第3讲 不等式

合集下载

第3讲 基本不等式

第3讲 基本不等式

第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2 解析:选D .因为x <0,所以-x >0,-x +1-x≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________.解析:y =2x (1-x )≤2⎝ ⎛⎭⎪⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎪⎨⎪⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223. 【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3yx的最小值为( ) A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y·x +3yx -1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y ≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x +60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2]解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝ ⎛⎭⎪⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b=⎝⎛⎭⎫1a +2b ·a +2b 4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94.答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x ≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +a x -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16B .9C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a (x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4.2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3B .5C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12. 若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9] 4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y=1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x+2y )=7+6x y +2y x,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 35.已知x ,y ∈(0,+∞),x 2+y 2=x +y .(1)求1x +1y的最小值; (2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4, 因此不存在x ,y 满足(x +1)(y +1)=5.6.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-k m +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入为多少万元时,厂家获取利润最大?解:(1)由题意知,当m =0时,x =1(万件),所以1=3-k ⇒k =2,所以x =3-2m +1(m ≥0), 每件产品的销售价格为1.5×8+16x x(元),所以2020年的利润y =1.5x ×8+16x x-8-16x -m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入为3万元时,厂家的利润最大,最大为21万元.。

第3讲 等式与不等式(原卷版)

第3讲 等式与不等式(原卷版)

第3讲 等式与不等式一、基础知识1.等式的性质(1)如果a=b ,则对任意c ,都有 或 .(2)如果a=b ,则对任意不为零的c ,都有 或 . 2.不等式的性质性质1:如果a>b ,那么 .(加法法则)性质2:如果a>b ,c>0,那么 .(乘法法则)性质3:如果a>b ,c<0,那么 .(可乘性)性质4:如果a>b ,b>c ,那么 .(不等式的传递性)性质5:a>b ⇔b<a.推论1:如果a+b>c ,那么 .(移项法则)推论2:如果a>b ,c>d ,那么 .(同向可加性)推广:有限个同向不等式的两边分别相加,所得到的不等式与原不等式同向. 推论3:如果a>b>0,c>d>0,那么 .(正数的同向可乘性)推广:几个两边都是正数的同向不等式的两边分别相乘,所得到的不等式与原不等式同向. 推论4:如果a>b>0,那么a n >b n(n ∈N,n>1).(乘方法则)推论5:如果a>b>0,那么 .(开方法则)3.两个实数比较大小的方法(1)作差法{a -b >0⇔a b,a -b =0⇔a b,a -b <0⇔a b. (2)作商法{ a b >1(a ∈R,b >0)⇔a b(a ∈R,b >0),a b =1⇔a b(a,b ≠0),a b<1(a ∈R,b >0)⇔a b(a ∈R,b >0). 4.证明不等式的常用方法证明不等式的方法定义 作差法通过比较两式之差的符号来判断两式大小的方法 综合法 利用已知条件和已证明的不等式等,借助不等式的性质和有关定理,经过推理,得到所要证明的结论反证法首先假设命题结论不成立,然后推理出与定义、已有定理或已知条件明显矛盾的结果,从而下结论说原假设不成立,原命题得证分析法从需要证明的不等式出发,分析这个不等式成立的条件,进而转化为判定那个条件是否成立二、常用结论1.大减小,小减大,大的更大,小的更小,即a<x<b ,c<y<d ⇒a-d<x-y<b-c.2.已知a ,b ,m 都是正数,且a>b ,则(1)b -m a -m <b a <b+m a+m (b-m>0),即真分数越加越大,越减越小; (2)a+m b+m <a b <a -mb -m (b-m>0),即假分数越加越小,越减越大. 三、分类训练探究点一 不等式的性质例1 (1)[2020·韩城模拟] 若b<a<0,则下列不等式不成立的是 ( )A .1a <1bB .ab>a 2C .|a|+|b|>|a+b|D .√a 3>√b 3 (2)(多选题)[2020·长沙期末] 设a ,b 为正实数,则下列说法中正确的是 ( ) A .若a 2-b 2=1,则a-b<1B .若1b -1a =1,则a-b<1C .若|√a -√b |=1,则|a-b|<1D .若|a 3-b 3|=1,则|a-b|<1[总结反思] 解决不等式有关问题常用的三种方法:(1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是否成立时要特别注意前提条件;(2)利用特殊值法排除错误答案;(3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可以利用指数函数、对数函数、幂函数等函数的单调性来比较.变式题 (1)[2020·吉林梅河口期末] 设a>b,c<0,则下列结论中正确的是()A.ca <cbB.1ac>1bcC.|a|c<|b|cD.ac2>bc2(2)(多选题)[2020·徐州一中月考] 下列四个选项中能推出1a <1b的有 ()A.b>0>aB.0>a>bC.a>0>bD.a>b>0探究点二比较几个数(式)的大小例2 (1)已知a>b>c>1,设M=a-√c,N=a-√b,P=2a+b2-√ab,则M,N,P的大小关系为()A.P>N>MB.N>M>PC.M>N>PD.P>M>N(2)(多选题)设a,b是互不相等的正数,则下列不等式中不恒成立的是()A.|a|>|b|B.a2+a<b2+bC.|a-b|+1a-b≥2D.√a+3-√a+1≤√a+2-√a[总结反思] (1)判断两个式子大小关系的常用方法:作差法、作商法、不等式性质法、单调性法、中间量法、特殊值法、综合法、分析法、反证法等.(2)作差法的一般步骤是:作差,变形,定号,得出结论.变式题 (1)设13<13b <13a <1,则 ( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a(2)已知a>0且a ≠1,P=log a (a 3+1),Q=log a (a 2+1),则P 与Q 的大小关系为 . 探究点三 不等式的综合问题角度1 不等式在实际问题中的应用例3 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .[总结反思] 解决有关不等关系的实际问题时,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.变式题 [2020·广东六校联盟四联] 元旦将近,调查鲜花市场价格得知:购买2枝玫瑰与1枝康乃馨所需费用大于8元,而购买4枝玫瑰与5枝康乃馨所需费用小于22元.设购买2枝玫瑰所需费用为A 元,购买3枝康乃馨所需费用为B 元,则A ,B 的大小关系是 ( ) A .A>BB .A<BC .A=BD .不确定角度2 利用不等式的性质求代数式的取值范围例4 已知三个正数a ,b ,c 满足a ≤b+c ≤2a ,b ≤a+c ≤2b ,则b a 的取值范围是 ( ) A .23,32 B .32,+∞D .[1,2][总结反思] 运用不等式的性质解决问题时,常用的方法是正确使用不等式的性质直接推导,并注意不等式性质成立的条件以及等价转化的思想,比如减法可以转化为加法,除法可以转化为乘法等.但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,再通过“一次性”不等关系的运算求解范围.变式题 (1)已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围是 ( )A .[-4,10]B .[-3,6]C .[-2,14]D .[-2,10](2)若-π2≤α<β≤π2,则α+β2的取值范围是 ,α-β2的取值范围是 .四、同步作业1.已知M=2a (a-2),N=(a+1)(a-3),则M ,N 的大小关系是 ( )A .M>NB .M ≥NC .M<ND .M ≤N2.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[-2.5]=-3.若[x-2]=-1,则x 的取值范围为( ) A .0<x ≤1B .0≤x<1C .1<x ≤2D .1≤x<23.[2020·赤峰模拟] 若a>b ,则下列不等式中恒成立的是 ( )A .1a -b >1bB .a>|b|C .a|a|>b|b|D .a 2>ab 4.[2020·西安二模] 已知a ,b 为非零实数,且a<0<b ,则下列不等式中恒成立的是 ( )B.1ab2<1 a2bC.a2b<ab2D.ba <a b5.(多选题)[2020·山东、海南高三联考] 对于实数a,b,c,下列说法正确的是()A.若a>b,则1a <1 bB.若a>b,则ac2≥bc2C.若a>0>b,则a2<-abD.若c>a>b>0,则ac-a >b c-b6.已知2<x<4,-3<y<-1,则xx-2y的取值范围是.7.[2020·天水二模] 已知实数a>b>0,m∈R,则下列不等式中恒成立的是()A.b+ma+m >b aB.12a<12bC.ma >m bD.a-2>b-28.设a,b,c∈R,且a>1,b>c,则()A.b2>c2B.log a|b|>log a|c|C.a b>a cD.ab <ac(bc≠0)9.下列不等式恒成立的是()A.x2+1x2≥x+1xB.|x-y|+1x-y≥2C.x+y<xyD.√x+3-√x+1≥√x+2-√x10.已知2a=3·2b-1,c-b=lo g12(x2+2x+3),则实数a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>b>aD.a>c>b11.设a=log0.12,b=log302,则()A.4ab>2(a+b)>3abB.4ab<2(a+b)<3abC.2ab<3(a+b)<4abD.2ab>3(a+b)>4ab12.(多选题)若-1<1a <1b<0,则()A.1a+b <1 abB.ln a2>ln b2C.a-1a >b-1bD.1a +1b>-113.(多选题)[2020·山东泰安模拟] 已知a>b>0,且a+b=2,则下列说法中正确的是 ()A.ln (a-b)>0B.∃x∈R,x2+2√b x+a≤0C.a b>b aD.21+a+b <a1+a+b1+b14.已知a>b,给出下列不等式:①1a <1b;②a3>b3;③√a2>√b2;④2ac2>2bc2;⑤ab>1;⑥a2+b2+1>ab+a+b.其中一定成立的不等式的序号是.15.已知-1≤x+y≤1,1≤x-y≤3,则8x·12y的取值范围是()A.[2,28]B.1,282,27C.[2,27]D.1216.已知a,b,c为正实数,且a2+b2=c2,当n∈N,n>2时,c n与a n+b n的大小关系为.(用“>”连接)。

