初等数学研究答案1
初等数学专题研究答案

习题解答第一讲 自然数的基数理论与序数理论1、在自然数的基数理论中,证明自然数的乘法满足交换律证明:对于{(,)|,}A B a b a A b B ⨯=∈∈与{(,)|,}B B b a b B a A ⨯=∈∈,定义A B ⨯到B A ⨯的映射为:(,)(,),(,),(,)fa b b a a b A B b a B A −−→∈⨯∈⨯显然这个映射是A B ⨯到B A ⨯的一一映射,所以A B B A ⨯=⨯,于是按定义有:A B B A ⋅=⋅,即乘法满足交换律。
2、利用最小数原理证明定理14.定理14的内容是:设()p n 是一个与自然数有关的命题,如果:(1)命题()p n 对无穷多个自然数成立;(2)假如命题对0()n k k n =≥成立时,能够推出命题对1n k =-也成立,那么对一切自然数不小于n 0的自然数n ,命题()p n 必然成立。
证明:如果命题不真,设使命题不成立的自然数构成集合M ,那么M 非空,因此,M 中必有一个最小数000()r r n ≥。
此时,由于不大于0r 的自然数只有有限个,按照条件(1),至少有一个自然数0()r r r >,命题在r 处成立;于是由条件(2),命题对1r -也成立,连锁应用条件(2),那么命题在12,,,,, r r r r k ---处都成立,而这个序列是递减的,因此0r 必然出现在这个序列中,这与0r 的假定不符,这个矛盾说明定理14成立。
3、用序数理论证明3+4=7证明:313432313145,(),''''+==+=+=+==33323256(),'''+=+=+== 34333367()'''+=+=+==4、设平面内两两相交的n 个圆中,任何三个不共点,试问这n 个圆将所在的平面分割成多少个互不相通的区域?,证明你的结论。
解:设这n 个圆将所在平面分割成()f n 个部分,显然1224(),()f f ==; 如果满足条件的n 个圆把平面分割成()f n 个部分,那么对于满足条件的n+1个圆来说,其中的n 个圆一定已经把平面分割成()f n 个部分,而最后一个圆由于与前面的每个圆都相交,并且由于任何三个圆不共点,所以这最后的圆与前面的n 个圆必然产生2n 个交点,这2n 个交点必然把这最后一个圆分割成2n 段圆弧,这些圆弧每一段都把自己所在的一个区域一分为二,从而12()()f n f n n +-=, 于是得:212324121()(),()(),,()()() f f f f f n f n n -=-=--=- 将这n-1个等式相加得:124211()()()() f n f n n n -=+++-=- 即 2122()()f n n n n n =-+=-+ 5、设平面上的n 条直线最多可以把平面分割成 f (n )个互不相通的区域,证明:112()()n n f n +=+ 证明:显然1111212()()f +⨯==+成立; 假将设平面上的k 条直线最多可以把平面分割成 f (k )112()k k +=+个互不相通的区域,那么对于平面上的k+1条直线来说,其中的任意k 条直线最多把平面分割成112()k k +=+个互不相通的区域,对于最后的直线来说,它如果与前面的每条直线都相交,那么在这条直线上最多可以产生k 个交点,这k 个交点可以把最后的这条直线分割成k+1段,每一段都将自己所在的区域一分为二,从而11()()f k f k k +-=+所以:111112()()()k k f k f k k k ++=++=+++ 121121122()()()()k k k k k +++++=+=+所以公式112()()n n f n +=+在1n k =+时也成立, 于是公式对一切自然数n 都成立。
初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。
初等数学研究答案(1)

3.已知:在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=.2-1800α求证:∠BA C =∠CAD=∠DAE.思路:证五边形ABCDE 内接于圆,则由等弦⇒等弧⇒等圆周角即得所证。
沿此思路,有多种证法,这里介绍两种教简的方法。
证法1.发挥等腰三角形的性质。
连接BD ,如图1.14,则得△CBD 是等腰的且底角()[]()如分析所述即得所证。
共圆、、、同理,共圆、、、E D C A E D B A BDE CDB ∴-=--=∠∴=--=∠ααααα322211801801801800图1.14EDBCA证法2:巧证等腰梯形。
连接BE ,如图1.15 ∠C=∠D,BC=DE,..3.2在圆上而所对圆周角皆为等弧共圆且底角、、、等腰梯形A A E D D C C B DEB CBE E D C B CDEB ∴=∠==∴=∠=∠⇒⇒ααα图1.15EDACB4.设H 为锐角△ABC 之垂心,若AH 等于外接圆半径,求证:∠BAC=600分析:因条件中的等量关系含有外接圆半径,故宜画出外接圆,以便发现隐含的联系,现介绍三种较简的证法。
