粒子的波动性

合集下载

17.3粒子的波动性(教师版)2017-2018学年高二物理人教选修3-5

17.3粒子的波动性(教师版)2017-2018学年高二物理人教选修3-5

第十七章波粒二象性第3节粒子的波动性1.下列物理实验中,能说明粒子具有波动性的是A.通过研究金属的遏止电压与入射光频率的关系,证明了爱因斯坦光电效应方程的正确性B.通过测试多种物质对X射线的散射,发现散射射线中有波长变大的成分C.通过电子双缝实验,发现电子的干涉现象D.利用晶体做电子束衍射实验,证实了电子的波动性【答案】CD【解析】干涉和衍射是波特有的现象,由于X射线散射满足动量守恒,说明X射线具有粒子性,光电效应也说明了具有粒子性,即A、B不能说明粒子的波动性,证明粒子的波动性只能是CD。

2.根据爱因斯坦“光子说”可知,下列说法错误的是A.“光子说”本质就是牛顿的“微粒说”B.光的波长越大,光子的能量越小C.一束单色光的能量可以连续变化D.只有光子数很多时,光才具有粒子性【答案】ACD【解析】爱因斯坦的“光子说”与牛顿的“微粒说”本质不同,选项A错误。

由E=hc可知选项B正确。

一束单色光的能量不能是连续变化,只能是单个光子能量的整数倍,选项C错误。

光子不但具有波动性,而且具有粒子性,选项D错误。

3.关于光的波粒二象性,下列说法中不正确的是A.波粒二象性指光有时表现为波动性,有时表现为粒子性B.个别光子易表现出粒子性,大量光子易表现出波动性C.能量较大的光子其波动性越显著D.光波频率越高,粒子性越明显【答案】C【解析】波粒二象性指光有时表现为波动性,有时表现为粒子性,选项A正确;个别光子易表现出粒子性,大量光子易表现出波动性,选项B正确;能量较大的光子频率较大,则其粒子性越显著,选项C错误;光波频率越高,粒子性越明显,选项D正确。

4.物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光波的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就出现了规则的干涉条纹,对这个实验结果下列认识不正确的是A.曝光时间足够长时,底片上的条纹看不清楚,故出现不规则的点子B.单个光子的运动没有确定的轨道C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才能表现出波动性【答案】A【解析】曝光时间不长时,个别光子表现出粒子性,使底片上出现了不规则的点子,而曝光时间足够长时,大量光子的行为表现出波动性,底片上出现了规则的干涉条纹,综上所述,本题选A。

量子力学中的粒子波动性为什么粒子可以表现出波动特性

量子力学中的粒子波动性为什么粒子可以表现出波动特性

量子力学中的粒子波动性为什么粒子可以表现出波动特性在量子力学中,粒子的波动性是指粒子展现出波动特性的现象,即粒子具有波粒二象性。

尽管粒子常被认为是具有确定位置和动量的实体,但在微观世界中,粒子的行为却更接近波动。

这种波动性的存在是建立在量子力学的基础上的,既通过实验观测得到的结果,也通过数学上的推导加以证实。

本文将探讨粒子波动性的原理以及为什么粒子可以表现出波动特性。

一、波粒二象性的原理量子力学揭示了宇宙微观世界的奇特现象和行为规律,其中最重要的基础概念之一就是波粒二象性。

粒子的波粒二象性意味着粒子既可以呈现出粒子的特性,如位置的局域性,又可以呈现出波的特性,如干涉和衍射等。

这种二象性的原理可以通过著名的双缝实验来解释。

在双缝实验中,一束光线通过两个狭缝投射到屏幕上,观察到形成的干涉条纹。

当光通过狭缝时,光的波动性会使得光通过两个狭缝后发生干涉,形成明暗交替的条纹。

然而,当用粒子来解释光的行为时,应该会形成两个亮度较高的斑点。

然而,实验证明,光实际上显示出类似波动的干涉条纹,这就暗示着粒子的波动性。

二、薛定谔方程与波函数量子力学的基础是薛定谔方程,它描述了量子系统的波函数的演化过程。

薛定谔方程是一个偏微分方程,可以用来描述粒子在各种势场中的行为。

而波函数则是这个方程的解,它描述了粒子的状态和性质。

在波函数的解释中,波函数的模的平方被理解为粒子出现在空间中的概率分布。

根据波函数的特性,我们可以计算出粒子在空间的位置、动量、能量等信息。

然而,波函数本身并不能被直接观测到,只能通过测量和实验来获取相关信息。

三、测量与波函数坍缩在量子力学中,测量操作是不可逆的,即对粒子的测量会导致波函数的坍缩。

波函数坍缩意味着粒子的状态从一个可能性变为确定性。

例如,在测量粒子的位置时,波函数会坍缩成该位置的一个delta函数,表明粒子在该位置处。

波函数的坍缩是波粒二象性的关键之一。

在粒子被观测之前,其波函数代表着粒子的可能位置和性质的概率分布,表现出波动性。

高中物理 17.3 粒子的波动性详解

高中物理  17.3 粒子的波动性详解

高中物理| 17.3 粒子的波动性详解
光的波粒二象性
(1)光的波粒二象性
干涉,衍射和偏振表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。