第3讲 不等式及不等式组--尖子班

第3讲 不等式及不等式组--尖子班

第3讲不等式及不等式组知识点1 不等式1.不等式的定义不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.注意:凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.2.不等式的性质(1)不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或am >bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或am <bm;(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.3.不等式的解和解集(1)不等式的解的:使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.(3)解不等式的:求不等式的解集的过程叫做解不等式.【典例】1.下列式子:①﹣3<0,②4x+3y>0,③x=3,④x2﹣y+1,⑤x≠5,⑥x﹣3<y+2,其中是不等式的有_______________.【答案】①②⑤⑥.【解析】解:①﹣3<0是用不等号连接的式子,故是不等式;②4x+3y>0,是用不等号连接的式子,故是不等式;③x=3,是等式;④x2﹣y+1不含有不等号,故不是不等式;⑤x≠5是用不等号连接的式子,故是不等式;⑥x﹣3<y+2是用不等号连接的式子,故是不等式.故答案为:①②⑤⑥.2.下列各数中,哪些是不等式2x﹣1>1的解?﹣9,2,﹣0.4,6,0,﹣5,27,5.1.【解析】解:∵x=-9时,不等式2x﹣1>1不成立,∴-9不是不等式2x﹣1>1的解;∵x=2时,不等式2x﹣1>1成立,∴2是不等式2x﹣1>1的解;同理可判断6,5.1是不等式2x﹣1>1的解;∴上述所给数中2,6,5.1是不等式2x﹣1>1的解;3.若a<b,用“>”或“<”填空(1)a﹣4____________b﹣4;(2)a5____________ b5;(3)﹣2a_____________﹣2b.【答案】(1)<; (2)<; (3)>.【解析】解:(1)∵a<b,∴a﹣4<b﹣4(不等式两边加(或减)同一个数(或式子),不等号的方向不变);(2)∵a<b,∴a 5<b5(不等式两边乘(或除以)同一个正数,不等号的方向不变);(3)∵a<b,∴﹣2a>﹣2b(不等式两边乘(或除以)同一个负数,不等号的方向改变),故答案为:<,<,>.4.不等式x﹣4<0的解集是____________;不等式﹣2x﹣1<﹣1的解集是____________.【答案】x<4;x>0.【解析】解:将不等式x﹣4<0的两边同时加4,得x﹣4+4<0+4,∴x<4,∴不等式x﹣4<0解集为:x<4;将不等式﹣2x﹣1<﹣1的两边同时加1得,﹣2x﹣1+1<﹣1+1,即﹣2x<0,将不等式﹣2x<0的两边同时除以-2得,x>0.∴不等式﹣2x﹣1<﹣1的解集为:x>0.【方法总结】1.不等式的判定方法用“<,>,≤,≥,≠”连接的式子叫做不等式.2.不等式的基本性质①不等式两边加(或减)同一个数(或式子),不等号的方向不变.②不等式两边乘(或除以)同一个正数,不等号的方向不变.③不等式两边乘(或除以)同一个负数,不等号的方向改变.3.判断某个数是否为不等式的解法思路将某个数代入不等式,如果不等式成立,那么这个数是该不等式的解;否则,这个数不是不等式的解.4.求不等式的解集的依据解不等式的依据是不等式的基本性质,要熟练掌握不等式的基本性质.【随堂练习】1.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是___;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是______________;(写出一个即可)(3)若方程3﹣x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,直接写出m的取值范围.【解答】解:(1)解方程3x﹣1=0得:x=,解方程x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组的关联方程是③,故答案为:③;(2)解不等式组得:<x<,这个关联方程可以是x﹣1=0,故答案为:x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+)得:x=2,解不等式组得:m<x≤2+m,∵方程3﹣x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.2.(1)①如果a﹣b<0,那么a___b;②如果a﹣b=0,那么a___b;③如果a﹣b>0,那么a___b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.【解答】解:(1)①<②=③>(2)比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)(3x2﹣3x+7)﹣(4x2﹣3x+7)=﹣x2≤0,∴3x2﹣3x+7≤4x2﹣3x+7.3.对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.【解答】解:由题意可知:2※x=2x﹣2+3=2x+1,∵a<2※x<7,∴a<2x+1<7,∴<x<3,∵该不等式的解集有两个整数解,∴该整数解为1或2,∴0≤<1,∴1≤a<3.4.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?【解答】解:根据题意,得10b+a<10a+b,所以,9b<9a,所以,b<a,即a>b.知识点2 一元一次不等式1.一元一次不等式的定义(1)一元一次不等式的定义含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它与一元一次方程相似,即都含一个未知数且未知项的次数都是一次,但也有不同,即它是用不等号连接,而一元一次方程是用等号连接.另一方面:它与不等式有区别,不等式中可含、可不含未知数,而一元一次不等式必含未知数.但两者也有联系,即一元一次不等式属于不等式.2.解一元一次不等式解一元一次不等式步骤如下①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到不等式性质3,即可能改变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.在数轴上表示不等式的解集用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【典例】1.若3x2a+3﹣9>6是关于x的一元一次不等式,则a= .【答案】-1.【解析】解:∵3x2a+3﹣9>6是关于x的一元一次不等式,∴2a+3=1,解得a=﹣1.2.解不等式(1)8x﹣1≥5x﹣6(2)﹣3(x+2)﹣1<5﹣2(x﹣2)﹣1,并把解集在数轴上表示出来.(3)解不等式2(1﹣2x)≥2x−13【解析】解:(1)移项,得8x﹣5x≥﹣6+1,合并同类项,得3x≥﹣5,系数化为1,得x≥﹣5;3;∴不等式8x﹣1≥5x﹣6的解集为x≥﹣53(2)去括号,得﹣3x﹣6﹣1<5﹣2x+4,移项,得﹣3x+2x<5+4+6+1,合并同类项,得﹣x<16,系数化为1,得x>﹣16;∴不等式﹣3(x+2)﹣1<5﹣2(x﹣2)的解集为x>﹣16;(3)去分母,得6(1﹣2x)≥(2x﹣1)﹣3去括号,得6﹣12x≥2x﹣1﹣3,移项,得﹣12x-2x≥﹣1-3-6,合并同类项,得﹣14x ≥﹣10, 系数化为1,得x ≤57,∴不等式2(1﹣2x )≥2x−13﹣1的解集为x ≤57,表示在数轴上如下:3.若不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是方程2x ﹣ax=3的解,求4a −14a的值.【解析】解:∵5(x ﹣2)+8<6(x ﹣1)+7, ∴去括号,得5x ﹣10+8<6x ﹣6+7, 移项,得5x ﹣6x <﹣6+7+10-8, 合并同类项,得-x <3, 系数化为1,得x >﹣3,∴不等式5(x ﹣2)+8<6(x ﹣1)+7的解集为x >﹣3, ∴不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是﹣2, ∵x=﹣2是方程2x ﹣ax=3的解, ∴2×(-2)-a ×(-2)=3,,解得a=72. ∴4a −14a=10. ∴4a −14a的值为10.【方法总结】1.一元一次不等式常考查一元一次不等式的定义,解答这类题目要记住以下两个关键点:①含有一个未知数,②未知数的次数是1.2.解一元一次不等式解一元一次不等式关键在于掌握其解题步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.注意:以上步骤中,只有①去分母和⑤化系数为1可能用到不等式的性质3,即可能变不等号方向,其他都不会改变不等号方向.3.求一元一次不等式的整数解的解题思路①求一元一次不等式的解集;②结合题目所给条件,然后在一元一次不等式解集内找出相应的整数,从而解答此类题目.【随堂练习】1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6.(1)填空:(﹣4)☆3=____;(2)如果(3x﹣4)☆(2x+8)=(3x﹣4)﹣(2x+8),求x的取值范围;(3)填空:(x2﹣2x+3)☆(﹣x2+2x﹣5)=____;(4)如果(3x﹣7)☆(3﹣2x)=2,求x的值.