证法1:借助平行四边形。
连接CO 并延长交外接圆于D ,如图1.17,则有直径所对圆周角为直角易证BD//AH(同⊥BC), AD//BH(同⊥AC),⇒AHBD 是平行四边形;图1.17DOHCBA60600,21=∠∴=∠∴===A BDC CD R AH BD ,证法2.利用欧拉线的预备定理60600212121217.118.1,=∠=∠=∠∴=∠∴===⊥MOC BOC A MOC OC R AH OM M BC OM 知则由例如图于作图1.18KMDO ABC证法3.利用正弦定理60sin 2sin 2219.1,,=∠∴=∠=∠=⊥⊥A AB C R AHF AH AF AC BF BC AE ,则有如图设图1.19FEABC6.在△ABC 中,先作角A 、B 的平分线,再从点C 作上二角的平分线之平行线,并且连D 、E,若DE//BA ,求证:△ABC 等腰。
初等数学研究答案1

初等数学研究答案1习题一1答:原那么:〔1〕A ⊂B〔2〕A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且关于A 的元历来说,重新定义的运算和关系与A 中原来的意义完全分歧。
〔3〕在A 中不是总能实施的某种运算,在B 中总能实施。
(4) 在同构的意义下,B 应当是A 满足上述三原那么的最小扩展,而且由A 独一确定。
方式:〔1〕添加元素法;〔2〕结构法2证明:(1)设命题能成立的一切c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假定bc ac M c =∈,即,那么M c c b b bc a ac c a ∈'∴'=+=+=', 由归结公理知M=N ,所以命题对恣意自然数c 成立。
〔2〕假定a <b ,那么bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 那么ac<bc 。
〔3〕假定a>b ,那么ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得那么ac>bc 。
3证明:(1)用反证法:假定b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
那么a=b 。
〔2〕用反证法:假定b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
那么a <b 。
〔3〕用反证法:假定b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
那么a>b 。
初等数学研究期末考试题目答案

习题一5证明:当n=1时,的倍数。
是9181n 154n=-+ 假设当n=k 时的倍数。
是91k 154k-+则当n=k+1时的倍数。
是)()(918k 451k 154411k 154k 1k +--+=-+++则对∀N n ∈,1n 154n -+是9的倍数. 6证明:当1n =时,141-=3-,n21n21-+=3-;则当1n =时成立。
假设当k n =时成立,即(141-)(941-)(2541-)……… (21k 241)(--)=k 21k21-+ 当1k n +=时,(141-)(941-)(2541-)……… (21k 241)(--)(21k 241)(+-) =k 21k 21-+(21k 241)(+-)=)()(1k 211k 21k 21k 23+-++=++- 当1k n +=时成立。
7解:(1)01x 3x 132=---==+,则,αββα (2)3311=-=---ββαα,131313A n2n n 2n nn 2n 2n 2n ββααβαβα+--+-=-=∴+++++131311n 11n nn )()(-+-+---+-=βββαααβα133131n 1n nn ++-+-=βαβα;n 1n A A 3+=+(3)当n=1时,1013A 333=-=βα的倍数。
是10 假设当n=k 时13A 3k3k 3k βα-=的倍数。
是10则当n=k+1时131313A 33k 33k 3k 33k 33k 31k 31k 31k 3)()()()()(βαβαβαββααβα-+-=⋅-⋅=-=+++k 333k3k 1013βαβα+-=则对∀N n ∈,n 3A 是10的倍数. 21 解:Z=72i 31)(++=+=++1)6isin 6(cos 17ππ)67isin 67(cos ππ+=i 21231--则|Z|=22263241)23-(12-=-=+;则.23arctan 2)(+-=πθ 22 解: |z|=1,,则令ααisin cos z +=∴1z z 2+-=)i sin -sin (2cos cos cos 22ααααα+-则u=222)21(cos 41cos 4cos 4|1z z |-=+-=+-ααα当3u ,1cos max =-=时α;当.0u ,21cos min ==时α 25解:由图像知20)-(-10)-3(-|OD |22=+=;则.312||||||max =+=+=AD OD Z .112||||||min =-=-=BD OD Z,24060180)(arg .30,21sin max =+=∴=∴=Z αα.180)(arg min =Z 习题二1解:设这个多项式为)1()(10-+=x a a x f )4)(2)(1(2)(1(32---+--+x x x a x x a ).