案】见解析【解析】633n ≤,∴243n ≤, ∴3243b =, 由233m n ≤, ∴213m n -≤ ∴213m m b -=,3(19)3(91)198m mm S -==--,故243;3(91)8m-.52.已知函数2()(13)4f x mx m x =+--,m ∈R .当0m <时,若存在0(1,)x ∈+∞,使得0()0f x >,则m 的取值范围为__________. 【答案】见解析【解析】0m <,2(1)(13)4f mx m x =+--开口朝下, 13311222n m x m m-=-=->, 若0(1,)x ∃∈+∞使0()0f x >,则2(13)160m m -+>, 即291010m m ++>, ∴1m <-或109m -<<,综上:1(,1),09⎛⎫-∞-- ⎪⎝⎭.53.设不等式组23034057200x y x y x y -⎧⎪-⎨⎪--⎩≥≥≤,表面的平面区域是W ,则W 中的整点(横、纵坐标均为整数的点)个数是().A .231B .230C .219D .218【答案】见解析【解析】3405720x y x y -⎧⎨--⎩≥,8060x y =-⎧⎨=-⎩,∴(80,60)A -,23057200x y x y -=⎧⎨--=⎩,6040x y =⎧⎨=⎩, (60,40)B ,分别取80x =-,79-,60,求出y 值, 可知总数有231, 选A .2x 3。
2019-2020学年辽宁省辽阳市高一下学期期末数学试卷 (解析版)
2019-2020学年辽宁省辽阳市高一第二学期期末数学试卷一、选择题(共12小题).1.sin(﹣480°)等于()A.﹣B.C.﹣D.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+97.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.811.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.412.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=.16.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin(﹣480°)等于()A.﹣B.C.﹣D.【分析】所求式子中的角度变形后,利用诱导公式化简即可得到结果.解:sin(﹣480°)=﹣sin480°=﹣sin(360°+120°)=﹣sin120°=﹣.故选:C.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台【分析】通过棱锥,棱柱,棱台的顶点个数,判断选项即可.解:三棱柱上下两个平面都是三角形,有6个顶点,满足题意,A正确;四棱锥5个顶点,B不正确;四棱柱,有8的顶点,C不正确;五棱台有10个顶点,D不正确;故选:A.3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+i)=2i8=2,得z=,∴z的虚部为﹣1.故选:C.4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.【分析】直接利用余弦定理求出结果.解:已知b═3,c=2,A=,利用余弦定理:a2=b2+c2﹣2bc cos A=9+8﹣,解得a=.故选:B.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.【分析】本题先对|﹣|=||两边进行平方,转化成向量进行计算,化简整理可得,然后根据向量内积的坐标运算可解出m的值,即可计算出||的值.解:依题意,由|﹣|=||,可得|﹣|2=||2,即(﹣)2=()2,化简整理,得,∴1×(﹣1)+m×=0,解得m=,∴=(1,),∴||==.故选:A.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+9【分析】由已知利用正弦定理可得b的值,根据两角和的正弦函数公式,三角形的面积公式即可计算得解.解:∵A=,B=,a=2,∴由正弦定理,可得b===3,∴S△ABC=ab sin C=ab sin(A+B)=ab(sin cos+cos sin)=()=.故选:C.7.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.【分析】由BC∥B1C1,得∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),连结AB1,推导出B1C1⊥A1B1,B1C1⊥BB1,从而得到B1C1⊥平面ABB1A1,B1C1⊥AB1,由此能求出异面直线AC1与BC所成角的余弦值.解:在直三棱柱ABC﹣A1B1C1中,∵BC∥B1C1,∴∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),如图,连结AB1,∵四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,∴B1C1⊥A1B1,B1C1⊥BB1,∵A1B1∩BB1=B1,∴B1C1⊥平面ABB1A1,∴B1C1⊥AB1,AB1==2,AC1==6,∴cos∠AC1B1=,∴异面直线AC1与BC所成角的余弦值为.故选:C.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|【分析】根据题意,依次分析选项中函数的奇偶性与周期性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=cos=﹣sin,是奇函数,周期T==4π,不符合题意;对于B,y=sin(2x+3π)=﹣sin2x,是奇函数,周期T==π,符合题意;对于C,y=cos(π+2x)=cos x,是偶函数,不符合题意;对于D,y=|cos(x﹣)|=|sin x|,是偶函数,不符合题意;故选:B.9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+【分析】根据条件=,结合=3,代入化简可得=,再由向量加法法则可得答案解:因为=3,即有=,因为=3,所以=,则==()=,所以==,故选:A.10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.8【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.解:函数f(x)=sin2+sinωx﹣=ωx)+ωx﹣=sin (ωx﹣),令:ω﹣=(k∈Z),解得ω=4+(k∈Z),由于0<ω≤8,所以ω=4.故选:B.11.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.4【分析】对于①,若AB′⊥平面B′CD,则AB′⊥CD,推导出平面AB′D⊥平面ACD,在翻折过程中,B′始终在BD正上方,平面AB′D⊥平面ACD不成立;对于②,取AC中点O,推导出三棱锥B′﹣ACD的外接球半径R=2,其表面积S =32π;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,从而B′D=4;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值.解:对于①若AB′⊥平面B′CD,则AB′⊥CD,∵CD⊥AD,∴CD⊥平面AB′D,∵CD⊂平面ACD,∴平面AB′D⊥平面ACD,∵在翻折过程中,B′始终在BD正上方,不可能在AD正上方,∴平面AB′D⊥平面ACD不成立,故①错误;对于②,取AC中点O,∵ABCD是正方形,∴OA=OB=OB′=OC=OD=2,则三棱锥B′﹣ACD的外接球半径R=2,其表面积S=4πR2=32π,故②正确;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,∴B′D=,故③正确;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值,最大值为×42×=,故④正确.故选:C.12.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4【分析】利用函数图象的平移与伸缩变换求得f(x)的解析式,再由x的范围求得ωx ﹣的范围,结合y=f(x)在[0,]上的最大值为,分类求解得答案.解:将函数y=sin x的图象向右平移个单位长度,可得y=sin(x﹣)的图象.再将横坐标缩短为原来的(ω>0)得到函数y=f(x)=sin(ωx﹣)的图象,∵x∈[0,]上,∴ωx﹣∈[﹣,π],当π≥,即ω≥4时,则=1,求得ω=5.当π<,即0<ω<4时,由题意可得sinπ=,作出函数y=sin[(x﹣1)]与y=的图象如图:由图可知,此时函数y=sin[(x﹣1)]与y=的图象有唯一交点,则sinπ=有唯一解.综上,ω的取值个数为2.故选:B.二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是1.【分析】设扇形的圆心角为α,由此求出弧长和面积,列方程求得α的值.解:设扇形的圆心角为α,则弧长l=2α,所以扇形的面积为:S=rl=×2×2α=2,解得α=1.故答案为:1.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.【分析】把复数2i直接乘以旋转复数cos+i sin得答案.解:复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得复数为2i(cos+i sin)=2i()=﹣+i.故答案为:+i.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=﹣2.【分析】直接利用三角函数的定义和和角公式的运用求出结果.解:点P(1,3)是角α终边上的一点,所以tanα=3,则:=﹣2.