【解答】解:(1)(﹣4)☆3=﹣4﹣3=﹣7,故答案为:﹣7;(2)由题意得3x﹣4<2x+8,解得:x<12,∴x的取值范围是x<12;(3)∵x2﹣2x+3﹣(﹣x2+2x﹣5)=x2﹣2x+3+x2﹣2x+5=2x2﹣4x+8=2(x2﹣2x)+8=2(x﹣1)2+6>0,∴x2﹣2x+3>﹣x2+2x﹣5,则原式=x2﹣2x+3+(﹣x2+2x﹣5)=x2﹣2x+3﹣x2+2x﹣5=﹣2,故答案为:﹣2;(4)当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍).∴x的值为6.2.已知:,求:|x﹣1|﹣|x﹣3|的最大值和最小值.【解答】解:,∴8x+1﹣12≤12x﹣6x﹣6,移项、合并同类项得:2x≤5,∴x≤,当x≤1时,|x﹣1|﹣|x﹣3|=1﹣x﹣(3﹣x)=﹣2,当1<x≤时,|x﹣1|﹣|x﹣3|=x﹣1﹣(3﹣x)=2x﹣4,x=时,2x﹣4=1,∴当x≤时,|x﹣1|﹣|x﹣3|的最大值是1,最小值是﹣2.知识点3 一元一次不等式组1.一元一次不等式组的概念由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集.求不等式组的解集的过程叫做解不等式组.注意:一个一元一次不等式组的几个不等式必须符合三个条件:(1)这里的几个可以是两个、三个、…;(2)每个不等式都是一元一次不等式;(3)必须都含有同一个未知教.2.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间夹;大大小小无解答.【典例】1.解不等式组{x −3(x −2)<42x+13≥x −1,并将解集在数轴上表示出来. 【解析】解:{x −3(x −2)<4①2x+13≥x −1 ②, 由不等式①,解得x >1,由不等式②,解得x ≤4,故此不等式组的解集为:1<x≤4.在数轴上表示为:2.解不等式组{2x+5≤3(x+2)2x−1+3x2<1把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【解析】解:{2x+5≤3(x+2)①2x−1+3x2<1 ②,由不等式①,解得x≥﹣1,由不等式②,解得x<3,∴原不等式组的解集为﹣1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【方法总结】1.解一元一次不等式组方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:大大取最大;小小取最小;大小小大中间夹;大大小小无解答.解集的规律如下图所示:2.一元一次不等式组的整数解①求出一元一次不等式组的解集;②在数轴上表示出一元一次不等式组的解集;③结合题目所给条件,然后在一元一次不等式组的解集内确定一元一次不等式组的整数解,从而解答此类题目.【随堂练习】1.解不等式(组),并把解集在数轴上表示出来:(1).(2).【解答】解:(1).去分母,得:7(1﹣x)≤3(1﹣2x),去括号,得:7﹣7x≤3﹣6x,移项,得:﹣7x+6x≤3﹣7,合并同类项,得:﹣x≤﹣4,系数化为1,得:x≥4,将不等式解集表示在数轴上如下:(2).解不等式①,得x<11,解不等式②,得x≤12,把不等式①②在数轴上表示如图:不等式组的解集是:x<11.2.解下列不等式组.(1)(2)(3)﹣8≤﹣6﹣<﹣5.【解答】(1)解:由①得:x>1,由②得:x≤2,∴原不等式组的解集为:1<x≤2;(2)解:由①得:x≤7,由②得:x<4,∴原不等式组的解集为:x<4;(3)由题意得:,由①得:x≤,由②得:x>﹣,所以不等式组的解集为﹣≤x≤.综合运用1.有下列数学式子:①3>0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2>x+1,其中是不等式的有_________________个.【答案】4.【解析】解:∵①3>0中含有不等号;∴①3>0是不等式;同理可判断:②4x+5>0是不等式;③x=3不是不等式;④x2+x不是不等式;⑤x≠﹣4是不等式;⑥x+2>x+1是不等式,∵④x2+x是代数式,没有不等式号∴④x2+x不是不等式;∴上述式子中,共有4个不等式.故答案为:4.2.已知2﹣3x3+2k>1,关于x的一元一次不等式,则k=_________________.【答案】﹣1.【解析】解:∵2﹣3x 3+2k >1,关于x 的一元一次不等式,∴3+2k=1,解得k=﹣1,故答案为:﹣1.3.不等式2x ﹣5<7﹣(x ﹣5)的解集是_________________.【答案】x <173.【解析】解:2x ﹣5<7﹣(x ﹣5)去括号,得2x ﹣5<7﹣x+5,移项,得2x+x <7+5+5,合并同类项,得3x <17系数化为1,得x <173,故答案为:x <173.4.不等式3﹣x−14≥2+3(x−1)8的非负整数解是_______________.【答案】0,1,2.【解析】解:3﹣x−14≥2+3(x−1)8,去分母,得24﹣2(x ﹣1)≥16+3(x ﹣1),去括号,得24﹣2x+2≥16+3x ﹣3,移项,得﹣2x ﹣3x ≥16﹣3﹣24﹣2,合并同类项,得﹣5x ≥﹣13,系数化为1,得x ≤2.6,∴不等式的非负整数解是0,1,2,故答案为:0,1,2.5.若x=﹣3是关于x 的方程x=m+1的解,则关于x 的不等式2(1﹣2x )≤1+m 的最小整数解为_________________.【答案】2.【解析】解:∵x=﹣3是关于x 的方程x=m+1的解,∴﹣3=m+1,解得:m=﹣4,∵2(1﹣2x )≤1+m ,∴2﹣4x ≤1﹣4,解得x ≥54,故最小整数解为2.故答案为:2.6.不等式组{2x +1>−3−x +3≥0的解集为_________________.【答案】﹣2<x ≤3.【解析】解:{2x +1>−3①−x +3≥0②,由不等式①,解得x >﹣2;由不等式②,解得x ≤3,所以不等式组的解为﹣2<x ≤3,故答案为﹣2<x ≤3.7.不等式组{x −1<1x+12>2的解集是_________________.【答案】无解.【解析】解:{x −1<1①x+12>2②,由不等式①,解得x <2,由不等式②,解得x >3,所以不等式组无解.故答案为:无解.8.不等式组{x +5>24−x ≥3的最小整数解是_________________.【答案】﹣2.【解析】解:{x +5>2①4−x ≥3②∵由不等式①,解得x >﹣3,由不等式②,解得x ≤1,∴不等式组的解集为﹣3<x ≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.9.不等式组{5−x >−13x ≥x−12的整数解的和为_________________.【答案】15.【解析】解:{5−x >−1①3x ≥x−12②, 由不等式①,解得x <6,由不等式②,解得x ≥−15,故原不等式组的解集是﹣15≤x <6,∴不等式组{5−x >−13x ≥x−12的整数解为:0、1、2、3、4、5,∴不等式组{5−x >−13x ≥x−12的整数解的和为:0+1+2+3+4+5=15,故答案为:15.10.若x <y ,比较2﹣3x 与2﹣3y 的大小,并说明理由.【答案】略.【解析】解:∵x <y ,∴﹣x >﹣y ,∴﹣3x >﹣3y ,∴2﹣3x >2﹣3y .11.解不等式:x+40.2﹣x−30.5≤2,并把它的解集在数轴上表示出来.【答案】略.【解析】解:去分母,得5(x+4)﹣2(x ﹣3)≤2 去括号,得5x+20﹣2x+6≤2移项,得5x ﹣2x ≤2-20-6合并同类项,得3x ≤﹣24系数化为1,得x ≤﹣8∴不等式x+40.2﹣x−30.5≤2的解集为x ≤﹣8,在数轴上表示为12.已知方程ax+12=0的解是x=3,求满足关于y 的不等式(a+2)y <7的最小整数解.【答案】略.【解析】解:将x=3代入ax+12=0,得3a+12=0,解得a=﹣4.把a=﹣4代入不等式,得﹣2y <7,解得y >﹣3.5,所以关于y 的不等式(a+2)y <7的最小整数解为﹣3.13.解下列不等式和不等式组.(1)3x−26﹣1≥2x−13(2){2(2x −1)−3(5x +1)≤65x −1<3(x +1)【答案】略.【解析】解:(1)去分母,得3x ﹣2﹣6≥2(2x ﹣1),去括号,得3x ﹣2﹣6≥4x ﹣2,移项,得﹣4x+3x ≤﹣2+2+6合并同类项,得﹣x ≤﹣6,系数化为1,得x ≥6;∴不等式3x−26﹣1≥2x−13的解集为x ≥6;(2){2(2x −1)−3(5x +1)≤6①5x −1<3(x +1)②由不等式①,解得x ≥1,由不等式②,解得x <2,∴不等式组的解集为1≤x <2.14.解不等式组:{4x >2x −6x+13≥x −1,并把解集表示在数轴上.【答案】略.【解析】解:由不等式4x >2x ﹣6,解得x >﹣3, 由不等式x+13≥x ﹣1,解得x ≤2,∴不等式组的解集为:﹣3<x ≤2,将不等式组解集表示在数轴上如图:15. 解不等式组{2x +1<5x−12−1≤2x 并判断x=﹣√2是否为该不等式组的解.【答案】略.【解析】解:{2x +1<5①x−12−1≤2x②,∵由不等式①,解得x <2,由不等式②,解得x ≥﹣1,∴此不等式组的解集为:﹣1≤x <2,∵﹣√2<﹣1,∴x=﹣√2不是该不等式组的解.16.解不等式组{x −3(x −2)<82x+13≥x −1,并求其整数解,【答案】略.【解析】解:由不等式x ﹣3(x ﹣2)<8,解得x >﹣1, 由不等式2x+13≥x ﹣1,解得x ≤4,则原不等式组的解集为﹣1<x ≤4,∴原不等式组的整数解为0、1、2、3、4.。