然后将已知点依次代入:;10,10)1(00-=∴=-=a a f ;9,1)2(110=∴+=-=a a a f ;14,63101)4(2210=∴++==a a a a f ;2,21812124218)5(33210=∴=+++==a a a a a f因此,)1(910)(-+-=x x f )4)(2)(1(22)(1(14---+--+x x x x x )7523--=x x 即.32)3(=f2解:d x c x b x a x x f +-+-+-+-=-)2()2()2()2()2(234令2=x 得165=d ;令0=x 得;8624,165248169=+-+-+-=c b a c b a 即 令1=x 得.119=+-c b a 令3=x 得.269=++c b a 则165,180,75,14====d c b a即165)2(180)2(75)2(14)2()2(234+-+-+-+-=-x x x x x f =.5432234+-+-x x x x7解:(1)法一:原式为对称式,但显然原式没有一个因式,又由于原式为四次式,则设有一个二次对称式的因式=+++444)(y x y x ])([22nxy y x m ++])([22lxy y x k ++则;1;2====l k n m 444)(y x y x +++=222)(2xy y x ++ 法二:22222222444]2)[(2)()(xy y x y x y x y x y x +++-+=+++ =2222222222)(22)(4)(2xy y x y x y x xy y x ++=++++ (2) 2222222)1(122)()1(++++=++++x x x x x x x x2222)1()1()1(21++=++++=x x x x x x(3) 原式为对称式,当)(z y x +-=时原式为零,故z y x ++为原式的一个因式,又由于原式为三次式,则还有另一个二次对称式的因式.设=++++xyz y x x z z y ))()(((z y x ++))()([222yz xz xy n z y x m +++++]令120,1,1=+===n m z y x 得,令;131,1,1-=-=-=-=n m z y x 得 则).)((),,(.1,0yz xz xy z y x z y x f n m ++++=∴==(4)原式为轮换式,当y x =时原式为零,故))()((x z z y y x ---为原式的一个因式,又由于原式为四次式,则还有另一个一次对称式的因式.设=++++xyz y x x z z y ))()((k ))()((x z z y y x ---(z y x ++)令.2,1260,2,1-=∴-====k k z y x 得则=++++xyz y x x z z y ))()((-2))()((x z z y y x ---(z y x ++) 8解:(1)))((15x x 6x x 22234l nx x k mx x ++++=+-+- =kl x nk ml x l mn k x n m x ++++++++)()()(234比较系数得:⎪⎪⎩⎪⎪⎨⎧=-=+=++-=+15161kl nk m l l m n k n m ;设;5,3==l k 则.2,1-==n m则).52)(3(15x x 6x x 22234+-++=+-+-x x x x(2)=++++21x 29x 20x 7x 234))((22l nx x k mx x ++++ =kl x nk ml x l mn k x n m x ++++++++)()()(234比较系数得:⎪⎪⎩⎪⎪⎨⎧==+=++=+2129207kl nk m l l m n k n m ;设;7,3==l k 则.5,2==n m则=++++21x 29x 20x 7x 234).75)(32(22++++x x x x9解:(1))5()3()152)(3(45x 21x x 2223+-=-+-=+--x x x x x (2))6792)(1(6x 13x 2x 72x 23234-++-=+--+x x x x=)2)(12)(3)(1(+-+-x x x x(3)原式为轮换式,当y x -=时原式为零,故))()((x z z y y x +++为原式的一个因式,.