故答案为:﹣216.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.【分析】条件可整理为=+,结合=λ,得到=+,设=k,列出关于λ,k的方程组,解之即可.解:因为+3+5=,所以+5()=,所以9=3+5,则=+,因为=λ,即﹣=λ(),所以=+,设=k=+,则,解得,故答案为:.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.【分析】若选择①,利用正弦定理,两角差的余弦函数公式化简已知等式,结合sin B≠0,可求cos B=,结合范围B∈(0,π),可求B=;若选择②,利用三角函数恒等变换的应用化简已知等式,结合sin A≠0,可求tan B=,结合范围B∈(0,π),可求B=;若选择③,利用两角和的正弦函数公式化简已知等式,结合sin C≠0,可得cos B=,结合范围B∈(0,π),可求B=,在△ABD中,由余弦定理可得BD的值,进而根据三角形的面积公式即可计算求解.解:若选择①,则sin B cos A cos C=sin A sin B sin C﹣sin B,因为sin B≠0,所以cos A cos C﹣sin A sin C=﹣,即cos(A+C)=﹣,因为B=π﹣(A+C),所以cos(A+C)=﹣cos B=﹣,即cos B=,因为B∈(0,π),所以B=.若选择②,则sin2B cos C+sin C sin2B=sin A cos B,即sin2B cos C+sin C sin B cos B=sin A cos B,可得sin B sin(B+C)=sin A cos B,可得sin B sin A=sin A cos B,因为sin A≠0,可得sin B=cos B,可得tan B=,因为B∈(0,π),所以B=.若选择③,则sin B cos A+sin A cos B=2sin C cos B,即sin(B+A)=2sin C cos B,可得sin C =2sin C cos B,因为sin C≠0,可得cos B=,因为B∈(0,π),所以B=,在△ABD中,由余弦定理可得AD2=AB2+BD2﹣2AB•BD•cos B,可得28=36+BD2﹣2×,解得BD=4,或2,因为BC=2BD>AB=6,所以BD=4,所以BC=2BD=8,所以S△ACD=S△ABD=AB•BD•sin B==6.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.【分析】(1)连接BC1,可证四边形BCC1B1为正方形,得B1C⊥BC1,再由AB⊥平面BCC1B1,得AB⊥B1C,利用直线与平面垂直的判定可得B1C⊥平面BEC1,从而得C1E ⊥B1C;(2)由E,F,G,H分别是AB,AA1,CC1,C1D1的中点,可得EF∥GH,ED∥B1H,由直线与平面平行的判定可得EF∥平面B1GH,同理可证ED∥平面B1GH,由平面与平面平行的判定可得平面DEF∥平面B1GH.【解答】证明:(1)连接BC1,EC1,在长方体ABCD﹣A1B1C1D1中,∵BC=CC1,∴四边形BCC1B1为正方形,则B1C⊥BC1,又AB⊥平面BCC1B1,∴AB⊥B1C,∵AB∩BC1=B,AB,BC1⊂平面BEC1,∴B1C⊥平面BEC1,而C1E⊂平面BEC1,∴C1E⊥B1C;(2)∵E,F,G,H分别是AB,AA1,CC1,C1D1的中点,∴可得EF∥GH,ED∥B1H,∵EF⊄平面B1GH,GH⊂平面B1GH,∴EF∥平面B1GH,同理可证ED∥平面B1GH,∵ED∩EF=E,ED,EF⊂平面DEF,∴平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.【分析】(1)由题意利用两个向量共线的性质,求出λ的值.(2)由题意利用两个向量垂直的性质,求出λ的值,可得,从而求出||.解:(1)∵单位向量,的夹角为,∴与不共线.∵向量=λ﹣,向量=2+3,若∥,则=,∴λ=﹣.(2)若⊥,∵•=1×1×cos=﹣.∴•=(λ﹣)•(2+3)=2λ+(3λ﹣2)•﹣3=2λ+(3λ﹣2)•(﹣)﹣3=0,求得λ=4,∴=4﹣,∴||====.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.【分析】(1)通过向量的数量积以及两角和与差的三角函数化简函数的解析式,结合三角函数的最值求解即可.(2)利用方程的根,推出三角函数关系式,然后转化求解表达式的值即可.解:(1)向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•=cos(x﹣)﹣sin(x﹣)=2cos(x﹣+)=2cos x,所以函数f(x)的最大值为2.(2)f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,即2cosα与2sinα,α∈(0,π),是关于x的方程25x2﹣10x+t=0的两根,所以2cosα+2sinα=,4cosαsinα=,因为(cosα+sinα)2=1+2cosαsinα,所以,解得t=﹣48.所以+==sinα+cosα=.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.【分析】(1)连结BD,交AC于H,连结EH,推导出EH∥PD,由此能证明PD∥平面ACE.(2)推导出PA⊥BC,BC⊥AB,BC⊥平面PAB,BC⊥AE,AE⊥PB,PC⊥平面AEF,由此能求出三棱锥A﹣CEF的体积.解:(1)证明:连结BD,交AC于H,连结EH,∵四边形ABCD是矩形,∴H是BD的中点,∵E是PB的中点,∴EH∥PD,∵EH⊂平面ACE,PD⊄平面ACE,∴PD∥平面ACE.(2)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,∴PA⊥BC,BC⊥AB,又PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴BC⊥AE,∵PA=AB=2,且E是PB的中点,∴AE⊥PB,且AE=,∵AF⊥PC,且AE∩AF=A,∴PC⊥平面AEF,在Rt△PAC中,PA=2,AC==2,则PC==2,∵AF⊥PC,∴AF===,则EF==,CF==,∴三棱锥A﹣CEF的体积:V===.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.【分析】(1)有图象可得A=1,T=2,进而求得ω=π,令x=,则π+φ=+2kπ(k∈Z),结合|φ|<,可求得φ;(2)由(1)求得f(x)解析式,令+2kπ≤πx﹣≤+2kπ,k∈Z,解之即可;(3)条件转化为f(x)在[)上有两个零点,即可得b﹣a取值范围.解:(1)由题可得A=1,T=2()=2,则=π,当x=时,f(x)取得最大值,则π+φ=+2kπ(k∈Z),所以φ=﹣+2kπ(k∈Z),又因为|φ|<,故φ=﹣;(2)由(1)可知f(x)=sin(πx﹣),令+2kπ≤πx﹣≤+2kπ,k∈Z,则≤x≤,k∈Z,故f(x)的单调递减区间为[,](k∈Z),则f(x)在[1,2]上的单调递减区间为[1,];(3)令f(x)=sin(πx﹣)=0,则πx﹣=kπ,解得x=k+,k∈Z,所以f(x)在[)上有两个零点,因为f(x)周期为2,若函数y=f(x)在区间[a,b]上恰有2020个零点,则1009×2+1≤b﹣a<1010×2,解得b﹣a的取值范围为[2019,2020).。
2019学年高一数学下学期期末考试试题(含解析)
2019学年高一数学下学期期末考试试题(含解析)(考试时间为120分钟,满分为150分)一、选择题:本大题共25小题,每小题3分,共75分.1.在ABC △中,若222sin sin sin A B C +<,则ABC △的形状是().A .锐角三角形B .钝角三角形C .直角三角形D .无法确定【答案】B【解析】由正弦定理:222a b c +<, 故为2220a b c +-<,又∵222cos 2a b c c ab+-=,∴cos 0c <, 又∵0πc <<, ∴ππ2c <<, 故B .2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为1P ,2P ,3P ,则(). A .123P P P =< B .231P P P =< C .132P P P =< D .123P P P ==【答案】D【解析】无论三种中哪一抽法都要求个体被抽概率相同. 选D .3.若非零实数a ,b ,c 满足a b c >>,则一定成立的不等式是().A .ac bc >B .ab ac >C .||||a c b c ->-D .111a b c<< 【答案】C【解析】A .a b >,c 不一定为正,错;B .同A ,a 不一定为正,错;C .||||a b a c b c >⇒->-正确;D .反例:1a =,1b =-,2c =-,1111a b=>=-错误, 选C .4.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(,1)(1,)-∞-+∞B .(,0)(1,)-∞+∞C .(1,)+∞D .(1,0)-【答案】A【解析】由1n n a a +>,2n n a a >,∴(1)0n n a a ->, ∴1n a >或0n a <, 而[1,0]n a ∈-时, 1n n a a +>不对n 恒成立,选A .5.已知不等式501x x -<+的解集为P ,若0x P ∈,则“0||1x <”的概率为(). A .14B .13C .12D .23【答案】B 【解析】()(1)050101x s x x x x -+<⎧-<⇒⎨+≠+⎩,∴{}|1,15P x x x =≠-<<, ||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .6.