第3讲 一元二次不等式与绝对值不等式的解法

第3讲 一元二次不等式与绝对值不等式的解法

第3讲 一元二次不等式与绝对值不等式的解法 教学设计:1、 一元二次方程:20ax bx c ++= (0)a ≠(1)解法:(根所在区间的讨论)(2)判别式(指定区间内根情况的判定)(3)根与系数的关系、根与函数的关系、根与不等式的关系2、 二次函数:2y ax bx c =++ (0)a ≠(1)开口方向(2)顶点与对称轴(3)图象与x 轴交点(4)y 的正、负号3、 一元二次不等式:(1)一般式:2200ax bx c ax bx c ++>++<或(0)a ≠(2)解法:(函数法)4、分式不等式的解集:(1) 一般式:()00()f x f x g x ><()或g(x)(2)解法:符号法则商化积⇒序轴标根法5、无理不等式的解集:(1)解题依据:0a b >>⇒n n a b >化为有理不等式组(2)常见题型及解法:22()0()0()()0()0()()()0()()0()()f x f xg x g x g x f x g x f x g x g x f x g x ⎧≥≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩⎧≥⎪<⇔≥⎨⎪<⎩或[说明]“式”化“组”是为了等价转化。

一元二次不等式与绝对值不等式的解法6、含绝对值的不等式解法(1)定义法:(2)公式法:)()()()()()()()()()()()0()0(x g x f x g x f x g x f x g x f x g x g x f a x a x a a x ax a a a x −<>⇔><<−⇔<−<>⇔>><<−⇔><或或例题分析:例1. 解不等式:(1)22320x x −−>(2)2362x x −+>(3)24410x x −+>(4)2230x x −+−>(5)(1)()0x x a −−< (6)(1)(1)0x ax −−>(7)(1)(1)0x x −+>(8)2(69)(1)0x x x +++> 例2. 解不等式:(1)37x x −<+(2)1204x x −≤+(3)28x x x −−≥(431>(5)7340x x +−−+>(6)42280x x −−>(7)2560x x −+<(8)500 5 x −≤(9)257x +>(10)x a b −<(11)2124x x ++−>例3. (1)求集合{013,}x x x Z <−<∈的真子集个数(2x 的集合(3)已知{}{}2,13A x x a B x x A B =−≤=−≥=Φ∩且,则实数a 的范围(4)若0a >,43x x a −+−<使不等式的解集不是空集的a 的范围例4. 已知:方程2(1)2(2)240m x m x m ++−++= ()m R ∈,求:m 为何值时,一根大于3 ,一根小于3.例5. 解关于x 的不等式(1)2220x ax a −−≤参考答案例1.解不等式:(1)解:()(21)0x x x −+> ∴解集为:122x x x ⎧⎫><−⎨⎬⎩⎭或(2)解:等价于23620x x −+<方程23620x x −+=的根为121 133x x =+=−解集为:1133x x ⎧⎪−<<+⎨⎪⎪⎩⎭(3)解:等价于2(21)0x −>解集为:12x x x ⎧⎫∈≠⎨⎬⎩⎭R 且 (4)解:等价于2230x x −+<解集为:∅(5)解:①当1a >时,解集为:{}1x x a <<②当1a =时,解集为:∅③当1a <时,解集为: {}1x a x <<(6)解:①当0a =时,解集为:{}1x x <②当01a <<时,11a >,解集为:11x x x a ⎧⎫><⎨⎬⎩⎭或③当1a =时,2(1)0x −>,解集为:{}1x x x ∈≠R 且④当1a >时,11a <,解集为:11x x x a ⎧⎫><⎨⎬⎩⎭或⑤当0a <时,解集为:11x x a ⎧⎫<<⎨⎬⎩⎭(7)解:200(1)(1)0(1)0x x x x x <≥⎧⎧⎨⎨+−<+>⎩⎩或∴解集为:{}11x x x <≠−且(8)解:2(3)(1)0x x ++>解集为:{}1x x >−例2.解不等式:(1)解:等价于(3)(7)0x x −+<解集为:{}73x x −<<(2)解:等价于(21)(4)040x x x −+≥⎧⎨+≠⎩∴解集为:142x x x ⎧⎫≥<−⎨⎬⎩⎭或(3)解:等价于28x x x −−≥或28x x x−−≤−即2280x x −−≥或280x −≤解集为:{}4x x x ≤≥(431>31−<−4>2<20 216x x −≥⎧∴⎨−>⎩或2024x x −≥⎧⎨−<⎩ ∴解集为:{}2618x x x ≤<>或(5)解:73410x x +−−+−>等价于①432100x x ⎧≥⎪⎨⎪−+>⎩②47420x x ⎧−≤<⎪⎨⎪++>⎩③72120x x <−⎧⎨−+>⎩解得:①的解集:4532x x ⎧⎪≤<+⎨⎪⎪⎩⎭②的解集:2443x x ⎧⎫+⎪⎪−<<⎨⎬⎪⎪⎩⎭③的解集:∅ ∴原式解集2542x x ⎧⎪−<<+⎨⎪⎪⎩⎭(6)x 4-2x 2-8>0,则(x 2-4)(x 2+2)>0,即x 2-4>0∴解集为(-∞,-2)∪(2,+∞)另解:设2x t =(t >0)则原不等式化为 t 2-2t -8>00)2)(4(>+−t t ,∴2−<t 或4>t∵t >0,∴4>t ,∴x 2 > 4∴解集为(-∞,-2)∪(2,+∞) (7)设t x =(0≥t )则原不等式为t 2-5t +6<0,即(t -2)(t -3)<0,∴2<t <3∴2<|x |<3,∴解集为(-3,-2)∪(2,3)(8)解:等价于55005x −≤−≤即495505x ≤≤∴解集为:{}495505x x ≤≤(9)解:等价于257x +>或257x +<− 即1x >或6x <− ∴解集为:{}16x x x ><−或(10)解:当0b ≤时,解集为∅;当0b >时,解集为{}x a b x a b −<<+(11)解:等价于121x x ⎧<−⎪⎨⎪<−⎩或1221x x ⎧−≤≤⎪⎨⎪>⎩或253x x >⎧⎪⎨>⎪⎩∴解集为:{}11x x x <−>或例3.(1)解:由013x <−<得{}241x x x −<<≠且 x Z ∈∵{}1, 0, 2, 3∴− ∴集合的真子集的个数为42115−=个(2)由题意得:302140x x ⎧−≥⎪⎨+−>⎪⎩即333522x x x −≤≤⎧⎪⎨><−⎪⎩或即533322x x x ⎧⎫−≤<−<≤⎨⎬⎩⎭或(3)解:{}22A x a x a =−≤≤+{}42B x x x =≥≤−或 A B =Φ∵∩22 24a a −>−⎧∴⎨+<⎩∴a 的取值范围是()0, 2a ∈(4)解:设()43f x x x =−+−min ()1f x =∵∵ 不等式43x x a −+−<有解1a ∴>a ∴取值范围是()1, a ∈+∞ 例4.方法一解:设2()(1)2(2)24f x m x m x m =++−++由题意可知1010(3)0(3)0m m f f +>+<⎧⎧⎨⎨<>⎩⎩或即1155m m m m >−<−⎧⎧⎨⎨<−>−⎩⎩或 m ∴的取值范围是()5, 1m ∈−−方法二解:设方程的两根分别为12, x x ,由题意可知21211004(2)4(1)(24)0(3)(3)0242(2)39011m m m m m x x m m m m ⎧⎪≠−+≠⎧⎪⎪Δ>⇔−−++>⎨⎨⎪⎪−−<+−⎩+×+<⎪++⎩解之得()5, 1m ∈−−例5.(1)解:2220x ax a −−≤即(2)()0x a x a −+≤∴12x a =,2x a =−当12x x > 即2a a >−, a >0时,解集为[-a ,2a ] 当12x x =即2a =-a , a =0时,原不等式为20x ≤,解集为{}0 当12x x <即2a a <−, a <0时,解集为[]2,a a −。

2021-2022学年新高一数学暑期衔接讲义-第3讲 不等式的进阶——一元二次不等式(解析版)

2021-2022学年新高一数学暑期衔接讲义-第3讲 不等式的进阶——一元二次不等式(解析版)