设=-+++++xyz 4y)z(x z)y(x z)x(y 222))()((x z z y y x k +++ 令.10,1,1====k z y x 得则=-+++++xyz 4y)z(x z)y(x z)x(y 222))()((x z z y y x +++ (4))2)(12]()6)(4[(4x -24)14x 24)(x 11x (x 222+++++=++++x x x x x=-24x 242)(12()2)(12)(6)(4(x x x x x x x x -+++++++)=)2410()2)(12)(6)(4(2+++++++x x x x x x x =)2415)(6)(4(2++++x x x x10解:(1)]6016)[(60164(x 3x -12)10)(x 6)(x 5)(x (x 4222x x x x +++++=++++)=-23x 222236016(4)60164(x x x x x x -+++++)=]6016(2][3)6016[2(x 22x x x x x -+++++) =)120312)(12035(2x 22++++x x x )426535(+-=x )8)(152)(426535(++--x x x (2)7x 44x 27x 2x 234+---))((22l nx x k mx x ++++= =kl x nk ml x l mn k x n m x ++++++++)()()(234比较系数得:⎪⎪⎩⎪⎪⎨⎧=-=+-=++-=+744272kl nk m l l m n k n m ;设;1,7==l k 则.7,5-==n m则7x 44x 27x 2x 234+---)17)(75(22+-++=x x x x)2537)2537)(75(2--+-++=x x x x ( 16解;(1)5432534)2()2()2()2(2-x A 2)-(x 6x 2x x 2-+-+-+-+=-+-x Ex D x C x B 设 通分并合并同类项后与原式比较系数,得:.22,54,42,15,2=====E D C B A则.)2(22)2(54)2(42)2(152-x 22)-(x 6x 2x x 25432534-+-+-+-+=-+-x x x x(2)2222221)x (13-x A 1)x -3)(x -(x 16x 4x 5+-+++-++=++-x EDx x x c Bx 通分并合并同类项后与原式比较系数,得:.3,2,2,1,1-=-=-=-==E D C B A则.1)x (32123-x 11)x -3)(x -(x 16x 4x 5222222+---++---+=++-x x x x x 22 解:;471,71,3xx 222121=+=+∴=+-xx x x 则.18)11(x x (21212323=+-+=+--x x xx 即.52347218x3x x 2x 2223-23=++=++++-28. (1) =72cos7cos0cos ππ++)73-cos(73cos πππ++)7-cos()72-cos(ππππ++=1 (2) =)( 1tg 1+)( 2tg 1+)( 3tg 1+)]145(tg 1[ -+ =)(1tg 1+)(2tg 1+)(3tg 1+)1tan 11tan 11(+-+ =2)( 2tg 1+)( 3tg 1+)43tan 1( +=222 (3) =++2)240cos 1(++2)280cos 1( ++2)2120cos 1( 2)2160cos 1( + =+++++++280cos 1)160cos 120cos 80cos 40(cos 24[412160cos 1 ++++2240cos 1 ]2320cos 1+=++++++280cos )160cos 120cos 80cos 40(cos 26[412160cos ++2240cos ]2320cos=]40cos 2120cos 80cos )20cos 2180cos 40(cos 412[81+--+--++=]25)20cos 80cos 40(cos 512[81--++=1619)20cos 20cos 2120cos 2(8516523=-+- 。
初等数学研究答案

初等数学研究,李长明,周焕山版 高等教育出版社习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。
(3)若a>b ,则ac mc bc ac,m)c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
则a>b 。
初等数学研究参考答案