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为().A .120B .240C .280D .60【答案】A【解析】选从5双中取1双,15C , 丙从剩下4双任取两双,两双中各取1只, 24C 2224⨯⨯=,∴15C 24120N =⨯=. 选A .7.设0a >,0b >,则下列不等式中不恒成立的是().A .12a a+≥B .222(1)a b a b ++-≥CD .3322a b ab +≥【答案】D【解析】332222()()a b ab a b a ab b +=-+--,a b <<有3322a b ab +<, 故D 项错误,其余恒成立. 选D .8.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().A .02B .14 29【答案】D【解析】从表第1行5列,6列数字开始由左到右依次选取两个数字中小于20的编号为: 08,02,14,29.∴第四个个体为29. 选D .9.执行如图所示的程序框图,输出的S 值为().A .1B .5C .14D .30【答案】C【解析】S K0 11 25 314 4⇒出14S =.选C .10.如图是1,2两组各7名同学体重(单位:千克)数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么().(注:标准差s x 为1x ,2x ,,n x 的平均数)3272010*******7632组1组A .12x x <,12s s <B .12x x <,12s s >C .12x x >,12s s >D .12x x >,12s s <【答案】A【解析】第1组7名同学体重为: 53,56,57,58,61,70,72,∴11(535672)61kg 7x =+++=,222211[(5361)(7261)]43kg 7S =-++-=,第2组7名同学体重为:72,73,61,60,58,56,54,21(545673)62kg 7x =+++=,222221[(5462)(7362)]63kg 7S =-++-=,∴12x x <,2212S S <.故选A .11.如图给出的是计算111112468100+++++的一个程序框图,则判断框内应填入关于i 的不等式为().A .50i <B .50i >C .51i <D .51i >【答案】B 【解析】11124100+++进行了50次, 第50次结束时,102n =,=51i , 此时输出,因此50i >. 选B .12.在()n x y +的展开式中,若第七项系数最大,则n 的值可能等于().A .13,14B .14,15C .12,13D .11,12,13【答案】D【解析】()n x y +的展开式第七项系数为6C n ,且最大, 可知此为展开式中间项, 当展开式为奇数项时:62n=,12n =, 当有偶数项时162n +=,11n =, 或172n +=,13n =, 故11n =,12,13. 选D .13.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色,现从袋中随机抽取3个小球,设每个小球被抽到的机会均等,则抽到白球或黑球的概率为().A .25B .35C .23D .910【答案】D【解析】从袋中5球随机摸3个, 有35C 10=,黑白都没有只有1种, 则抽到白或黑概率为1911010-=. 选D .14.已知数列{}n a 的前n 项的乘积为2n n T c =-,其中c 为常数,*n ∈N ,若43a =,则c =().A .4B .3C .2D .1【答案】A【解析】44433232T ca T c-===-, ∴4c =. 选A .15.组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司仪、司机思想不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这思想工作,则不同的选派方案共有().A .36种B .12种C .18种D .48种【答案】A【解析】若小张或小赵入选,有选法:113223C C C 24⋅⋅=种,若小张,小赵都入选,有:2323A A 12⋅=种,可知共有241236+=种. 选A .16.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为().A .1B .1-C .0D .2【答案】A【解析】令1x =,4014(2a a a +++=+,令1x =-,401234(2a a a a a -+-+=-, 而2202413()()a a a a a ++-+024*******()()a a a a a a a a a a =++++-+-+444(2(2(34)1=-=-=.选A .17.有4个人同乘一列有10节车厢的火车,则至少有两人在同一车厢的概率为().A .63125B .62125C .63250D .31125【答案】B【解析】4个人乘10节车厢的火车, 有41010000=种方法,没有两人在一车厢中有410A 10987=⨯⨯⨯种, ∴至少有两人在同一车厢概率为:4104A 49606211010000125p =-==. 选B .18.某车站,每天均有3辆开往省城的分为上、中、下等级的客车,某人某天准备在该车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略;先放过第一辆车,如果第二辆车比第一辆车则上第二辆,否则上第三辆车,那么他乘上上等车的概率为().A .14B .12C .23D .13【答案】B【解析】设三车等次为:下、中、上, 它们先后次序为6种: 下 中 上 ×→没乘上上等 下 上 中 √→乘上上等 中 下 上 √ 中 上 下 √ 上 下 中 × 上 中 下 × 情况数为3,12p =. 选B .19.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A .151B .168C .1306D .1408【答案】B【解析】共有318C 17163=⨯⨯种事件数, 选出火炬手编号为13(1)n a a n =+-,11a =,由1、4、7、10、13、16,可得4种, 12a =,由2、5、8、11、14、17,可得4种, 3n a =,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B .20.已知数列1:A a ,2a ,,12(0,3)n n a a a a n <<<≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论: ①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3 B .2 C .1 D .0【答案】A【解析】①数列0,2,4,6,j i a a +,(13)j i a a j i j -≤≤≤, 两数中都是该数列中项, 432a a -=,①正确,若{}n a 有P 性质,去{}n a 中最大项n a ,n n a a +与n n a a -至少一个为{}n a 中一项,2n a 不是,又由120n a a a ≤≤≤,则0是,0n a =,②正确,③1a ,2a ,3a 有性质P ,1230a a a <<≤, 13a a +,31a a -,至少有一个为{}n a 中一项,1︒.13a a +是{}n a 项,133a a a +=,∴10a =,则23a a +,不是{}n a 中项, ∴322a a a -=⇒∴1322a a a +=.2︒.31a a -为{}n a 中一项,则311a a a -=或2a 或3a ,①若313a a a -=同1︒;②若312a a a -=,则32a a =与23a a <不符; ③311a a a -=,312a a =. 综上1322a a a +=,③正确, 选A .21.x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩≤≤≥,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为().A .12或1- B .2或12C .2或1D .2或1-【答案】D 【解析】观察选项有12,1-,1,2. 当2a =时,y ax z =+与22y x =+重合时,纵截距最大,符合, 1a =-时,y ax z =+与y x z =-+重合时,纵截距最大,符合, 12a -<<时,y ax z =+经过(0,2)B 时,纵截距最大,不符合,12,1舍去, 故2a =或1-, 选D .12x 222.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是().A .(2,)+∞B .(1,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】当12k ≤时,20x k -≥,因此(2)0f x k k --<, 可化为2(2)0x k k --<, 即存在[1,]x ∈+∞,使22()440f x x kx k k =-+-<成立,~由于22()44f x x kx k k =-+-的对称轴为 21x k =≤,所以22()44f x x kx k k =-+-,连[1,]x ∈+∞单调递增,因此只要(1)0g <, 即21440k k k -+-<,解得114k <<, 又因12k ≤,所以1142k <≤,当12k >时,2(2)0(2)0f x k k x k k --<⇔---<恒成立,综上,14k >. 选D .23.设O 为坐标原点,点(4,3)A ,B 是x 正半轴上一点,则OAB △中OBOA的最大值为(). A .43B .53C .54D .45【答案】见解析 【解析】(4,3)A , 3sin 5AOB =∠,sin sin AB OBAOB A=∠,∴sin 5sin sin 3OB A A AB AOB ==∠, 由(0,π)A ∈得sin (0,1]A ∈, ∴当π2A =时55sin 33OB A AB ==, 为最大值:选B .24.