进门测试建议5min①关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且一个大于1,一个小于1,求m 的范围; ②关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在内,求m 的范围;③关于x 的二次方程x 2+2(m +3)x +2m +14=0有两根,且在[1,3]之外,求m 的范围;④关于x 的二次方程mx 2+2(m +3)x +2m +14=0有两根,且一个大于4,一个小于4,求m 的范围. 【答案】(1);(2);(3);(4). 课堂导入建议10min柯西柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职.由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒.他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方.精讲精练214m <-2755m -<≤-214m <-19013m -<<[0,1]2=++x px【解析】由px q x+≥对于一切实数q≥①, q=-2p-26.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离. 在某种路面上,某种型号汽车的刹车距离s (m)与汽车的车速(km/h)满足下列关系:s =n v 100+v 2400(n 为常数,且n ∈N *),做了两次刹车试验,有关试验数据如图所示,其中⎩⎪⎨⎪⎧6<s 1<814<s 2<17.(1)求n 的值;(2)要使刹车距离不超过12.6 m ,则行驶的最大速度是多少?【答案】(1)n=6,(2)60 km/h【解析】(1)依题意得⎩⎨⎧6<40n 100+1 600400<814<70n 100+4 900400<17,解得⎩⎪⎨⎪⎧5<n <1052<n <9514,又n ∈N *,所以n =6.(2)s =3v 50+v 2400≤12.6⇒v 2+24v -5 040≤0⇒-84≤v ≤60,因为v ≥0,所以0≤v ≤60,即行驶的最大速度为60 km/h.7. 设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.【解析】(1)当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,解集为{x |-1<x <2}. (2)由函数F (x )=f (x )-x 的两个零点为m ,n ,得f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .温故知新建议15min课后巩固1、将本节课错题进行组卷,进行二次练习,培养错题管理习惯;2、对笔记本进行复习,培养复习习惯。

九年级数学培优第3讲:二次函数与一元二次方程及不等式

九年级数学培优第3讲:二次函数与一元二次方程及不等式

符合题意.
12.在直角坐标系中,抛物线 y=ax2+bx+c(a,b,c 是正整数)与 x 轴有两个不同的交点,若两交点
到原点的距离都小于 1,则 abc 的最小值是__25__,此时 a+b+c=__11__. 【解析】 设抛物线与 x 轴的交点坐标为(x1,0),(x2,0),且 x1<x2,则 x1,x2 是方程 ax2+bx+c
图 1-3-3
8.函数 y=x2+bx+c 与 y=x 的图象如图 1-3-4 所示,有以下结论:①b2-4c>0;②b+c+1=0; ③3b+c+6=0;④当 1<x<3 时,x2+(b-1)x+c<0.其中正确的个数是 (B)
图 1-3-4
A.1
B.2
C.3
D.4
9.已知二次函数 y=x2-2mx+m2+3(m 是常数).
证法二:因为 a=1>0,所以该函数的图象开口向上.
又因为 y=x2-2mx+m2+3=(x-m)2+3≥3.
所以该函数的图象在 x 轴的上方.
所以不论 m 为何值,该函数的图象与 x 轴没有公共点.
(2)y=x2-2mx+m2+3=(x-m)2+3,
把函数 y=(x-m)2+3 的图象沿 y 轴向下平移 3 个单位长度后,得到函数 y=(x-m)2 的图象,它
的顶点坐标是(m,0),因此这个函数的图象与 x 轴只有一个公共点.
所以把该函数的图象沿 y 轴向下平移 3 个单位长度后,得到的函数的图象与 x 轴只有一个公共点.
10.如图 1-3-5,已知抛物线 y=x2+bx+c 与 x 轴交于点 A,B,AB=2,与 y 轴交于点 C,对称
轴为直线 x=2.
(1)求证:不论 m 为何值,该函数的图象与 x 轴没有公共点;