1、 已知21-=i z ,则150100++z z 的值等于( )A 、1B 、1-C 、iD 、i -2、 已知53sin =θ,02sin <θ,则2tan θ的值等于() A 、21B 、21-C 、31D 、3 3、 函数136-+-=x x y 的值域是()A 、⎥⎦⎤ ⎝⎛∞-317,B 、⎥⎦⎤ ⎝⎛∞-1277,C 、(]5,∞-D 、[)+∞,5 4、 若实数y x ,满足()()22214125=-++y x ,则22y x +的最小值为()A 、2B 、1C 、3D 、25、 曲线()x x x f -=4在点P 处的切线平行于直线03=-y x ,则P 点坐标为()A 、()3,1B 、()3,1-C 、()0,1D 、()0,1-6、 设集合{}1>=x x M ,{}12>=x x P ,则下列关系中正确的是() A 、P M =B 、P P M = C 、M P M = D 、P P M =7、 设α是锐角,2234tan +=⎪⎭⎫ ⎝⎛+πα,则αcos 的值等于() A 、22B 、23C 、33D 、36 8、 设()x f 是定义在R 上以2为周期的偶函数,已知()1,0∈x 时,()()x x f -=1log 21,则函数()x f 在()2,1上()A 、是增函数,且()0<x f ;B 、是增函数,且()0>x fC 、是减函数,且()0<x f ;D 、是减函数,且()0>x f9、 已知锐角βα,满足()21sin ,1tan =-=αβα,则βcos 等于() A 、426+B 、426-C 、462-D 、426-- 10、分解因式:y x y x 62922-+-(x-3y)(x+3y+2)分解因式:3542322+++++y x y xy x=(x+y)(x+2y)+3(x+y)+(x+2y)+3 =(x+y)(x+2y+3)+(x+2y+3) =(x+y+1)(x+2y+3) 已知200420052004112004--+-=x x y ,则()2004y x +的值是; x=1/2004,y= -2005/2004,代入得1 已知实数m 满足m m m =-+-20082007,则=-22007m 2008 计算⎥⎦⎤⎢⎣⎡--+÷⎥⎦⎤⎢⎣⎡-++x x x x x x xx 1111=1/2x-1 自然数集的两种主要理论是 基数理论 、 序数理论 。
《初等数学研究习题解答》

《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。
证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。
2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。
3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。
图1CBA5.证明,按基数理论定义的乘法对加法的分配律成立。
证明:设,,A B C 是三个有限集合,并且B C φ=,记(),(),()a r A b r B c r C ===首先:由于BC φ=,所以A B A C φ⨯⨯=,所以其次:对于(,)(){(,)|,}a x A B C a x a A x B C ∀∈⨯=∈∈,由于x B C ∈,那么若x B ∈,于是(,)a x A B ∈⨯; 若x C ∈,于是(,)a x A C ∈⨯,所以总有(,){(,)|,}{(,)|,}a x a x a A x B a x a A x C A B A C ∀∈∈∈∈∈=⨯⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊆⨯⨯⇒⨯≤⨯⨯反过来:(,)a x A B A C ∀∈⨯⨯,那么(,)a x A B ∈⨯或者(,)a x A C ∈⨯于是有,a A ∈x B ∈或者x C ∈,即,a A ∈x B C ∈,所以(,)()a x A B C ∈⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊇⨯⨯⇒⨯≥⨯⨯所以()a b c ab ac +=+6.在基数理论定义的乘法下,证明1a a ⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数学研究答案1大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法 2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴,假设bcac M c =∈,即,则Mc c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得则ac<bc 。
(3)若a>b,则acm c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若ba b,ab a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若ba b,ab a =>或者,则由三分性知不小于。
当a >b时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若ba b,ab a =<或者,则由三分性知不大于。