数列{}n a 的通项公式为*||()n a n c n =-∈N ,则“1c ≤”是“{}n a 为递增数列”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】见解析【解析】若{}n a 递增, 1|1|||0n n a a n c n c +-=+--->22(1)()n c n c +->-.∴有12c n <+, ∵1322n +>, ∴1c ≤为{}n a 递增充分不必要条件. 选A .25.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考察每行中五个数之和,记这五个和的最小值为m ,则m 的最大值为().A .8B .9C .10D .11【答案】C【解析】1︒,5个1分在同列,5m =,2︒,5个1分在两列,则这两列出现最大数至多为3,故2515320m ⨯+⨯=≤,有10m ≤, 3︒,5个1在三列,3515253m ⨯+⨯+⨯≤,∴0m ≤,4︒,若5个1在至少四列中,其中某一列至少有一个数大于3,矛盾,∴1M ≤, 如图可取10. 故选C .二、填空题:本大题共11小题,每小题3分,共33分.把答案填在题中横线上.26.执行如图所示的程序框图,若1M =,则输出的S =__________;若输出的14S =,则整数M = __________.【答案】见解析 【解析】n S 0 01 2 1M =时,2S =, 2 63 14 当3n =时出来,故3M =.27.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________. 【答案】见解析【解析】7245%74(145%)72.1⨯+⨯-=.28.在一个有三个孩子的家庭中,(1)已知其中一个是女孩,则至少有一个男孩的概率是__________. (2)已知年龄最小的孩子是女孩,则至少有一个男孩的概率是__________. 【答案】见解析【解析】共有2228⨯⨯=种,只有男孩1种除去,只有女孩有1种, ∴161817p =-=-.29.在AOB △的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有__________个. 【答案】见解析【解析】3331267C C C 16S --=,连12个点中任取3个点,除去同一直线上点.30.如图,在23⨯的矩形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有__________个.【答案】见解析【解析】直角边长为1时,2464=⨯个,7214⨯=个, 直角边长为2时,248⨯=个,时,4个, ∴总共有24148450+++=.31.从{}1,2,3,4,5中随机选取一个数为a ,从{}2,4,6中随机选取一个数为b ,则b a >的概率是__________. 【答案】见解析【解析】共有5315⨯=种, b a >有共9种, ∴93155P ==.32.已知正方形ABCD .(1)在A ,B ,C ,D 四点中任取两点连线,则余下的两点在此直线异侧的概率是__________.(2)向正方形ABCD 内任投一点P ,则PAB △的面积大于正方形ABCD 面积四分之一的概率是__________. 【答案】见解析【解析】(1)共有24C 6=种, 异侧2种, ∴2163P ==.~(2)在CDFE 内,14ABC PAB D S S >⋅平行四边形△,【注意有文字】而12CEDF ABCD S S =⋅,∴12P =. OF E CB A D33.已知当实数x ,y 满足12121x y x y x y +⎧⎪--⎨⎪-⎩≤≥≤时,1ax by +≤恒成立,给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3. ②22x y +的最大值等于2.③以a ,b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5. ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是__________. 【答案】见解析 【解析】①13322S ==≠,d =②当1x =-,1y =-时, 222x y +=取最大,②对;③1ax by +≤恒成立, 当且仅当111b a a b ⎧⎪⎨⎪--⎩≤≤≤,~③193322S =⨯⨯=,③对;④1a b ==时,2a b +=最大, 12a b ==-时,1a b +=-最小,④对. 综上②③④.34.设M 为不等式组40400x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥,所表示的平面区域,N 为不等式组04t x t y t -⎧⎨-⎩≤≤≤≤所表示的平面区域,其中[0,4]t ∈,在M 内随机取一点A ,记点A 在N 内的概率为P .(ⅰ)若1t =,则P =__________. (ⅱ)P 的最大值是__________. 【答案】见解析【解析】①不等式组4040x y x y y +-⎧⎪-+⎨⎪⎩≤≥0≥平面区域为M ,184162M S =⨯⨯=,不等式组(04)04t x tt y t -⎧⎨-⎩≤≤≤≤≤≤, 表示的面积为2(4)t t - 22(2)8t =--+. 1t =时,283168P -+==. ②2t =时,081162P +==, 且2(4)t t -最大,P 最大.35.若不等式*1111()1232a n n n n n++++>∈+++N 恒成立,则a 的范围__________.~【答案】见解析 【解析】设11()12f n n n=+++ 111(1)2212(1)f n n n n +=++++++ 111(1)()212(1)1f n f n n n n +-=+-+++ 1102122n n =->++. ∴()f n 是关于n 递增数列(,2)n n ∈N ≥, ∴7()(2)12f n f =≥, ∴712a <.36.当[1,9]x ∈时,不等式22|3|32x x x kx -++≥恒成立,则k 的取值范围是__________. 【答案】见解析【解析】等价为22|3|32x x x k x -++≥, 设22|3|32()x x x f x x-++=,当13x ≤≤,32()3f x x=+,在[1,3]上单减, min 41(3)3f f ==,当39x <≤,32()2323f x x x =+-≥, 当且仅当322x x=,4x =成立, ∴()f x 最小值为13. ∴13k ≤.三、解答题:(本大题共6小题,每题7分,共42分.解答应写出文字说明,证明过程或演算步骤.)37.已知ABC △为锐角三角形,a ,b ,c 分别为角A ,B ,C 2sin c A =. (1)求角C .(2)当c =时,求ABC △面积的最大值. 【答案】见解析 【解析】(1)正弦定理:sin sin a cA c=,∵π02c <<,∴π3c =. (2)余弦定理是:2222cos c a b ab c =+-, ∴2212a b ab =+-, 又∵22a b ab ab +-≥, ∴12ab ≤,1sin 2ABC S ab c ==△≤当仅当a b =时取得∴max S =38.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠.(Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值. (Ⅱ)解关于x 的不等式()0f x >. 【答案】见解析【解析】(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦,0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦.39.在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.a(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数.(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率. 【答案】见解析【解析】(Ⅰ)10.30.150.10.050.05a =----- 0.035=.(Ⅱ)[40,50)有0.00510402⨯⨯=人, [59,60)有0.0110404⨯⨯=人,两名学生都在[50,60)概率为:2426C 62C 155P ===, ∴23155P =-=求.【注意有文字】40.已知数列{}n a 的前n 项和31n n S =-,其中*n ∈N . (Ⅰ)求数列{}n a 的通项公式.(Ⅱ)若数列{}n b 满足11b =,13(2)n n n b b a n -=+≤. (ⅰ)证明:数列13n n b -⎧⎫⎨⎬⎩⎭为等差数列.(ⅱ)求数列{}n b 的前n 项和n T . 【答案】见解析【解析】(Ⅰ)11(31)(31)n n n n n a S S --=-=--- 123n -⋅,2n ≥,∴123(*)n n a n -=⋅∈N ,即11112323233n n n n n n n b b b b -----=+⋅⇔=+, ∴112233n n n n b b ----=, ∴13n n b -⎧⎫⎨⎬⎩⎭为首项为1,公差为2的等差数列. (Ⅱ)1nn i c T b ==∑,∴112(1)213nn b n n -=+-=-, ∴1(21)3n n b n -=-⋅, ∴11333(21)3n n T n -=⨯︒+⨯++-⋅ 231333(21)3n n T n =⨯+⨯++-⋅ ∴21212(333)(21)3n n n T n -=--++++-⋅(1)31n n T n =-⋅+,*n ∈N .41.