第3讲 不等式及线性规划

第3讲 不等式及线性规划

第3讲不等式及线性规划本资料分享自千人教师QQ 群323031380 期待你的加入与分享「考情研析」 1.对不等式的性质及不等式解法的考查一般不单独命题,常与集合、函数图象与性质等相结合命题,也常渗透在三角函数、数列、解析几何、导数等题目中. 2.基本不等式主要渗透在其他知识点中求最值. 3.简单的线性规划常以选填题形式呈现,一般难度不大.核心知识回顾1.不等式的一些常用性质(1)a>b,c>0⇒;a>b,c<0⇒.(2)a>b,c>d⇒a++d.(3)a>b>0,c>d>0⇒.(4)a>b>0,n∈N*⇒a n.(5)a>b>0n∈N,n≥2).(6)a>b,ab>0a<0<b a>b>0,d>c>02.不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法f(x) g(x)>0(<0)⇔f(x)g(x)>0(<0);f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.基本不等式ab≤a+b 2(1)(2) 4.几个重要的不等式(1)a 2+b 2a ,b ∈R );(2)b a +ab ≥a ,b 同号); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 5.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,x +y 2P .(简记:积定和最小)(2)如果和x +y 是定值P ,xy 大值是P 24.(简记:和定积最大)6.二元一次不等式表示的平面区域一般地,在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.对于直线Ax +By +C =0同一侧的所有点,把坐标(x ,y )代入Ax +By +C 中,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.说明:直线同侧同号,异侧异号.热点考向探究考向1 不等式的性质及解法例1 (1)(多选)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若ab ≠0且a <b ,则1a >1b B .若0<a <1,则a 3<a C .若a >b >0,则b +1a +1>baD .若c <b <a 且ac <0,则cb 2<ab 2 答案 BC解析 A 项,取a =-2,b =1,则1a >1b 不成立;B 项,若0<a <1,则a 3-a =a (a 2-1)<0,∴a 3<a ,因此正确;C 项,若a >b >0,则a (b +1)-b (a +1)=a -b >0,∴a (b +1)>b (a +1),∴b +1a +1>ba ,正确;D 项,若c <b <a 且ac <0,则a >0,c <0,而b 可能为0,因此cb 2<ab 2不正确.故选BC .(2)已知平面向量a ,b 满足|a |=1,|b |=2,|a -b |=7,若对于任意实数k ,不等式|k a +t b |>1恒成立,则实数t 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞C .(3,+∞)D .⎝ ⎛⎭⎪⎫33,+∞答案 B解析 ∵|a |=1,|b |=2,|a -b |=7,∴(a -b )2=a 2+b 2-2a ·b =7,∴a ·b =-1,又|k a +t b |>1,∴(k a +t b )2>1,即k 2a 2+t 2b 2+2kt a ·b =k 2+4t 2-2kt >1对于任意实数k 恒成立,∴k 2-2kt +4t 2-1>0对于任意实数k 恒成立,∴Δ=(-2t )2-4(4t 2-1)<0,∴t <-33或t >33,故选B .(3)(2020·四川省成都模拟)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-3,0)∪(3,+∞)解析 设x <0,则-x >0,由题意可得f (-x )=-f (x )=(-x )2-2(-x )=x 2+2x , ∴f (x )=-x 2-2x ,故当x <0时,f (x )=-x 2-2x . 由不等式f (x )>x ,可得⎩⎨⎧ x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,求得x >3或-3<x <0.即不等式f (x )>x 的解集为(-3,0)∪(3,+∞).(1)利用不等式的性质解决问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.(2)一元二次不等式的常见解法是利用“三个二次”之间的关系,借助二次函数图象得到其解集.1.(多选)(2020·海南省高三三模)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是( )A .1a >1b B .2020a -b >1 C .ln a >ln b D .a (c 2+1)>b (c 2+1)答案 BD解析 对于A ,若a >b >0,则1a <1b ,所以A 错误;对于B ,因为a -b >0,所以2020a -b >1,故B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误;对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D正确.故选BD.2.(多选)(2020·山东省淄博模拟)设[x]表示不小于实数x的最小整数,则满足关于x的不等式[x]2+[x]-12≤0的解可以为()A.10 B.3C.-4.5 D.-5答案BC解析不等式[x]2+[x]-12≤0可化为([x]+4)·([x]-3)≤0,解得-4≤[x]≤3,又[x]表示不小于实数x的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以满足不等式[x]2+[x]-12≤0的解可以为B,C.故选BC.3.定义:区间[a,b],(a,b],(a,b),[a,b)的长度均为b-a,若不等式1x-1+2x-2≥m(m≠0)的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为l,则()A.当m>0时,l=m2+2m+9mB.当m>0时,l=3 mC.当m<0时,l=-m2+2m+9mD.当m<0时,l=-3 m答案 B解析①当m>0时,∵1x-1+2x-2≥m⇔mx2-(3+3m)x+2m+4(x-1)(x-2)≤0,令f(x)=mx2-(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,则m(x-x1)(x-x2) (x-1)(x-2)≤0,且x1+x2=3+3mm=3+3m.∵f(1)=m-3-3m+2m+4=1>0,f(2)=4m-6-6m+2m+4=-2<0,∴1<x1<2<x2,∴不等式的解集为(1,x 1]∪(2,x 2], ∴l =x 1-1+x 2-2=x 1+x 2-3=3+3m -3=3m . ②当m <0时,由(1)知f (1)>0,f (2)<0, 可得x 1<1<x 2<2.∴不等式的解集为(-∞,x 1]∪(1,x 2]∪(2,+∞). ∴解集中所有区间的长度之和无穷大. 综上,故选B .考向2 基本不等式的应用例2 (1)(2020·四川省内江市、广安市等九市二诊)在△ABC 中,点P 为BC的中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=λAB →,AN →=μAC→(λ>0,μ>0),则λ+μ的最小值为( ) A .54 B .2 C .3 D .72答案 B解析 如图,连接AP ,∵P 为BC 的中点,AM→=λAB →,AN →=μAC →,且λ>0,μ>0,∴AP→=12AB →+12AC →=12λAM →+12μAN →,且M ,P ,N 三点共线,∴12λ+12μ=1,∴λ+μ=(λ+μ)⎝ ⎛⎭⎪⎫12λ+12μ=12+λ2μ+μ2λ+12≥1+2λ2μ·μ2λ=2,当且仅当λ2μ=μ2λ,即λ=μ=1时取等号,∴λ+μ的最小值为2.故选B .(2)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n 的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2答案 C解析 设A (x 0,y 0),则y ′=3x 2-4x ⇒3x 20-4x 0=4,∴x 0=2或x 0=-23,分别将x 0的值代入方程y =x 3-2x 2+2,得⎩⎨⎧x 0=2,y 0=2或⎩⎪⎨⎪⎧x 0=-23,y 0=2227.因为A (x 0,y 0)在y =4x -6上,所以⎩⎨⎧x 0=2,y 0=2,即2m +2n -1=0,m +n =12,从而1m +2n =2⎝ ⎛⎭⎪⎫1m +2n (m +n )=2⎝ ⎛⎭⎪⎫3+n m +2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42,当且仅当n =2m ,即m =2-12,n =2-22时取等号,即1m +2n 的最小值为6+42,故选C .(3)(2020·江苏省七市高三第三次调研)已知x >1,y >1,xy =10,则1lg x +4lg y 的最小值是________.答案 9解析 因为x >1,y >1,xy =10,所以lg x +lg y =1,则1lg x +4lg y =⎝ ⎛⎭⎪⎫1lg x +4lg y (lg x +lg y )=5+lg y lg x +4lg xlg y ≥5+2lg y lg x ·4lg x lg y =9,当且仅当lg y lg x =4lg xlg y ,即lg y=2lg x 且xy =10,即x =310,y =3100时取等号.利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值.(2)有些题目并不满足直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式,常用方法还有:拆项法、变系数法、凑因子法、换元法、整体代换法等.1.设x >0,y >0,且2x +y =6,则9x +3y 有( )A .最大值27B .最小值27C .最大值54D .最小值54答案 D解析 因为x >0,y >0,且2x +y =6,所以9x +3y ≥29x ·3y =232x +y =236=54,当且仅当x =32,y =3时,9x +3y 有最小值54.2.(2020·湖南省郴州市高三一模)已知函数f (x )=x +sin x ,若正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,则3a a -1+4b b -2的最小值为( )A .7B .7+4 3C .5+4 3D .7+2 3答案 B解析 ∵f (x )=x +sin x ,∴f (-x )=-x -sin x =-f (x ),即f (x )+f (-x )=0,∵正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,∴1a +2b =1,∴b =2a a -1>0,∴a >1,则3a a -1+4b b -2=7+3a -1+8b -2=7+3a -1+82a a -1-2=7+3a -1+4(a -1)≥7+43,当且仅当4(a -1)=3a -1,即a =1+32时取等号,所以3a a -1+4bb -2的最小值为7+4 3.故选B .3.(2020·山东威海模拟)若∀x ∈(0,+∞),4x 2+1x ≥m ,则实数m 的取值范围为__________.答案 (-∞,4]解析 因为x >0,则4x 2+1x =4x +1x ≥24x ·1x =4,当且仅当4x =1x ,即x =12时取等号,因为4x 2+1x ≥m ,所以4≥m ,即实数m 的取值范围为(-∞,4].考向3 线性规划问题例3 (1)(2020·安徽六安一中3月模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y +2x的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,103B .(-∞,2]∪⎣⎢⎡⎭⎪⎫103,+∞C .⎣⎢⎡⎦⎥⎤2,103D .(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞答案 D解析原不等式组可以等价转化为⎩⎪⎨⎪⎧x -2y +1≥0,x ≥0,x -y -1≤0或⎩⎪⎨⎪⎧x -2y +1≥0,x <0,x +y +1≥0.画出不等式组所表示的平面区域,如图中阴影部分所示,其中点A (-1,0),点B (3,2),而z =2x +y +2x =2+y +2x 的几何意义为区域内的点(x ,y )与点M (0,-2)连线的斜率k 加上2,结合图形可知k ≥43或k ≤-2,因此z ≥43+2=103或z ≤-2+2=0.即z 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞,故选D .(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.答案 -5解析 解法一:(图解法)由约束条件作出可行域,如图中阴影部分所示.平移直线3x -2y =0可知,目标函数z =3x -2y 在A 点处取最小值, 由⎩⎨⎧ x +2y =1,2x +y =-1,解得⎩⎨⎧x =-1,y =1,即A (-1,1),所以z min =3×(-1)-2×1=-5. 解法二:(界点定值法)由题意知,约束条件 ⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域为三角形及其内部,三角形的顶点分别为(-1,1),⎝ ⎛⎭⎪⎫-13,-13,⎝ ⎛⎭⎪⎫13,13.将三点的坐标分别代入z =3x -2y ,得z min =-5.(3)(2020·广州市综合检测)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-∞,43解析作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域如图中阴影部分所示,由⎩⎨⎧2x -y +1=0,y =-2,可得⎩⎪⎨⎪⎧x =-32,y =-2.故A ⎝ ⎛⎭⎪⎫-32,-2,所以-m ≥-32,解得m ≤32.作出直线x -2y =2,由⎩⎨⎧2x -y +1=0,x -2y -2=0,可得⎩⎪⎨⎪⎧x =-43,y =-53,即B ⎝ ⎛⎭⎪⎫-43,-53,因为存在点P (x 0,y 0),使得x 0-2y 0-2=0,即直线x -2y -2=0与平面区域有交点,则需满足-m ≥-43,所以m ≤43,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,43.二元一次不等式表示的平面区域的判断方法方法一:特殊点法只需在直线的某一侧任取一点(x 0,y 0),根据Ax 0+By 0+C 的正负即可判断Ax +By +C >0(或<0)表示直线的哪一侧区域.若直线不过原点(即C ≠0),常把原点(0,0)作为特殊点.若直线经过原点(即C =0),常选(1,0),(-1,0),(0,1),(0,-1)等特殊点代入判断.方法二:一般式(A >0),大为右,小为左当A >0时,Ax +By +C >0表示直线右方区域;Ax +By +C <0表示直线左方区域.方法三:一般式,“同”为上,“异”为下观察B 的符号与不等式的符号,若B 的符号与不等式的符号“相同”,则表示直线上方的区域;若B 的符号与不等式的符号“相异”,则表示直线下方的区域.1.(2020·湖南长郡中学第二次适应性考试)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则点(x ,y )构成平面区域的面积是( )A .3B .52 C .2D .32答案 A解析 根据题意作出不等式组所表示的平面区域,分别求得A (2,2),B (4,-2),C (1,1),求出点B 到直线y =x 的距离d =|4-(-2)|12+(-1)2=32,AC =(2-1)2+(2-1)2=2,∴S △ABC =12AC ·d =12×2×32=3.故选A .2.若变量x ,y 满足⎩⎪⎨⎪⎧3x -y -1≥0,3x +y -11≤0,y ≥2,且z =ax -y 的最小值为-1,则实数a 的值为________.答案 2解析 画出不等式组表示的平面区域,如图中阴影部分所示,由图知,若a ≥3,则直线z =ax -y 经过点B (1,2)时,z 取得最小值,由a -2=-1,得a =1,与a ≥3矛盾;若0<a <3,则直线z =ax -y 经过点A (2,5)时,z 取得最小值,由2a -5=-1,解得a =2;若a ≤0,则直线z =ax -y 经过点A (2,5)或C (3,2)时,z 取得最小值,此时2a -5=-1或3a -2=-1,解得a =2或a =13,与a ≤0矛盾.综上可知,实数a 的值为2.3.