量纲分析和相似原理
量纲分析和相似原理

I I
基本量纲和导出量纲
基本量纲(fundamental dimension):无任何联 系且相互独立的量纲 导出量纲(fundamental dimension):可由基本 量纲导出的量纲 采用:M-L-T- 基本量纲系(不可压缩流体无 )
基本量纲的选择具有一定的任意性,除了质量 (M )、长度( L )和时间(T ) 我们也可以选用力( F )、长度( L )和时间 (T )来作为基本量纲。这时质量的量纲作为导 出量纲可以表示为
dim M FL1T 2
5.1.2 无量纲量
无量纲量:量纲指数均为零的物理量
如雷诺数:
dim
Re
包括两种: 瑞利法,适于简单问题,一般情况下,要求相关 变量未知数n小于等于4~5个。 定理,普遍方法
5.2.1 瑞利法
某一物理过程与几个物理量有关 f (q1q2q3 qn ) 0
则其中某一物理量qi可表示为其他物理量的指数
乘积
qi Kq1aq2b qnp1
写出量纲式 dim qi dim( q1aq2b qnp1)
其中切应力τ 、速度u 和空间坐标y 的量纲是已知的,根
据量纲齐次性原理,由此可知流体动力粘性系数μ 的量纲
为
dim ML-1T 1
根据量纲和谐原理,量纲不同的物理量之间只能进行乘除, 不能进行加减。
只有量纲相同的项才可以相加减。 对或错
对
5.2量纲分析法
量纲分析与相似原理

Δp,u,d,ε,ρ,μ,l,共7个
第2步、选择包含不同基本量纲的物理量为基本量(或称为 重复量,取3个)。
选ρ 、u 、d 第3步、列П表达式求解П数
① П1=ρa u bd cΔp M 0 L 0 T 0 = (M L – 3 ) a (L T – 1 )b L c (M L –1 T – 2 )
惯性矩,惯性积 动量,动量矩 能量,功,热 功率 表面张力系数 比热 导热系数 (比)熵 (比)焓,内能 注: 为温度量纲
dim Ix dim Ixy L4 dim I MLT 1
dim L ML2T 1
dim E dim W dim Q ML2T 2
dim P ML2T 3
dim MT 2
Π定理
充要条件 方法
n个物理量
r个独立
基本量
选r个独立
基本量
n-r个导出量
x1 =φ(x 2,x 3, ……, x r ) П1 =f (П2, П3, ……, Пn-r )
组成n-r个
独立Π数
量纲分析方法等
第五节 量纲分析与相似原理
5.4.2 量纲分析法 不可压缩牛顿粘性流体在内壁粗糙的直圆管恒定流动,分析 压强降低与相关物理量的关系。 一般步骤:
第五章 量纲分析与相似原理
5.1 量纲
1. 物理量的量纲 量纲(因次):表征各种物理量性质和类别的标志。
工程单位制
大小
单位制
国际单位制
物理量
类别
量纲
基本量纲
SI制中的基本量纲:
导出量纲
dim m = M , dim l = L , dim t = T 或:[m]=[M], [l]=[L], [t]=[T]
5 量纲分析和相似原理

5.2.2 π定理(布金汉定理,Bucking ham)
由美国物理学家Bucking ham提出。若某一物 理过程包含n个物理量,即 f (q1q2q3 qn ) 0 其中有m个基本量(量纲独立,不能互相导出), 则该物理过程可由n个物理量构成的n-m个无量纲 项所表达的关系式来描述,即 F (1 nm ) 0 由于无量纲项用π表示,因此叫作π定理。
5.1.2 无量纲量
当量纲公式中α=0、β=0、γ=0时, 物理量q 为无量纲量。 vd Re 如 雷诺准数
LT 1L dim Re dim( ) 2 1 1 LT vd
无量纲量的特点: 客观性 不受运动规模的影响 可进行超越函数运算
5.1.3 量纲和谐原理
量纲和谐原理:凡正确反映客观规律的物理 方程,其各项的量纲一定是一致的。 如粘性流体总流的柏努利方程
4)量纲分析法是沟通流体力学理论与实验之 间的桥梁。
5.3 相似理论基础
5.3.1 相似概念
几何相似:两个流动流场(原型和模型)的 几何形状相似,即相应的线段长度成比例、 夹角相等。 以p表示原型 (prototype) , m表示模型 (model) ,有
l p1 lm1 l p2 lm2 lp lm l
I m mlm2vm 2 lmvm Tm mlmvm m
即
l pvp
p
lmvm
m
(Re) p (Re)m
lv
无量纲数 Re 称为雷诺准数(Reynolds number),表示惯性力与粘滞力之比。两流动 的雷诺准数相等,粘滞力相似。
此式为管道压强损失计算公式,称为达西-魏 斯巴赫(Darcy-Weisbach)公式。
相似原理与量纲分析