当a<b时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
则a>b 。
4. 解:(1)4313='=+ 541323='='+=+652333='='+=+ 763343='='+=+874353='='+=+(2)313=⋅631323=+⋅=⋅93232333=+⋅='⋅=⋅123333343=+⋅='⋅=⋅153434353=+⋅='⋅=⋅5证明:当n=1时,的倍数。
是9181n 154n=-+假设当n=k 时的倍数。
是91k 154k-+则当n=k+1时的倍数。
是)()(918k 451k 154411k 154k1k +--+=-+++则对∀N n ∈,1n 154n-+是9的倍数.6证明:当1n =时,141-=3-,n21n21-+=3-;则当1n =时成立。
假设当k n =时成立,即(141-)(941-)(2541-)……… (21k 241)(--)=k 21k21-+ 当1k n +=时,(141-)(941-)(2541-)……… (21k 241)(--)(21k 241)(+-) =k21k21-+(21k 241)(+-)=)()(1k 211k 21k 21k 23+-++=++- 当1k n +=时成立。
7解:(1)01x 3x 132=---==+,则,αββα(2)3311=-=---ββαα,131313An2n n 2n n n 2n 2n 2n ββααβαβα+--+-=-=∴+++++131311n 11n nn )()(-+-+---+-=βββαααβα133131n 1n nn ++-+-=βαβα;n 1n A A 3+=+(3)当n=1时,1013A 333=-=βα的倍数。
是10假设当n=k 时13A3k3k 3kβα-=的倍数。
是10则当n=k+1时131313A 33k33k 3k 33k 33k 31k 31k 31k 3)()()()()(βαβαβαββααβα-+-=⋅-⋅=-=+++k333k3k 1013βαβα+-=则对∀N n ∈,n3A 是10的倍数. 8证明:;,,则,,使得,;,lar lc kaq kb ar c aq b Z r q c |a b |a ====∈∃∴ 。
;)(lc kb |a a lr kq lc kb +∴+=+∴ 9证明:假设存在b ,使得,1a +<<a b 由得,b <a ,,使得k a b N k +=∈∃若,则1k =;1a b +=若,则1k >;即1a k a b +>+=;1a b +>因此.1a 是不可能的+<b 10证明:);,,,,,,(,,设*321321332211Z q q q Z p p p p q c p qb p q a ∈∈===则a(bc)===⋅321321332211p p p )q q q p q p q pq)(()()()(321321p p p q q q a(bc)p q p q p q 332211=⋅=)(11答:(1)加法,乘法,减法; 构成数环 (2)乘法,除法; (3)加法,乘法; (4)加法,乘法; (5)加法,乘法,除法; (6)乘法; (7)加法,乘法,减法;构成数环(8)加法,乘法,减法;构成数环 12 证明:方法一nn 332211b a b a b a b a <<<< 即n11n 2112b a b a ,b a b a >>=-++++++∴11n 21n 21b a b b b a a a 1n 21n 2111n 21b b b b b b b a b a a a )()()(++++++-+++b b b b b a b a b a -b a 1n 21n 11n 2112>+++-++=)()()(nn 332211b a b a b a b a <<<<即1-n n n 1-n 1n n 1b a b a ,b a b a <<,=-++++++∴n n n21n 21b a b b ba a an n 21n 21n n n 21b b b b b b b a b a a a )()()(++++++-+++b b b b b a b a b a -b a nn 211-n n n 1-n 1n n 1<+++-++=)()()(方法二:设p,b a 11=q,b a nn=则由p=nn 332211b a b a b a ba<<<<=q 得,p b a 11=, p b a 22>,p b a n n> ; qb a 11<,qb a 22<,qb an n= ;则n 21n 21b b b p b p b p b ++++++ n21n21b b b a a a ++++++<<n21n21bb b qb q b q b ++++++ 即q.b b b a a a p n21n21<++++++<则.b a b b b a a a b a n nn 21n 2111<++++++< \13.(1);109.16.5003105.1102.16.50031053.1102.143434⨯≈+⨯+⨯≈+⨯+⨯(2);88.4238.026.433824.026.43=-≈- (3);7.6872232.687138.6813.2264.32≈==⨯ (4)≈÷⨯43564.2)1063.2(3.1008.163875.1079436.2)1063.2(33⨯≈=÷⨯14 解:5.046308.0%02.04.2315|a |≈=⨯==∆δ 则它的有效数字的个数为4。