某大学调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60),得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:A 餐厅分数频率分布直方图频率分数B 餐厅分数频数分布表(Ⅰ)在抽样的100人中,求对A (Ⅱ)从该校在A ,B 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高的概率.(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由. 【答案】见解析【解析】(Ⅰ)(0.0030.0050.012)100.2P =++⨯=, 1000.220N =⨯=人.(Ⅱ)记A 指数比B 高为事件C ,A 评价指数为1为事件1A ,为2为事件2A ,B 评价指数数为0为事件0B ,为1为事件1B .∴1()(0.020.02)100.4P A =+⨯=, 2()0.4P A =,~0235()0.1100P B ++==, 14015()0.55100P B +==, 102021()()P C P A B A B A B =++,()0.40.10.40.10.40.550.3P C =⨯+⨯+⨯=.(Ⅲ)A :0.4 1.2⨯=, ()00.10.55120.35 1.25E Y =⨯+⨯+⨯=,EX EY <.选B .42.设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P .(Ⅲ)若{}|32x x P -<<⊆,求m 的取值范围. 【答案】见解析【解析】(Ⅰ)∵{}|12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -+++=的两根, 1x =-代入得(31)2(1)0m m m ++++=,∴12m =-.(Ⅱ)(2)[(1)]0x mx m --+>, 当0m >时,112x =,21m x m+=. ①12m m+=时,1m =,2x ≠; ②12m m +>时,01m <<,2x <或1m x m +>; ③12m m +<时,1m >,2x >或1m x m+<.~综上01m <<,1|2,m P x x x m +⎧⎫=<>⎨⎬⎩⎭,1m =,{}|72,2P x x x =∈≠, 1m >,1|,2m P x x x m +⎧⎫=<>⎨⎬⎩⎭. (Ⅲ)(3,2)x ∈-时,2(31)2(1)0mx m x m -+++>恒成立, 0m =时,20x -+>,{}|2P x x =<合题, 0m >时,由(I )得01m <≤合题, 0m <时,1112m m m+=+<, ∴1|2m P x x m +⎧⎫=<<⎨⎬⎩⎭, 此时13m m +-≤,解得104m -<≤, 综上,1,14m ⎡⎤∈-⎢⎥⎣⎦.四、附加题43.已知数列{}n a 是首项为1,公比为q 的等比数列. (Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值. 【答案】见解析【解析】(Ⅰ)1n n a q -=, 111(1)n n n n n a a q q q q --+-=-=-,当01q <<时:有10n q ->,10q -<, ∴10n n a a +-<, ∴{}n a 为递减数列.(Ⅱ)∵k a ,2k a +,1k a +成等差数列, ∴112()0k k k q q q +--+=, 12(21)0k q q q -⋅--=,∵0q ≠, ∴2210q q --=, 解得:1q =或12q =-.44.从某校高一年级随机抽取n名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:频率(Ⅰ)求n的值.(Ⅱ)若10a=,补全表中数据,并绘制频率分布直方图.(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为7.84,求a,b的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率.【答案】见解析【解析】(Ⅰ)2500.04n==.(Ⅱ)组号分组频数频率1[5,6)20.042[6,7)100.203[7,8)100.204[8,9)200.405[9,10)80.16(Ⅲ)112 5.5+10 6.5+7.58.589.5784 50210950a ba b⎧⨯⨯⨯+⨯+⨯=-⎪⎨⎪++++=⎩,1515a b =⎧⎨=⎩, ∴158230.465050P +===.频率睡眠时间45.已知关于x 的一元二次方程2220x ax b -+=,其中a ,b ∈R .(Ⅰ)若a 随机选自集合{}0,1,2,3,4,b 随机选自集合{}0,1,2,3,求方程有实根的概率. (Ⅱ)若a 随机选自区间[0,4],b 随机选自区间[0,3],求方程有实根的概率. 【答案】见解析【解析】(Ⅰ)可能发生有4520⨯=个, 有14个符合题意, ∴1472010P ==, 22(2)40a b ∆=-->,∴a b ≥, 此时符合题意.(Ⅱ)[0,4]a ∈,[0,3]b ∈,∴区域{}Ω=()|04,03a b a b ⋅≤≤≤≤, 面积Ω=3412μ⨯=,事件A 为有实根, {}()|04,03,A a b a b a b =⋅≤≤≤≤≥,153433212A μ=⨯-⨯⨯=, ∴1552()Ω128M P A μμ===.46.经统计,某校学生上学路程所需要时间全部介于0与50之间(单位:分钟).现从在校学生中随机抽取100人,按上学所学时间分组如下:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得打如图所示的频率分布直方图.(分钟)(Ⅰ)根据图中数据求a 的值.(Ⅱ)若从第3,4,5组中用分成抽样的方法抽取6人参与交通安全问卷调查,应从这三组中各抽取几人? (Ⅲ)在(Ⅱ)的条件下,若从这6人中随机抽取2人参加交通安全宣传活动,求第4组至少有1人被抽中的概率.【答案】见解析【解析】(Ⅰ)(0.0050.010.030.035)101a ++++⨯=, 0.02a =.(Ⅱ)第3组人数为1000.330⨯=人, 第4组人数为0.210020⨯=人, 第5组人数为0.110010⨯=人, ∴比例为3:2:1,∴第3组,4组,5组各抽3,2,1人. (Ⅲ)记3组人为1A ,2A ,3A ,4组人为1B ,2B ,5组人为1C ,共有28C 15=种, 符合有:11()A B 12()A B 21()A B 22()A B 31()A B 32()A B 12()B B 11(,)B C 21(,)B C 9种,∴93155P ==.47.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率. (Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率. (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.(Ⅳ)若从袋中每次随机抽取1个球,有放回的抽取3次,记球的最大编号为X ,求随机变量X 的分布列.~【答案】见解析【解析】(Ⅰ)共有3666=⨯种, 和为6的共5种, ∴536P =. (Ⅱ)1526C 1C 3P ==为抽2个球,有6的概率,∴2232122C (1)3339P P -=⨯⨯=为所求. (Ⅲ)X 可取3,4,5,6, 3336C 1(3)C 20P x ===,2336C 3(4)C 20P x ===,2436C 63(5)C 2010P x ====,2336C 1(6)C 2P x ===.(Ⅳ)11(1)6216P X ⎛⎫=== ⎪⎝⎭,33321331117(2)C C 666216P X ⎛⎫⎛⎫⎛⎫==+⋅+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32221331121219(3)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331131337(4)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331141461(5)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331151591(6)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.48.在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数,现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,随机抽取了20(Ⅰ)根据题中数据,估计这240(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X ,求X 的分布列和数学期望.(Ⅲ)试题的预估难度和实测难度之间会有偏差,设i P '为第i 题的实测难度,请用i P 和i P '设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理. 【答案】见解析 【解析】(Ⅰ)55540.220R P N ===, ∴2400.248N =⨯=人. (Ⅱ)X 可取0,1,2,216220C 12(0)C 19PX ===,11164220C C 32(1)C 95P X ⋅===, 24220C 3(2)C 95P X ===.33801219959595EX =⨯+⨯+⨯=. (Ⅲ)定义2121[()()]i i n n S P P P P n=-++-~i P 为第i 题预估难度,且0.05S <,则合理222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=.∵0.0120.05S =<, ∴合理.49.已知数列{}n a 的通项公式为12(1)(1)n n a n n λ+=+-⋅+,其中λ是常数,*n ∈N . (Ⅰ)当21a =-时,求λ的值.