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时,生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.答案216000解析设生产产品A x件,产品B y件,依题意,得⎩⎪⎨⎪⎧x≥0,y≥0,x∈N,y∈N,1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,设生产产品A、产品B的利润之和为E元,则E=2100x+900y.画出可行域(如图中阴影区域内的整点),易知最优解为⎩⎨⎧x=60,y=100(满足x∈N,y∈N),则E max =216000.真题押题『真题检验』1.(多选)(2020·新高考卷Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤ 2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD .2.(2020·全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b答案 A解析 ∵a ,b ,c ∈(0,1),a b =log 53log 85=lg 3lg 5·lg 8lg 5<1(lg 5)2·⎝ ⎛⎭⎪⎫lg 3+lg 822=⎝ ⎛⎭⎪⎫lg 3+lg 82lg 52=⎝ ⎛⎭⎪⎫lg 24lg 252<1,∴a <b .由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45.由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c>45.综上所述,a <b <c .故选A .3.(2020·浙江高考)已知a ,b ∈R 且ab ≠0,若(x -a )·(x -b )(x -2a -b )≥0在x ≥0上恒成立,则( )A .a <0B .a >0C .b <0D .b >0答案 C解析 因为ab ≠0,所以a ≠0且b ≠0,设f (x )=(x -a )·(x -b )(x -2a -b ),则f (x )的零点为x 1=a ,x 2=b ,x 3=2a +b .当a >0时,x 2<x 3,x 1>0,要使f (x )≥0,必有2a +b =a ,且b <0,即b =-a ,且b <0,所以b <0;当a <0时,x 2>x 3,x 1<0,要使f (x )≥0,必有b <0.综上可得b <0.故选C .4.(2020·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________.答案 1解析 画出不等式组表示的平面区域如图阴影部分所示,由z =x +7y ,得y =-17x +17z ,平移直线y =-17x ,由图可得当直线y =-17x +17z 过点A 时,目标函数z =x +7y 取得最大值.联立直线方程,得⎩⎨⎧2x +y -2=0,x -y -1=0,得A (1,0),所以z max=1+7×0=1.5.(2020·江苏高考)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 ∵5x 2y 2+y 4=1,∴y ≠0且x 2=1-y 45y 2.∴x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.6.(2020·天津高考)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 ∵a >0,b >0,∴a +b >0,又ab =1,∴12a +12b +8a +b =ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b =4,即a =2-3,b =2+3,或a =2+3,b =2-3时,等号成立.故12a +12b +8a +b的最小值为4.『金版押题』7.已知函数f (x )=|lg (x -1)|,若1<a <b 且f (a )=f (b ),则实数2a +b 的取值范围是( )A .[3+22,+∞)B .(3+22,+∞)C .[6,+∞)D .(6,+∞)答案 A解析 作出函数f (x )=|lg (x -1)|的图象如图所示.∵1<a <b 且f (a )=f (b ),则b >2,1<a <2,∴-lg (a -1)=lg (b -1),即1a -1=b -1, 可得ab -a -b =0,则a =b b -1. 2a +b =2b b -1+b =(2b -2)+2b -1+b -1+1=(b -1)+2b -1+3≥22+3,当且仅当b =2+1时取等号.满足b >2,故选A .8.定义域为[a ,b ]的函数y =f (x )图象的两个端点为A ,B ,向量ON →=λOA →+(1-λ)OB →,M (x ,y )是f (x )图象上任意一点,其中x =λa +(1-λ)b ,若不等式|MN |≤k 恒成立,则称函数f (x )在[a ,b ]上满足“k 范围线性近似”,其中最小正实数k 称为该函数的线性近似阈值.若函数y =2x 定义在[1,2]上,则该函数的线性近似阈值是( )A .2- 2B .3-2 2C .3+2 2D .2+ 2答案 B解析 作出函数y =2x 的图象,它的图象在[1,2]上的两个端点分别为A (1,2),B (2,1).所以直线AB 的方程为x +y -3=0, 设M (x ,y )是曲线y =2x 上的一点,x ∈[1,2], 其中x =λ×1+(1-λ)×2=2-λ, 故M 点的坐标为⎝ ⎛⎭⎪⎫2-λ,22-λ.由ON →=λOA →+(1-λ)OB →,可知A ,B ,N 三点共线, 所以N 点的坐标满足直线AB 的方程x +y -3=0,又OA→=(1,2),OB →=(2,1),则ON →=(λ+2(1-λ),2λ+(1-λ)), 故N 点的坐标为(2-λ,λ+1). M ,N 两点的横坐标相等, 故|MN |=|22-λ-(λ+1)|,结合图象, 知|MN |=λ+1-22-λ. 因为1≤2-λ≤2,所以0≤λ≤1. 故|MN |=λ+1-22-λ=-(2-λ)-22-λ+3 =-⎣⎢⎡⎦⎥⎤(2-λ)+22-λ+3≤-22+3. 故当且仅当2-λ=22-λ,即λ=2-2时等号成立. 故|MN |≤3-22恒成立.所以该函数的线性近似阈值是3-2 2.故选B .专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知a =-1,b =-2,则a +b =-3.2.(2020·四川省凉山州高三第三次诊断检测)若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a -b >0,则⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,即⎝⎛⎭⎪⎫a +b 22>ab ;若⎝ ⎛⎭⎪⎫a +b 22>ab ,即⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,则a -b >0或a -b <0,所以若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的充分不必要条件.故选A . 3.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为( ) A .4 B .92 C .5 D .112答案 A解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0,当且仅当x =2y 时取等号.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)·(t -4)≥0,∴t ≥4,故x +2y 的最小值为4.故选A .4.(2020·陕西省汉中二模)已知直线2ax -by +2=0(a >0,b >0)平分圆C :x 2+y 2+2x -4y +1=0的圆周长,则1a +2b 的最小值为( )A .4 2B .3+2 2C .4D .6 答案 B解析 由题意,得圆的圆心(-1,2)在直线2ax -by +2=0(a >0,b >0)上,∴-2a -2b +2=0(a >0,b >0),∴a +b =1,∴1a +2b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ≥3+2b a ·2ab =3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.故选B .5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)答案 C解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点,又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.6.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -y +1≥0,x ≤a ,且目标函数z =ax -2y 的最大值为1,则实数a 的值是( )A .2-1B .1C .2+1D .3答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,其中A (0,1),B (a,1-a ),C (a,1+a ).对z =ax -2y 变形,得y =a 2x -z2,由图知a >0,当直线y =a 2x -z 2经过点B 时,z 取得最大值,所以a 2-2(1-a )=1,解得a =-3(舍去)或a =1,故选B .7.(2020·山东济南模拟)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为( )A .1B .2C .3D . 3答案 D解析 由题意,可得P A =PB =AB =4,故圆锥的高PO =23,∠APO =30°,设圆柱的高为h ,底面半径为r ,则PD =23-h ,故r 23-h =13,所以h =23-3r ,圆柱侧面积S =2πrh =2πr ·(23-3r )=23πr ·(2-r )≤23π·⎝ ⎛⎭⎪⎫r +2-r 22=23π,当且仅当r =2-r ,即r =1时取得最大值,此时h = 3.故选D .8.(2020·杭州期末)已知不等式2ax 2+ax -3>0对任意的a ∈[1,3]恒成立的x 的取值集合为A ,不等式mx 2+(m -1)x -m >0对任意的x ∈[1,3]恒成立的m 的取值集合为B ,则有( )A .A ⊆∁R BB .A ⊆BC .B ⊆∁R AD .B ⊆A 答案 D解析 令f (a )=(2x 2+x )a -3,则关于a 的一次函数必单调,则⎩⎨⎧f (3)>0,f (1)>0,解得x <-32或x >1,即A =⎝⎛⎭⎪⎫-∞,-32∪(1,+∞).m (x 2+x -1)>x 对任意的x ∈[1,3]恒成立⇒m >x x 2+x -1对任意的x ∈[1,3]恒成立,又y =x x 2+x -1=1x -1x +1(1≤x ≤3)单调递减,故y max =1,故m >1,即B =(1,+∞).综上B ⊆A ,故选D .二、选择题:在每小题给出的选项中,有多项符合题目要求.9.若1a <1b <0,则下列不等式正确的是( )A .1a +b<1ab B .|a |+b >0 C .a -1a >b -1bD .ln a 2>ln b 2答案 AC解析 由1a <1b <0,可知b <a <0.A 中,因为a +b <0,ab >0,所以1a +b<1ab ,故A 正确;B 中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故B 错误;C 中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故C 正确;D 中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故D 错误.故选AC .10.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是( )A.由图1和图2面积相等可得d=a+b abB.由AE≥AF可得a2+b22≥a+b2C.由AD≥AE可得a2+b22≥21a+1bD.由AD≥AF可得a2+b2≥2ab答案BCD解析由题图1和题图2面积相等,得ab=(a+b)d,则d=aba+b,A错误;由题意知题图3面积为12ab=12a2+b2·AF,AF=aba2+b2,AD=12BC=12a2+b2,设题图3中正方形的边长为x,由三角形相似,得a-xx=xb-x,解得x=ab a+b ,则AE=2aba+b,可以化简判断B,C,D正确.故选BCD.11.(2020·武汉部分学校联考)若0<a<b<c,且abc=1,则()A.2a+2b>4 B.lg a+lg b<0C.a+c2>2 D.a2+c>2答案BC解析解法一:因为0<a<b<c,abc=1,所以0<a<1,c>1,a+b>0,0<ab<1,对于A,2a+2b≥22a+b>2×1=2,所以A错误;对于B,lg a+lg b=lg ab<0,所以B正确;对于C,a+c2≥2ac2>2abc=2,所以C正确;对于D,因为0<a<b<c,abc =1,所以0<a b <1,c =1ab ,所以a 2+c ≥2a 2c =2a b ,因为2a b <2,所以D错误.故选BC . 解法二:(特殊值法)因为0<a <b <c ,abc =1,令a =12,b =1,c =2,则212+21=2+2<4,A 错误;令a =23,b =1,c =32,则⎝ ⎛⎭⎪⎫232+32=3518<2,D 错误.故选BC .12.(2020·山东部分重点中学联考)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1bB .a -1b <b -1aC .ln (b -a )>0D .⎝ ⎛⎭⎪⎫a b c >⎝ ⎛⎭⎪⎫b a c 答案 BD解析 解法一:对于A ,设函数g (x )=x -1x ,x ∈(-∞,-1),则g ′(x )=1+1x 2>0,所以函数g (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a -1a <b -1b ,故A 错误;对于B ,设函数f (x )=x +1x ,x ∈(-∞,-1),则f ′(x )=1-1x 2,因为x ∈(-∞,-1),所以f ′(x )>0,所以函数f (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a +1a <b +1b ,即a -1b <b -1a ,故B 正确;对于C ,因为a <b ,所以b -a >0,但不能确定b -a 与1的大小关系,故ln (b -a )与0的大小关系不能确定,故C 错误;对于D ,由a <b <-1可知a b >1,0<b a <1,而c >0,所以⎝ ⎛⎭⎪⎫a b c >1>⎝ ⎛⎭⎪⎫b a c >0,故D 正确.故选BD .解法二:(利用取特殊值法)令a =-3,b =-2,代入各选项,验证可得正确的选项为B ,D .三、填空题13.若1<α<3,-4<β<2,则α-|β|的取值范围是________.答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0,∴-3<α-|β|<3.14.函数y =x 2+2x -1(x >1)的最小值是________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2-1+3x -1=(x -1)(x +1)+3x -1=x +1+3x -1=x -1+3x -1+2≥23+2(当且仅当x =1+3时取“=”),即函数y =x 2+2x -1(x >1)的最小值是23+2.15.设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.答案 a ≤-2解析 令t =cos x ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧ f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 16.已知A (-2,1),B (2,2),C (1,4).若点P (x ,y )在△ABC 区域(包含边界)内运动,则x 2+y 2+2x 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤817,19 解析 点P 所在平面区域如图中阴影部分所示.x 2+y 2+2x =(x +1)2+y 2-1,其中(x +1)2+y 2=[x -(-1)]2+(y -0)2,表示点P (x ,y )到点Q (-1,0)的距离的平方.令t =x 2+y 2+2x ,则t =|PQ |2-1.由图可知|PQ |max =|QC |=(1+1)2+42=2 5.由A (-2,1),B (2,2)知直线AB 的方程为x -4y+6=0,所以|PQ |min =d =517,其中d 表示点Q 到直线AB 的距离,所以t max =(25)2-1=19,t min =⎝ ⎛⎭⎪⎫5172-1=817,所以x 2+y 2+2x 的取值范围为⎣⎢⎡⎦⎥⎤817,19.。