相似原理与量纲分析相似原理和量纲分析是物理学中常用的分析方法。
这两个方法都可以帮助我们简化和理解复杂的物理问题,并从中得到有用的结论。
相似原理是指在某些情况下,两个或多个物理系统在某些方面具有相似性。
通过找到这些相似性,我们可以将一个物理问题转化为另一个更简单的问题,并从中得到有关原问题的信息。
量纲分析是一种通过对物理量的量纲进行分析来研究物理问题的方法。
在量纲分析中,我们将物理量表示为其单位的乘积,例如长度(L)、质量(M)和时间(T)。
通过对物理方程中各项的量纲进行分析,我们可以得到物理问题的量纲关系。
现在让我们更详细地讨论这两种方法。
首先,我们来看看相似原理。
相似原理的核心思想是,如果两个物理系统具有相似的形状、相似的流动条件和相似的物理特性,那么它们在某些方面具有相似性。
这种相似性可以通过无量纲参数来描述。
无量纲参数是一个相对于单位的比率或比值,因此在不同的物理系统中具有相同的值。
通过选择适当的无量纲参数,我们可以把一个复杂的问题转化为一个简单的问题。
例如,假设我们想研究飞机的气动性能。
我们可以选择无量纲参数如升力系数(Cl)、阻力系数(Cd)和升阻比(Cl/Cd),来描述飞机的飞行特性。
通过比较不同飞机的这些无量纲参数,我们可以得出有关它们性能优劣的结论。
相似原理的应用非常广泛。
它常用于流体力学、热传导和振动等领域的问题研究。
通过利用相似原理,我们可以设计模型实验来研究某一问题,从而避免对真实系统进行复杂和昂贵的实验。
接下来,我们来谈谈量纲分析。
量纲分析是一种通过对物理量的量纲进行分析来研究物理问题的方法。
在物理方程中,各个物理量的量纲必须相等。
这就是说,物理方程中各项的量纲必须保持平衡。
通过量纲分析,我们可以得到物理问题的一些量纲关系。
这些量纲关系可以帮助我们推导出物理方程中的无量纲参数,并进一步简化问题。
例如,假设我们要研究物体自由落体的运动规律。
我们可以通过对物理量的量纲进行分析,得到物体自由落体的无量纲形式。
传热学第九讲相似原理及量纲分析

de0 1ac f 0 e f 1 0 1e f 0
ba1
cea d e f 1e
2 a b 2c f 3d 0
2021/5/1
5
h k ua d a1 ea 1e ce e
k ud a d 1 c e
k Rea Pr e
d
Nu hd k Rea Pr e
f 8Re1000Pr f
1 12.7
f
8
Pr
2 f
31
1
d l
2
3
ct
f 1.82lg Re1.642
对液体
ct
Pr f Prw
0.11
(
Pr f Prw
0.05~20)
对气体
ct
Tf Tw
0.45
(
Tf Tw
0.5~1.5)
※适用范围 Pr f 0.6 ~ 105 Re f 2300~ 106
对气体
ct
Tf Tw
n
当气体被加热时 n 0.55
当气体被冷却时 n 0
2021/5/1
对液体
ct
f w
n
当液体被加热时 n 0.11
当液体被冷却时 n 0.25
10
(五)入口效应:
层流 紊流
l 0.05RePr
d l 60
cl
1
d l
0.7
d
2021/5/1
11
二、实验关联式
2021/5/1
6
三、应用
(一)威尔逊法
Nu f Re,Pr
Nu C Ren 或 Nu C Ren Pr m
1. 求 Nu C Ren
lg Nu lg C nlg Re
4相似原理和量纲分析

§4.2 量纲分析与定理
影响某种流动现象的物理量可以有很多。当这些物理量间不能 用微分方程表示时,通过量纲分析确定出有关相似准则间的定性 关系。再通过实验进一步确定其定量关系。
定理
如果一个物理过程涉及到 n个物理量和r个基本量纲,则这个
物理过程可以由n个物理量组成的n-r个无量纲量(相似准则数i)
解:这是物体绕流,应该主要考虑粘性力相似和压力相似。
由雷诺数相等: lu lu (空气的粘度不变)
Kl
l l
u u
62.5 3600 5 45000
由欧拉数相等: p p
或
u 2 u2
p
u
2
p
u
R
pA
u
2 pA
u
2
R
A
u
2
l
2
R
R
500
u
u R u l
§4.2 量纲分析与定理
第四章 相似原理和量纲分析
§7.1 相似原理与模型实验 §7.2 量纲分析与π定理
§4.1 相似原理与模型实验
一、流动相似的概念
(1)如何把特定条件下的实验结果推广到其它流动中?
(2)如何将实物(或原型)缩小或放大制成模型,并通过 模型的实验结果推知原型中的流动?
(3)要使两流动现象相似,必须满足力学相似条件,即 几何相似、运动相似和动力相似。
3
v d 3 3 3
4
p
v d 4 4 4
其中,待定系数 , , 由量纲的一致性原则确定。
§4.2 量纲分析与定理
1
l d
2
d
3
vd
1 Re
无量纲准则方程为:
l 1 p F1( d , d , Re , v2 ) 0
相似原理和量纲分析