(2)正确理解波粒二象性
波粒二象性中所说的波是一种概率波,对大量光子才有意义。

波粒二象性中所说的粒子,是指其不连续性,是一份能量。

①个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

②ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。

③光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。

④由光子的能量E=hν,光子的动量表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。

由以上两式和波速公式c=λν还可以得出:E = pc。

粒子的波动性德布罗意波长与实验测量

粒子的波动性德布罗意波长与实验测量

粒子的波动性德布罗意波长与实验测量波粒二象性是物理学上的一个重要概念,它指的是微观粒子既可以表现出粒子特性,又可以表现出波动特性。

德布罗意提出的德布罗意假设进一步阐述了波粒二象性的概念,即任何物质粒子具有波动性,并且由该假设可以计算出粒子的波长,即德布罗意波长。

本文将探讨粒子的波动性、德布罗意波长以及实验测量的方法和意义。

一、粒子的波动性在古典物理学中,物体被视为质点或粒子,其运动和行为可以通过经典力学方程进行描述和解释。

然而,当科学家们开始研究微观世界时,他们发现经典力学无法很好地解释某些现象,如光的波动特性以及电子和其他微观粒子的行为。

通过实验证据,科学家们发现微观粒子具有波动性。

例如,当电子经过一个狭缝或者障碍物时,会出现干涉和衍射现象,这与光波的行为类似。

这种波动性表明微观粒子像波一样具有干涉和衍射的特性,并不仅仅是质点的行为。

二、德布罗意波长的概念德布罗意假设认为,任何物质粒子都具有波动性,其波长可以通过如下公式计算得出:λ = h / p其中,λ表示德布罗意波长,h表示普朗克常数,p表示粒子的动量。