高考数学第3讲 不等式性质与线性规划、基本不等式

高考数学第3讲 不等式性质与线性规划、基本不等式
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
得 f(2a)-12(2a+2)2<f(12-a)-12(12-a+2)2, 即 g(2a)<g(12-a),所以 2a>12-a,所以 a>4, 又 2a>-2,12-a>-2,所以 4<a<14. 故选 B.
核心知识 核心考点 高考押题 限时规范训练
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点一 不等式性质及求解
——清楚条件,等价转化
(1)[考题打磨]设 a=2ln 3,b=2-0.1,c=ln 8,则 a,b,c
的大小关系是( A )
A.a>c>b
B.a>b>c
C.b>a>c
D.c>a>b
解析:选 A.a=2ln 3=ln 9>ln 8>1. b=2-0.1<1,∴a>c>b,选 A.
的最大值为 的最小值为
___2__S______.
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
3.不等式 y>kx+b 表示直线 y=kx+b 上方的区域;y<kx+b 表示 直线 y=kx+b 下方的区域.
4.绝对值不等式:|x|>a(a>0)⇔ __x_>__a__或__x_<__-__a___, |x|<a(a>0)⇔ _-__a_<__x_<__a__.
(5)形如 y=ax+bx(a>0,b>0),x∈(0,+∞)取最小值时,ax=bx⇒x b
=______a_____,即“对号函数”单调变化的分界点;
__P2__2_(6_)_a_>_0_,_ ;b>若0,a若b =a
+b=P,当且仅当 S,当且仅当 a=
a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
答案 (1)R (2)[-1,2]
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
热点二 基本不等式及其应用
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
答案 (1)C (2)C
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
1.多次使用基本不等式的注意事项 当多次使用基本不等式时,一定要注意每次是否能保证等号 成立,并且要注意取等号的条件的一致性,否则就会出错, 因此在利用基本不等式处理问题时,列出等号成立的条件不 仅是解题的必要步骤,也是检验转换是否有误的一种方法. 2.基本不等式除了在客观题考查外,在解答题的关键步骤中也 往往起到“巧解”的作用,但往往需先变换形式才能应用.
归纳总结·思维升华
解析 (1)作出约束条件所表示的可行域如图 中阴影部分所示,由 z = x + y 得 y =- x + z , 作出直线y=-x,平移使之经过可行域,观 察可知,最优解在B(0,3)处取得,故zmax=0 +3=3,选项D符合.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
解析 (1)∵f(x)=(x-2)(ax+b)为偶函数, ∴(-x-2)(-ax+b)=(x-2)(ax+b),则(2a-b)x=0恒成立. 因此2a-b=0,即b=2a,则f(x)=a(x-2)(x+2). 又函数在(0,+∞)上单调递增,所以a>0. f(2-x)>0即ax(x-4)>0,解得x<0或x>4.
第3讲 不等式
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
高考定位 1.利用不等式性质比较大小、不等式的求解、利用 基本不等式求最值及线性规划问题是高考的热点,主要以选 择题、填空题为主;2.在解答题中,特别是在解析几何中求最 值、范围问题或在解决导数问题时常利用不等式进行求解, 难度较大.【段奎老师】
热点聚焦·题型突破
归纳总结·思维升华
答案 (1)8 (2)4
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
探究提高 1.利用基本不等式求最值,要注意“拆、拼、凑” 等变形,变形的原则是在已知条件下通过变形凑出基本不 等式应用的条件,即“和”或“积”为定值,等号能够取 得. 2.特别注意:(1)应用基本不等式求最值时,若遇等号取不 到的情况,则应结合函数的单调性求解. (2)若两次连用基本不等式,要注意等号的取得条件的一致 性,否则会出错.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
3.解决线性规划问题首先要作出可行域,再注意目标函数表示 的几何意义,数形结合找到目标函数达到最值时可行域的顶 点(或边界上的点),但要注意作图一定要准确,整点问题要 验证解决. 4.解答不等式与导数、数列的综合问题时,不等式作为一种工 具常起到关键的作用,往往涉及到不等式的证明方法(如比较 法、分析法、综合法、放缩法、换元法等).在求解过程中, 要以数学思想方法为思维依据,并结合导数、数列的相关知 识解题,在复习中通过解此类问题,体会每道题中所蕴含的 思想方法及规律,逐步提高自己的逻辑推理能力.
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
2.对于线性规划中的参数问题,需注意: (1)当最值是已知时,目标函数中的参数往往与直线斜率有关, 解题时应充分利用斜率这一特征加以转化. (2)当目标函数与最值都是已知,且约束条件中含有参数时,因 为平面区域是变动的,所以要抓住目标函数及最值已知这一突 破口,先确定最优解,然后变动参数范围,使得这样的最优解 在该区域内即可.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
探究提高 1. 解一元二次不等式:先化为一般形式 ax 2 + bx +c>0(a>0),再结合相应二次方程的根及二次函数图象确定 一元二次不等式的解集. 2.(1)对于和函数有关的不等式,可先利用函数的单调性进 行转化. (2)含参数的不等式的求解,要对参数进行分类讨论.
答案 (1)D (2)-5
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
命题角度2 求非线性目标函数的最值
解析 作出约束条件所表示的可行域如图中阴影部分所示,
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
命题角度3 线性规划中参数问题
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
答案 (1)C (2)C
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
热点三 简单的线性规划问题 命题角度1 已知线性约束条件,求线性目标函数最值
真题感悟·考点整合
热点聚焦·题型突破
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
4.简单的线性规划问题 解决线性规划问题首先要找到可行域,再根据目标函数表示 的几何意义,数形结合找到目标函数达到最值时可行域上的 顶点 ( 或边界上的点 ) ,但要注意作图一定要准确,整点问题 要验证解决.
解析 作出约束条件所表示的可行域如图中阴影部分所示,
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
答案 A
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
探究提高 1.线性规划的实质是把代数问题几何化,即 数形结合的思想 . 需要注意的是:一,准确无误地作出 可行域;二,画目标函数所对应的直线时,要注意与约 束条件中的直线的斜率进行比较,避免出错;三,一般 情况下,目标函数的最大或最小值会在可行域的端点或 边界上取得.
答案 4
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
考点整合 1.不等式的解法 (1)一元二次不等式的解法. 一元二次不等式 ax 2 + bx + c >0( 或 <0)( a ≠ 0 , Δ = b 2 - 4ac>0),如果a与ax2+bx+c同号,则其解集在两根之外; 如果a与ax2+bx+c异号,则其解集在两根之间.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟
解析 可行域如图阴影部分所示,当直 线y=-2x+zA
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
答案 C
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华
热点一 不等式的性质及解法 【例1】 (1)已知函数f(x)=(x-2)(ax+b)为偶函数,且在(0, +∞)单调递增,则f(2-x)>0的解集为( ) A.{x|x>2或x<-2} C.{x|x<0或x>4} B.{x|-2<x<2} D.{x|0<x<4}
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
解析 (1) 由已知得约束条件的可行域如图中 阴影部分所示,故目标函数 z = x + 2 y 经过点 C(-3,4)时取最大值zmax=-3+2×4=5. (2) 作出约束条件所表示的可行域如图中阴影 部分所示,
相关文档
最新文档