(Ⅱ)数列{}n a 是否可能为等差数列?证明你的结论. (Ⅲ)若对于任意*n ∈N ,都有0n a >,求λ的取值范围. 【答案】见解析【解析】(Ⅰ)2n =时2321a λ=-=-, ∴2λ=.(Ⅱ)13a λ=+,232a λ=-,373a λ=+,474a λ=-, 若存在入使{}n a 为等差数列 有:2132a a a =+, 2(32)(3)(73)λλλ-=+++ ∴12λ=-,21332a a λ-=-=,43172a a λ--=-=, 矛盾,∴不存在入使{}n a 为等差数列. (Ⅲ)∵0n a >,∴12(1)(1)0n n n λ++-⋅+>,即1(1)(1)2n nnλ+--⋅<+,n ∈N .①当n 为正偶数:12nλ<-,随n 增大变大,13222λ<-=.②当n 为正奇数:12nλ<--,随n 变大而变大,2λ-≥. 综上:31,2λ⎡⎫∈-⎪⎢⎣⎭.50.设a ∈R ,*n ∈N ,求和:231n a a a a +++++=__________.【答案】见解析【解析】当0a =时,211n a a a ++++=,当1a =时,11n a a n +++=+,当0a ≠,且1a ≠时1111n na a a a+-++=-,∴11,11,11n n a a a a++=⎧⎪⎨-≠⎪-⎩.51.设数列{}n a 的通项公式为*3()n a n n =∈N ,数列{}n b 定义如下:对任意*m ∈N ,m b 是数列{}n a 中不大于23m 的项的个数,则3b =__________;数列{}m b 的前m 项和m S =__________. 【答案】见解析【解析】633n ≤,∴243n ≤, ∴3243b =, 由233m n ≤, ∴213m n -≤ ∴213m m b -=,3(19)3(91)198m m m S -==--,故243;3(91)8m-.52.已知函数2()(13)4f x mx m x =+--,m ∈R .当0m <时,若存在0(1,)x ∈+∞,使得0()0f x >,则m 的取值范围为__________. 【答案】见解析【解析】0m <,2(1)(13)4f mx m x =+--开口朝下, 13311222n m x m m-=-=->, 若0(1,)x ∃∈+∞使0()0f x >, 则2(13)160m m -+>, 即291010m m ++>, ∴1m <-或109m -<<,综上:1(,1),09⎛⎫-∞-- ⎪⎝⎭.53.设不等式组23034057200x y x y x y -⎧⎪-⎨⎪--⎩≥≥≤,表面的平面区域是W ,则W 中的整点(横、纵坐标均为整数的点)个数是().A .231B .230C .219D .218【答案】见解析【解析】3405720x y x y -⎧⎨--⎩≥,8060x y =-⎧⎨=-⎩,∴(80,60)A -,23057200x y x y -=⎧⎨--=⎩,6040x y =⎧⎨=⎩, (60,40)B ,分别取80x =-,79-,60,求出y 值, 可知总数有231, 选A .2x 3。
2019-2020学年辽宁省锦州市高一下学期期末数学试卷 (解析版)
2019-2020学年辽宁省锦州市高一第二学期期末数学试卷一、选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=,cos2θ=.14.复数范围内关于x的方程x2+x+1=0的解集为.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.参考答案一、单项选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣解:sin150°=sin(180°﹣30°)=sin30°=.故选:A.2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解:复数z满足(1+i)z=2﹣i,∴(1﹣i)(1+i)z=(1﹣i)(2﹣i),∴2z=1﹣3i,∴z=i.则复数z在复平面内对应的点在第四象限.故选:D.3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形解:在△ABC中,由a cos A=b cos B,利用正弦定理可得sin A cos A=cos B sin B,即sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=.若A=B,则△ABC为等腰三角形,若A+B=,则C=,△ABC为直角三角形,故选:D.4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.解:∵,又∵,∴=0即﹣1×3+2m=0即m=故选:D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°解:由正弦定理得得=得sin C=,∵c>a,∴C>A,得C=60°或120°,故选:B.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)解:根据函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图,可得2×+φ=,∴φ=﹣,故f(x)=2sin(2x﹣),故选:A.8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.解:∵α,β都是锐角,且cosα=,=﹣,∴sinα==,∴=sinαcosβ﹣cosαsinβ=cosβ﹣sinβ=﹣.∴cosβ﹣=﹣.整理得10cos2β+4cosβ﹣1=0,解得cosβ=或cosβ=﹣(舍),故选:B.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°解:不妨设BB1=1,则AB=,•=()•()=+++=0+cos60°﹣12+0=0∴直线AB1与C1B所成角为90°故选:B.10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.解:函数g(x)=f(x)﹣ax在[0,2π)上有五个零点等价于方程f(x)﹣ax=0在[0,2π)有五个不同的实数根,即函数y=f(x)与函数y=ax的图象在[0,2π)有五个交点,结合图象可得,当直线y=ax过点(2π,4)时,a取得最小值,此时,.故选:A.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增解:将函数f(x)=cos(2x+)﹣1 的图象向左平移个单位长度,可得y=cos(2x+π)﹣1=﹣cos2x﹣1 的图象,再向上平移1个单位长度,得到函数g(x)=﹣cos2x的图象.关于函数g(x),它的最小正周期为=π,故A正确;令x=,求得g(x)=0,可得它的图象关于点(,0)对称,故B正确;由于它是偶函数,故它的图象关于y轴对称,故C正确;在区间(,π)上,2x∈(π,2π),y=cos2x单调递增,故g(x)=﹣cos2x单调递减,故D错误,故选:ABC.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β解:由m,n是两条不同直线,α,β是两个不同平面,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊥α,n⊥α,由线面垂直的性质定理得m∥n,故B正确;对于C,若α⊥β,m⊥α,则m∥β或m⊂β,故C错误;对于D,若n∥α,n⊥β,由线面平行的性质定理和面面垂直的判定定理得α⊥β,故D 正确.故选:BD.三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=﹣,cos2θ=.解:角θ的终边上的点P(﹣1,3)到原点的距离为:r==,由任意角的三角函数的定义得cosθ==﹣.可得cos2θ=1﹣2sin2θ=1﹣2×(﹣)2=.故答案为:﹣,.14.复数范围内关于x的方程x2+x+1=0的解集为{﹣+i,﹣﹣i}.解:x2+x+1=0,即为x2+x+=﹣1+,可得(x+)2=﹣,即x+=±i,解得x=﹣+i或﹣﹣i,则解集为{﹣+i,﹣﹣i}.故答案为:{﹣+i,﹣﹣i}.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.解:由题意可得AB=600,∠BAC=30°,∠ABC=180°﹣75°=105°,∴∠ACB=45°,在△ABC中,由正弦定理可得:,即=,∴BC=300,在Rt△BCD中,∠CBD=30°,∴tan30°==,∴DC=100.故答案为:100.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.解:因为AB=BC,所以△ABC外接圆的圆心M在BO上,设此圆的半径为r,因为BO=4,所以(4﹣r)2+32=r2,解得,因为OD=OC﹣CD=3﹣2=1,所以,设QM=a,易知QM⊥平面ABC,则QM∥PD,因为QP=QB,所以,即,解得a=1,所以球Q的半径,表面积.故答案为:.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.解:(1)∵||=4,||=3,∵(2)=4||2﹣3||2﹣4•=37﹣4•=61∴•=||•||•cos<,>=﹣6∴cos<,>=﹣∴<,>=120°∵向量与的夹角θ=120°…(2)∵||2=||2+||2﹣2•=16+9+12=37∴||=…18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.【解答】证明:(1)在△AA1C中,点F为AC的中点,G为AA1的中点,∴GF∥A1C,在直三棱柱ABC﹣A1B1C1中,∵E是BB1的中点,G为AA1的中点,∴A1G∥BE,且A1E=BE,∴四边形A1GBE是平行四边形,∴A1E∥GB,∵GB∩GF=G,∴平面BFG∥平面A1EC.