15 解:551.45511.47321.11416.3232≈=-⨯≈-π16 证明:方法一:⇒dcx bax S ++= 是有理数,则其不包含x ;dcx kdb x d cx kc a kd cx kd b x kc a d cx k d cx b ax S +-++-+=+-+-++=++=)()(又。
;即,bc ad kd b kc a ===∴,代入,,则;令其为b p c a p d p bc ad ===⇐ dcx bax S ++=得,为有理数。
p abap x b p b ax d cx b ax S =++=++=方法二:⇒dcx b ax S ++=是有理数,则dcx b ax S Z,n m,++=∈∃使得=.nm ;bn.-dm cm )x -(an d)m (cx b)n (ax =+=+,即则bc.ad ;bn dm mc an ,x Q d c b a *=⎩⎨⎧==∈即则是无理数,,,,又由于⇐ 又;d)d (cx b)d (ax d cx b ax S 2d cdx bdadx ++=++=++=bc.ad =则.)(d)b(cx d)d (cx b)d (ax d cx b ax S 2dbd cx d d cdx bd adx =++=++=++=++=dcx bax S ++=∴是有理数17 证明:cd c d c d b a +-=-=-∴+=+,d b c a则若。
时,c d b a ==若⎪⎩⎪⎨⎧=-=+≠b-a c d b-a c -d c d b a 时由得b -a b-a c-d d 2+=;即无理数等于有理数矛盾,则。
c d =18解:(1) ≥++≥≥≥≥≤+≤≤≤≤1n 2n 4534231n n 433221; 并且时并且当∞→>+=+-++n ;01n 21n n 1n 2n 01n 21n n 1n 2n →+=+-++∴此序列为退缩有理闭区间序列,且它所确定的实数为1.(2) ≥+≥≥≥≥≤≤≤≤≤1n 14131210000; 并且时并且当∞→>+=-+n ;01n 101n 101n 101n 1→+=-+∴此序列为退缩有理闭区间序列,且它所确定的实数为0.(3) ≥≥≥≥≥≤≤≤≤≤11112n1-2n 654321; 并且时并且当∞→>=-n ;02n 12n 1-2n 102n12n 1-2n 1→=- ∴此序列为退缩有理闭区间序列,且它所确定的实数为1.19.(1)(⨯)答:复数集与复平面内以0为起点的一切向量组成的集合一一对应;(2)(⨯) 答:两复数的和与积都是实数的充分条件是:这两个复数是共轭复数(3)(⨯)答:共轭虚数的正整数次幂仍是共轭复数;(4)(⨯) 答: 一个非零复数的模等于1的充分条件是它与它的倒数之和为实数.20 证明:当时k 3n =,++-3k2i31)(;)(22i 313k=--当时1k 3n +=,++-+13k 2i31)(;)(12i 3113k -=--+当时2k 3n +=,++-+23k 2i31)(;)(12i 3123k -=--+21解:Z=72i 31)(++=+=++1)6isin 6(cos 17ππ)67isin 67(cosππ+=i 21231--则|Z|=22263241)23-(12-=-=+;则.23arctan 2)(+-=πθ22 解: |z|=1,,则令ααisin cos z +=∴1z z 2+-=)i sin -sin (2cos cos cos 22ααααα+-则u=222)21(cos 41cos 4cos 4|1z z|-=+-=+-ααα当3u,1cos max=-=时α;当.0u,21cos min==时α23. 解方程N).n 1,n 1z 1z nn∈>-=+,()()( 即,则)()解:由于(,1)11(1z 1z nn =-+-=+nz z1)-n ,2,1,0(k ;nk 2isin n k 2cos 1-z 1z =+=+ππ; 则1)-n ,1,0(k 1nk 2isin n k 2cos n k 2isinn k 2cos 1z =-+++=;ππππ24解:(1);1)(,1)(1nn2n===nωωω ,次单位根);次方根(个不同的的是,,,n n n 1n2ωωω ∴(2))(1(1nωω-=-;0)11-n 2=++++ωωω而∴≠-,01ω;011-n 2=++++ωωω(3))(1(1n-=-z z)11-n 2z z z ++++=)1(-z );())()((1n 32-----ωωωωz z z z 当时,1≠z =++++1-n 21z zz )())()((132-----n z z