这个公式告诉我们,波长与动量成反比,动量越大,波长越短,反之亦然。

德布罗意波长的引入使得我们可以用波动模型来描述微观粒子的行为,进一步推动了量子力学的发展。

三、实验测量德布罗意波长实验测量粒子的德布罗意波长是验证波粒二象性的关键方法之一。

目前常用的实验方法主要有电子衍射实验和中子衍射实验。

电子衍射实验利用电子束通过晶体或者狭缝时产生的衍射现象,根据衍射的角度和衍射图案可以得到电子的德布罗意波长。

中子衍射实验则利用中子束通过晶体的衍射现象进行测量。

通过这些实验,科学家们验证了德布罗意波长的存在,并且验证了微观粒子的波动性。

四、意义和应用粒子的波动性和德布罗意波长的研究对于理解微观世界的行为和现象有着重要意义。

它揭示了物质粒子本质上的波动特性,并且与经典力学的观念形成鲜明对比。

在实际应用中,德布罗意波长的测量可以用于确定粒子的动量、质量等特性,并且在材料科学、凝聚态物理学等领域有重要的应用。

粒子的波动性质与不确定性原理

粒子的波动性质与不确定性原理

粒子的波动性质与不确定性原理引言:在量子物理学中,粒子既表现出粒子性,也表现出波动性。

这种粒子同时具有波动性的特性,被称为“粒子的波动性”。

粒子的波动性与不确定性原理密切相关,它们是量子力学理论的基石。

一、波粒二象性的发现1. 物质波的理论提出20世纪初,法国物理学家路易·德布罗意通过对光电效应进行研究,提出了“物质波”的理论。

他认为,物质不仅具有粒子性,还具有波动性,粒子的运动可以看作是一种波的传播。

2. 实验验证为了验证德布罗意的理论,科学家进行了一系列实验。

其中最著名的是戴维森-革末实验,通过对电子的衍射和干涉现象的观察,成功地证实了电子具有波动性。

二、粒子的波动性质1. 行波性质粒子的波动性最直观的表现就是其行波性质。

根据波动理论,粒子可以看作是一种波的传播,在空间中呈现出行波的形态。

2. 干涉和衍射现象波动性质使得粒子在经过狭缝或缝隙时会出现干涉和衍射现象。

这些现象反映了粒子波动的特性,对于证实粒子的波动性起到了重要的作用。

三、不确定性原理1. 不确定性原理的提出不确定性原理是由德国物理学家海森堡于1927年提出的。

该原理认为,对于同一粒子的某一属性,如位置和动量,无法同时确定其精确值,只能确定其可能存在于某一范围内。

2. 数学表达不确定性原理由数学表达为Δx∙Δp ≥ ħ/2,其中Δx表示位置的不确定度,Δp表示动量的不确定度,ħ为普朗克常量。

四、波动性与不确定性原理的关系波动性质和不确定性原理是相互关联的。

“波动性质”是对粒子本身性质的描述,而“不确定性原理”则是对我们观察或测量过程中的局限性的描述。

1. 观测过程的干扰由于我们无法完全摆脱测量设备的限制,观测过程会对粒子产生不可避免的扰动,导致我们无法同时准确测量粒子的位置和动量。

2. 波粒二象性的统一波动性质和不确定性原理的引入,使得我们对粒子本质的认识发生了革命性的变化。

它们揭示了物质的微观世界并非我们所熟悉的经典物理学所能描述,而需要借助量子力学的理论框架。

粒子的波动性

粒子的波动性

4
9
4.德布罗意波的实验验证
U X 射线照在晶体上可以产 K 生衍射,电子打在晶体上也能 D 观察电子衍射。 电子束 1. 电子衍射实验1 1927年 C.J.戴维森与 G.P.革末作电子衍射实验,验 证电子具有波动性。 戴维逊和革末的实验是 用电子束垂直投射到镍单 晶,电子束被散射。其强 度分布可用德布罗意关系 镍单晶 和衍射理论给以解释,从 而验证了物质波的存在。
a
其第一级暗纹的衍射角满足:

o
x
a x
Px y
电子通过单缝后,由于衍射的 作用,获得 x方向动量 Px,
P 在x方向的动量的不确定量为: Px P sin 1 x 代入德布罗意关系: h 13 P
0 px p sin 1
h Px x

x px h
1.8 10
32
kg m s
1
x px x 5.89103 m Px
16
(2)子弹位置的不确定度
子弹动量不确定度
Px P 0.01% mv 0.01 %
0.01 200 0.01 %
子弹 x 10
2.0 10 kg m s x 5.251031 m Px
§17.3 粒子的波动性
1
一、德布罗意物质波的假设
1.物质波的引入 光具有粒子性,又具有波动性。
光子能量和动量为 E h
P
h

h m c
上面两式左边是描写粒子性的 E、P;右边是描 写波动性的 、。 将光的粒子性与波动性联系起来。 1923年,德布罗意最早想到了这个问题,并且大 胆地设想,对于光子的波粒二象性会不会也适用于 实物粒子。 一切实物粒子都有具有波粒二象性。 实物粒子:静止质量不为零的那些微观粒子。

量子物理学中的粒子波动性

量子物理学中的粒子波动性

量子物理学中的粒子波动性量子物理学是研究微观领域的物理学分支,它揭示了微观世界的奇妙特性。

其中一个重要的概念是粒子的波动性,即粒子既可以表现为粒子的特性,也可以表现为波动的特性。

这一概念在量子力学的发展中起到了至关重要的作用。

在经典物理学中,我们通常将物质看作是由粒子组成的,这些粒子在空间中运动,并具有确定的位置和动量。

然而,当我们进入到微观领域时,事情变得复杂起来。

根据量子力学的原理,粒子的位置和动量不能同时被精确地确定,存在一定的不确定性。

这就是著名的海森堡不确定性原理。

粒子的波动性是由德布罗意提出的。

他假设粒子不仅具有粒子的特性,还具有波动的特性。

根据德布罗意的理论,每个粒子都有一个与其相关的波长,称为德布罗意波长。

德布罗意波长与粒子的动量成反比,即动量越大,德布罗意波长越短。

这意味着具有较高动量的粒子具有更短的波长,表现出更明显的波动性。

实验证实了粒子的波动性。

例如,双缝干涉实验是一个经典的实验,用来展示粒子的波动性。

在这个实验中,一个光源照射到一个屏幕上,屏幕上有两个狭缝。

当光通过这两个狭缝时,它们会形成干涉图案。

这表明光既具有粒子的特性,也具有波动的特性。

类似地,电子和其他微观粒子也可以表现出波动性。

实验证实了电子通过双缝干涉实验也会形成干涉图案。

这表明微观粒子也具有波动性,不仅仅是光。

粒子的波动性对于量子物理学的发展有着深远的影响。

它引导了波函数的概念,波函数描述了粒子的状态。

根据波函数,我们可以计算出粒子在不同位置的概率分布。

这与经典物理学中的粒子轨道的概念有所不同。

在量子物理学中,粒子的位置是以概率的形式存在的,而不是确定的。

粒子的波动性还解释了一些奇妙的现象,例如量子隧穿效应。

量子隧穿是指粒子能够穿过经典物理学中被认为是不可逾越的势垒。

根据经典物理学的观点,粒子没有足够的能量无法克服势垒,但根据量子物理学的观点,粒子的波动性使其有一定的概率穿过势垒。

粒子的波动性还与量子纠缠密切相关。

【人教版】物理选修3-5:17.3《粒子的波动性》(附答案)