(2)在直三棱柱ABC﹣A1B1C1中,∵AB=BC,点F为AC的中点,∴BF⊥AC,又AA1⊥底面ABC,BF⊂底面ABC,∴AA1⊥BF,又AA1,AC⊂平面ACC1A1,AA1∩AC=A,∴BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.解:(1)在△ABC中,a2+c2=b2+ac.所以,由于0<B<π,所以B=.(2)由(1)得:A+C=,所以==.由于,所以当时,cos A+cos C的最大值为1.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?解:(1)由题意,A=50,b=60,T=3;故ω=,故y=50sin(t+φ)+60;则由50sinφ+60=10及φ∈[﹣π,π]得,φ=﹣;故y50sin(t﹣)+60;(2)在第一个3分钟内求即可,令50sin(t﹣)+60>85;则sin(t﹣)>;故<t﹣<,解得,1<t<2;故在摩天轮转动的一圈内,有1分钟时间点P距离地面超过85米.21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.【解答】证明:(1)由题知四边形ABCD为正方形,∴AB∥CD,又CD⊂平面PCD,AB⊄平面PCD∴AB∥平面PCD又AB⊂平面ABFE,平面ABFE∩平面PCD=EF∴EF∥AB,又AB∥CD∴EF∥CD,由S△PEF:S四边形CDEF=1:3,知E、F分别为PC、PD的中点,连接BD交AC与G,则G为BD中点,在△PBD中FG为中位线,∴EG∥PB,∵EG∥PB,EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.解:(2)∵PA=2,AD=AB=1,∴,,∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD在Rt△CDE中,,在△ACE中由余弦定理知,∴,∴S△ACE=,设点F到平面ACE的距离为h,则,由DG⊥AC,DG⊥PA,AC∩PA=A,得DG⊥平面PAC,且,∵E为PD中点,∴E到平面ACF的距离为,又F为PC中点,∴S△ACF=S△ACP=,∴由V F﹣ACE=V E﹣ACF,解得,∴点F到平面ACE的距离为.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.解:(1)因为sin C sin(B+)=sin A,所以sin B•sin C+cos B•sin C=sin(B+C)=sin B•cos C+cos B•sin C,即sin B•sin C=sin B•cos C.又0<B<π,所以tan C=1,可得C=…2分可得==﹣2+,…4分(2)由题意函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,得,2cos2A ﹣cos A<0,所以0<cos A<,所以角A的范围是,由(1)知C=,所以,…6分设t=sin B+cos B=sin(B+),因为,所以t∈(1,),…8分则sin B cos B=,令y=h(t)=t2+kt﹣,t∈(1,).(i)当k≥﹣1时,h(1)=k,h()=k+,此时f(B)的值域为(k,k+),…9分(ii)当﹣≤k<﹣1时,h(﹣k)=﹣k2﹣,h()=k+,此时f(B)的值域为[﹣k2﹣,k+),…10分(iii)当﹣<k<﹣时,h(﹣k)=﹣k2﹣,h(1)=k,此时f(B)的值域为[﹣k2﹣,k),…11分(iv)当k≤﹣时,h()=k+,h(1)=k,此时f(B)的值域为(k+,k).…12分。
2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)
2019-2020学年山西省太原市高一第二学期期末数学试卷一、选择题(共12小题).1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.162.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣14.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.15.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±47.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.29.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣211.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为km.15.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.参考答案一、选择题:本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下表相应位置.1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.16【分析】由已知直接利用等差数列的通项公式求解.解:在等差数列{a n}中,由a1=1,d=2,得a4=a1+3d=1+3×2=7.故选:B.2.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选:D.3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣1【分析】根据条件便有,进行向量数量积的坐标运算便可得出k的值.解:∵;∴;∴k=2.故选:A.4.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.1【分析】利用余弦定理即可求出a的值.解:因为A=30°,b=,c=1,∴a2=b2+c2﹣2bc cos A==1,故a=1.故选:D.5.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b【分析】通过举例利用排除法可得ABC不正确,即可得出结论.解:由a<b,取a=﹣2,b=﹣1,可知A,B不正确;取a=﹣1,b=1,可得C不正确.故选:D.6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±4【分析】根据等比数列的性质知:a1a3a5=(a2q)3=8,a2q=a3=2,a2a4=a32=4.解:设等比数列{a n}的公比为q,则a1a3a5=•a2q•a2q3=(a2q)3=8,则a2q=a3=2.又a2a4=•a3q=a32=22=4.故选:B.7.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.【分析】直接利用两角差的余弦公式,求得所给式子的值.解:cos45°cos15°+sin15°sin45°=(cos45°﹣15°)=cos30°=,故选:B.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.2【分析】根据向量的平方等于模的平方,利用数量积定义和数量积的性质即可得出.解:∵||=1,||=2,且,的夹角为120°,∴=1,=4,•=﹣1,∴|+|2=(+)2=+﹣2•=1+4﹣2=3,故|+|=,故选:B.9.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.【分析】利用数列{a n}的通项公式求出数列{a n}的前4项,得到{a n}是周期为3的周期数列,从而a2020=a1,由此能求出结果.解:在数列{a n}中,a1=0,a n+1=(n∈N*),∴=,=﹣,=0,∴{a n}是周期为3的周期数列,∵2020=673×3+1,∴a2020=a1=0.故选:A.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣2【分析】利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,且x+2y=1,则+=(+)(x+2y)=3+,当且仅当且x+2y=1即y==,x=时取等号,故选:B.11.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)【分析】由已知对a进行分类讨论,然后结合二次不等式的性质可求.解:当a=0时,﹣1<0恒成立,当a≠0时,可得,解可得,﹣1<a<0,综上可得,﹣1<a≤0,故选:C.12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038【分析】差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,可得a2019>0,a2020<0.再利用求和公式及其性质即可得出..解:∵等差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,∴a2019>0,a2020<0.于是S4038==>0,S4039==4039•a2020<0.∴使S n>0成立的最大正整数n是4038.故选:D.二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.【分析】根据弧长公式进行计算即可.解:由题意得,扇形的半径为8cm,圆心角为45°,故此扇形的弧长为:=.故答案为:.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为30 km.【分析】根据题意画出相应的图形,求出∠B与∠BAC的度数,再由AC的长,利用正弦定理即可求出BC的长.解:根据题意画出图形,如图所示,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:=,即=,∴BC=30km,则这时船与灯塔的距离为30km.故答案为:3015.