z z ωωωω令时,1=z .)1()1(112n n =----ωωω )(25解:由图像知20)-(-10)-3(-|OD |22=+=;则.312||||||max=+=+=AD OD Z .112||||||min =-=-=BD OD Z,24060180)(arg .30,21sin max =+=∴=∴=Z αα.180)(arg min =Z26 解:设z=x+yi,则代入.4y 1)(x .3x 2y x 3z z z z 2222=++=++=++即,得27 证明:isinx ;cosx z isinx cosx z -=+=,则令isinx;cosx z isinx cosx z 22-=+=,;,isinnx cosnx z isinnx cosnx z n n -=+=而;,isinx 2z z cosx 2z z =-=+;,isinx 2z z cosx 2z z 2222=-=+;,isinx 2z z cosx 2z z nn n n =-=+则)z z z zz (z 2i 1sinnx sin2x sinx n n 22-++-+-=+++)z -z)(11(sin )1sin(sinx ]1)z 1(z 1)z -z(1[i 21n n -++-=----=nxx n z z )1)(z 1()2)2(cos 2(cos 2sin2z x n nx nx --+-=;)1)(z 1(2)1(sin 2sin 2sin 4z xn x nx --+=)z z z z (z 21cosnx cos2x cosx n n 22++++++=+++ z)z -z)(11(cos )1cos(1cosx ]1)z 1(z 1)z -z(1[21n n -++--=--+-=nx x n z z)1)(z 1()2)2(in 2sin (2sin 2z x n s nx nx --+-=;)1)(z 1(2)1(cos 2sin 2sin 4z x n x nx --+=x.21n tg cosnx cos2x cosx sinnx sin2x sinx +=++++++ 则28证明: 时,当0x ≠0p x p x p x p x n 1-n 2-n 21-n 1n=+++++ 方程 的两边同乘以得n x -0x p x p x p x p 1nn n -11-n -22-11=+++++-将x=代入上式得,ααisin cos ++++)]isin(-)[cos(-p 11αα0)]isin(-n )[cos(-n p n =++αα .按照复数相等的条件得++αcos p 110cosn p n=+α2sin p sin p 21++αα习题二1解:设这个多项式为)1()(10-+=x a a x f )4)(2)(1(2)(1(32---+--+x x x a x x a ).然后将已知点依次代入:;10,10)1(00-=∴=-=a a f ;9,1)2(110=∴+=-=a a a f;14,63101)4(2210=∴++==a a a a f ;2,21812124218)5(33210=∴=+++==a a a a a f因此,)1(910)(-+-=x x f )4)(2)(1(22)(1(14---+--+x x x x x )7523--=x x 即.32)3(=f2解:dx c x b x a x x f +-+-+-+-=-)2()2()2()2()2(234令2=x 得165=d ;令0=x 得;8624,165248169=+-+-+-=c b a c b a 即 令1=x 得.119=+-c b a 令3=x 得.269=++c b a 则165,180,75,14====d c b a 即165)2(180)2(75)2(14)2()2(234+-+-+-+-=-x x x x x f=.5432234+-+-x x x x 3解:由于22341)(m 1)x p(m 2qx 4px 4x4+++++-成为bax x22++的完全平方式,则 =++22b)ax x 2(22341)(m 1)x p(m 2qx 4px 4x 4+++++-得:;)1(2)1(24444222⎪⎪⎩⎪⎪⎨⎧=+=++==-b m ab m p ba q ap .)1(44;44)1(22p m q ba q mb p a =++⎪⎪⎩⎪⎪⎨⎧+=+-=-=∴即4证明: (1))1()1)((-=-x x x F )1x x x x(234++++=15-x=)1(-x );)()()((432λλλλ----x x x x即: );)()()(()(432λλλλ----=x x x x x F(2))()()R()Q()P(5255λλλλλλλS F ⋅=++,即.0)(0)1R()1Q()1P(2=⋅=++λλλS即: .0)1R()1Q()1P(===.0)1(,)1()1()1R()1Q()1P(=⋅=++S S F 得又由则1-x 是R(x)Q(x),P(x),和S(x)的一个公因式。