【人教版】物理选修3-5:17.3《粒子的波动性》(附答案)

一、光的波粒二象性 1.光的波粒二象性 光既具有波动性,又具有粒子性,即光具有波粒二象性。
2.光子的能量和动量 (1)能量:ε= hv 。
h (2)动量:p= λ 。 (3)意义:能量 ε 和动量 p 是描述物质的粒子性的重要物 理量;波长 λ 和频率 ν 是描述物质的波动性的典型物理量。
因此 ε= hv 和 p=hλ揭示了光的粒子性和波动性之间的密切 关系,普朗克常量 h 架起了粒子性与波动性之间的桥梁。
C.光的波长越长,其波动性越显著;波长越短,其粒子性
越显著
D.光的干涉、衍射现象说明光具有波动性,光电效应说明
光具有粒子性
[思路点拨] 解答本题应注意以下三个方面:
(1)光子与实物粒子的区别。
(2)光的波粒二象性是光的本性。
(3)光显示波动性或粒子性是有条件对应的。
[解析] 一切光都具有波粒二象性,光的有些行为(如干涉、 衍射)表现出波动性,光的有些行为(如光电效应)表现出粒子性, 所以不能说有的光是波,有的光是粒子,A 错误;虽然光子和电 子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静 止质量,光子不是实物粒子,没有静止质量,电子是以实物形式 存在的物质,光子是以场形式存在的物质,所以不能说光子和电 子是同样的一种粒子,B 错误;波长长,容易发生干涉、衍射, 波动性强,反之,波长短,光子能量大,粒子性强,C 正确;干 涉、衍射是波特有的现象,光电效应说明光具有粒子性,D 正确。
对光的波粒二象性的理解
1.对光的本性认识史 人类对光的认识经历了漫长的历程,从牛顿的光的微粒 说、托马斯·杨和菲涅耳的波动说,从麦克斯韦的光的电磁说 到爱因斯坦的光子说。直到二十世纪初,对于光的本性的认识 才提升到一个更高层次,即光具有波粒二象性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子的波动性
【复习导航】
1、光的波粒二象性.
光既有_______________,又具有_________________.光的__________和__________现象说明光具有波动性,光的_________和__________又说明光具有粒子性.
2、物质波.
每一个运动着的粒子都与一个________相联系,这种与实物粒子相联系的_______,称之为物质波.
【典例分析】
例1.对光的认识,以下说法正确的是(ABD)
A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性
B.光的波动性是光子本身的一种属性,不是由于光具有粒子性而引起的C.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了
D.光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显
例2.以下说法正确的是(A )
A.物体都具有波动性
B.抖动细绳一端,绳上的波就是物质波
C.物质波属于机械波
D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观运动时不具有波动性
【随堂练习】
1、下列说法正确的是()
A.有的光是波,有的光是粒子
B.光子与电子是同样的一种粒子
C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著
D.γ射线具有显著的粒子性,而不具有波动性
2、下列关于物质波的认识,正确的是()
A.任何一个物体都有一种波与之对应,这就是物质波
B.X光的衍射证实了物质波的假设是正确的
C.电子的衍射证实了物质波的假设是正确的
D.物质波公式
h
p
λ=
通过普朗克常量h架起了粒子性与波动性之间的桥梁
【课后练习】
1、关于物质波以下说法正确的是()
A.实物粒子具有粒子性,在任何条件下都不可能表现出波动性
B.宏观物体不存在对应波的波长
C.电子在任何条件下都能表现出波动性
D.微观粒子在一定条件下能表现出波动性
2、关于物质波,下列说法正确的是()
A.速度相等的电子和质子,电子的波长大
B.动能相等的电子和质子,电子的波长小
C.动量相等的电子和质子,电了的波长小
D.甲电子速度是乙电子速度的3倍,甲电子的波长是也是乙电子波长的3倍
3、有关光的本性,下列说法正确的是()
A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的
B.光的波动性类似于机械波,光的粒子性类似于质点
C.由于光既有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性
D.关于光的本性,牛顿提出“微粒说”,惠更斯提出“波动说”,爱因斯坦提出“光子说”,它们都说明了光的本性
4、下列关于实物粒子的波动性说法正确的是()
A.向前飞行的子弹不具有波动性
B.射击运动员之所以很难射中靶子,是因为子弹具有波动性
C.子弹既具有粒子性,又具有波动性
D、子弹具有波动性,但波长太短表现不出来。

相关文档
最新文档