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为2.【分析】由题意可得b2=ac,2x=a+b,2y=b+c,代入要求的式子+,化简求得结果.解:∵已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,可得b2=ac,2x=a+b,2y=b+c,∴+=+===2,故答案为2.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为3240.【分析】由数列递推式判断数列的特征,4项一组,求和后得到一个等差数列,然后求和即可.解:设a1=a,由a n+1+(﹣1)n a n=2n﹣l,得a2=a+1,a3=2﹣a,a4=7﹣a,a5=a,a6=a+9,a7=2﹣a,a8=15﹣a,a9=a,a10=a+17,a11=2﹣a,a12=23﹣a.可知:a1+a2+a3+a4=10,a5+a6+a7+a8=26,a9+a10+a11+a12=42,…10,26,42,…是等差数列,公差为16,∴数列{a n}的前80项和为:20×10+×16=3240.故答案为:3240.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,解方程可得公比,进而得到所求和.解:(1)设等差数列{a n}的公差为d,由a2=3,a4=7,可得a1+d=3,a1+3d=7,解得a1=1,d=2,则a n=1+2(n﹣1)=2n﹣1,n∈N*;(2)设等比数列{b n}的公比为q,由b1=a1=1,b4=a14=q3=27,解得q=3,数列{b n}的前n项和S n==(3n﹣1).18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.【分析】(1)由题意利用同角三角函数的基本关系,求得结果.(2)由题意利用诱导公式,求得结果.解:(1)∴已知sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα==﹣.(2)==﹣cos2α=﹣.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.【分析】(1)由已知利用正弦定理可得b的值.(2)由已知利用两角和的正弦函数公式可求sin C的值,进而根据三角形的面积公式即可求解.解:(1)∵△ABC中,A=60°,a=6,B=45°.∴由正弦定理,可得b===2.(2)∵A+B+C=180°,A=60°,B=45°.∴sin C=sin(A+B)=sin A cos B+cos A sin B=+=,∴S△ABC=ab sin C=×=9+3.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.【分析】(1)写出f(x)解析式,根据正弦函数的周期及对称中心可得答案;(2)条件等价于sin(x+)≥,解之即可解:由题可得f(x)==1+sin x+cos x﹣1=sin(x+),(1)由f(x)解析式可得其最小正周期T=2π,令x+=kπ,则x=kπ﹣,k∈Z,即f(x)的对称中心为(kπ﹣,0),k∈Z;(2)由f(x)≥1得sin(x+)≥,解得2kπ+≤x+≤2kπ+π,k∈Z,则2kπ≤x≤2kπ+,k∈Z,所以x的取值范围为[2kπ,2kπ+](k∈Z).选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.【分析】(1)根据平面向量数量积的运算得到f(x)解析式,结合正弦函数性质即可得到答案;(2)由f(x)≤2得到sin(2x+)≤,解之即可解:由题得f(x)==1+sin2x+cos2x=1+sin(2x+)(1)则函数f(x)的最小正周期为T==π,令2x+=kπ,解得x=(k∈Z),即函数的对称中心为(,1)(k∈Z);(2)当f(x)≤2时,即1+sin(2x+)≤2,所以sin(2x+)≤,则﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤kπ(k∈Z),即x的取值范围是[﹣+kπ,kπ](k∈Z)(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用定义的应用求出结果.(2)利用(1)的应用求出数列的通项公式,进一步利用裂项相消法在数列求和中的应用求出结果.【解答】证明:(1)数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).整理得:(常数),所以数列{}是以为首项,1为公差的等差数列.解:(2)由(1)得:,解得:a n=n(n+2).所以.所以:==选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.【分析】(1)由a n+1=2a n+2n+1﹣1,得,然后利用累加法求得数列{a n}的通项公式,再由等差数列的定义求使{b n}为等差数列的λ值;(2)由(1)知,,令{(n+1)•2n}的前n项和为T n,利用错位相减法求得T n,进一步求得数列{a n}的前n项和S n.解:由a n+1=2a n+2n+1﹣1,得,∴,得,,,…(n≥2).累加得:==.∴(n≥2).a1=5适合上式,∴.则b n==.=.若{b n}为等差数列,则λ﹣1=0,即λ=1.故存在实数λ=1,使得{b n}为等差数列;(2)由(1)知,.令{(n+1)•2n}的前n项和为T n,则,.∴=,得.∴数列{a n}的前n项和S n=n•2n+1+n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年高一数学下学期期末考试试题(扫描版)
高一数学期末考试参考答案
1.B
2.C
3.A
4.A
5.C
6.D
7.A
8.A
9.C 10.C 11.A 12.A
13.
14. 15.{x|
﹣<x
<} 16.
17.(Ⅰ)设等差数列{}n a 的公差d 因为366,0a a =-=所以1126{
50
a d a d +=-+=解得110,2a d =-=
所以()1012212n a n n =-+-⋅=--------------------5分 (Ⅱ)设等比数列{}n b 的公比为q
因为212324,8b a a a b =++=-=- 所以824q -=-即q =3
所以{}n b 的前n 项和公式为(
)()
114131n
n
n b q S q
-==-- --------------10分
18. (1)由正弦定理
sin sin sin a b c
A B C ==
可得,2sin cos sin cos sin cos sin B B A C C A B =+=, ∵sin 0B >,故1cos 2B =,∵0B π<<,∴3
B π
=. (6分)
(2)由2b =,3
B π
=
,由余弦定理可得224ac a c =+-,
由基本不等式可得22424ac a c ac =+-≥-,4ac ≤, 当且仅当2a c ==时,1
sin 2
ABC S ac B ∆=
取得最大值142⨯=, 故ABC ∆
(12分)
19.(1)众数的估计值为最高的矩形的中点,即众数的估计值等于错误!未找到引用源。
(克) (2分) (2)从图中可知,重量在错误!未找到引用源。
的柚子数
错误!未找到引用源。
(个)
重量在错误!未找到引用源。
的柚子数 错误!未找到引用源。
(个) (4分)
从符合条件的柚子中抽取5个,其中重量在错误!未找到引用源。
的个数为
错误!未找到引用源。
(个) (6分)
(3)由(2)知,重量在错误!未找到引用源。
的柚子个数为3个,设为错误!未找到引用源。
,重量在错误!未找到引用源。
的柚子个数为2个,设为错误!未找到引用源。
,则所有基本事件有:错误!未找到引用源。
,错误!未找到引用源。
错误!未找到引用源。
共10种 (9分) 其中重量在错误!未找到引用源。
的柚子最多有1个的事件有: 错误!未找到引用源。
,错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
共7种 (11分) 所以,重量在错误!未找到引用源。
的柚子最多有1个的概率错误!未找到引用源。
. (12分)
20.(Ⅰ)
……6分
(Ⅱ)错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
所求回归直线方程为错误!未找到引用源。
. ………12分 21.
(1) 错误!未找到引用源。
当错误!未找到引用源。
-1=0时,不等式为错误!未找到引用源。
即错误!未找到引用源。
. 当错误!未找到引用源。
-1>0时,不等式解集为错误!未找到引用源。
当错误!未找到引用源。
-1<0时,不等式解集为错误!未找到引用源。
综上得:当错误!未找到引用源。
时解集为错误!未找到引用源。
,当0<错误!未找到引用源。
时解集为
错误!未
找到引用源。
当错误!未找到引用源。
时,不等式解集为错误!未找到引用源。
…7分
(2)x>1时, 原命题化为(m-1)x+1>0恒成立, ∴(m-1) >错误!未找到引用源。
…10分
∴ 错误!未找到引用源。
所以 2>错误!未找到引用源。
………12分
22.解:(1)因为点错误!未找到引用源。
,在直线错误!未找到引用源。
上,所以错误!未找到引用源。
,
当错误!未找到引用源。
时,错误!未找到引用源。
,两式相减得错误!未找到引用源。
,即错误!未找到引用源。
,
∴错误!未找到引用源。
,又当错误!未找到引用源。
时,错误!未找到引用源。
,错误!未找到引用源。
,所以
错误!未找到引用源。
是首项错误!未找到引用源。
,公比错误!未找到引用源。
的等比数列,数列
错误!未找到引用源。
的通项公式为错误!未找到引用源。
. (6分)
(2)证明:由(1)知,错误!未找到引用源。
,则错误!未找到引用源。
,
错误!未找到引用源。
.两式相减得
错误!未找到引用源。
错误!未找到引用源。
∵错误!未找到引用源。
,∴错误!未找到引用源。
. (12分)。