(c) • 一般来说,如果描述某个物理现象的物理量有n个,并且在这n个量中
(在a)光弹性试验含中有, r,个量多半是是无不满量足的纲独要立放的弃,,这就则是独所谓立近似的的纯近似数。 有n-r个。
但在必光须 弹使性例模试4型验-梁中满,3足研初,等究弯多弹曲半理是性论不对满体梁足所内的作的的基应要本放假力弃设,σ,即这与就外是所力谓近F似,的力近似矩。 M和尺寸L,材料常数E,μ
1
b h
,
2
Gh4
T
, 3
l
q
4-5 π定理 由于两现象相似,各对应量互成比例,即
如果梁的尺寸不是几何相似,即梁长与梁截面的相似比例数
例4-3 研究弹性体内的应力σ与外力F,力矩M和尺寸L,材料常数E,μ之间的π项。 时,是严格满足静力相似律。
将式(c)代入到式(a),得
量第纲三分 定析理 • 的:普系把遍统参定的理单与是值物条π定件理理相。现似,象则的系统各为物相似理。量,通过量纲分析,转化为数目较少的无量纲间的 把表第参达四与 某 章物个相• 理物似现理原关表象现理系达的象和各的量式某物方纲。个理程分量式析即物,π理通1过现,量象π纲2分的…析方,…转程这化式为种数做目较法少就的无是量巴纲间肯的汉关系?式π。定理的基本思想。
G e G2 0 (a)
x
对于模型来说,同样满足方程:
m
Gm
em xm
Gm
2m
m
0
(b)
实物和模型要求相似,对应量一一成比例:
C m
CG
G Gm
Ce
e em
x Cx G xm
C
m
(c)
但
1
E
1
2
相似原理与量纲分析

相似原理与量纲分析相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。
相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理,而量纲分析则是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。
本文将分别介绍相似原理和量纲分析的基本概念和应用,以期帮助读者更好地理解和应用这两种方法。
首先,我们来介绍相似原理。
相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理。
在流体力学中,相似原理是研究流体流动时的一种重要方法。
根据相似原理,如果两个流体流动问题在某些方面具有相似性,那么它们的流动规律也应该是相似的。
通过建立相似模型,可以通过对模型进行实验来研究真实流体流动问题,这为工程设计和科学研究提供了重要的手段。
在工程设计中,相似原理也有着广泛的应用。
例如,在飞机设计中,通过建立风洞模型来研究飞机在空气中的飞行性能;在建筑设计中,通过建立模型来研究建筑物在风力作用下的受力情况。
相似原理的应用不仅可以帮助工程师更好地理解和预测真实系统的行为,还可以降低实验成本和风险。
接下来,我们来介绍量纲分析。
量纲分析是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。
在物理学和工程学中,很多物理现象可以通过物理量之间的关系来描述。
通过对这些物理量的量纲进行分析,可以得到物理现象之间的关系,从而简化问题的分析和求解。
在工程设计中,量纲分析也有着重要的应用。
例如,在流体力学中,通过对流体流动中的速度、密度、长度等物理量的量纲进行分析,可以得到无量纲参数,从而简化流体流动问题的分析和求解。
在热力学中,通过对热量、温度、热容等物理量的量纲进行分析,可以得到无量纲参数,从而简化热力学问题的分析和求解。
总之,相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。
通过对相似原理和量纲分析的理解和应用,可以帮助工程师和科研人员更好地理解和解决实际问题,从而推动科学技术的发展和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于给定长度和直径的管道
进行适当的变换后有
p l F2 , 2 V d Vd d p V 2 l F2 , g 2 g d Vd d
2 p V l 令 F2 则 , g 2g d Vd d ——达西公式。为沿程阻力系数。
Finer V 2l 2 Fr 3 gl Fgra g V
③ 弗劳德数
④ 韦伯数
V 2l V 2l 2 Finer We l Fsur
9
5.1 量纲分析
V V V 2l 2 Finer Ma 22 a k l Fela k ⑥ 毛细数 V Vl Fvis Ca l Fsur
无量纲量数组的组成方式:在n个变量中取m个量纲不同的量作 为基本变量,并把基本变量与其它变量中的一个组成数组,共组 成(n-m)个无量纲数组,例取x1,x2,x3 为基本变量,则数组为:
b c 1 x1a x2 x3 x4
1 1 1
b c 2 x1a x2 x3 x5 ………..
2 2 2
解得a1=-1, b1=-2,c1=0, 故
p 1 V 2
5
5.1 量纲分析
2 M 0 L0t 0 (ML3 )a 2 (Lt 1 )b2 (L)c 2 (ML1t 1 )
解得a2=-1, b2=-1,c2=-1, 故 2 Vd
3 M 0 L0t 0 (ML3 )a3 (Lt 1 )b3 (L)c3 ( L)
【例5-1】 不可压粘性流体在圆管道内流体流动的压降p与 下列因素有关:管径d、管长l、管壁粗糙度ε 、管内流体密度、 流体的动力粘度 ,以及断面平均流速v有关。试用定理推出 压降p的表达形式。
4
5.1 量纲分析 【解】(1)该流动现象共有7个变量p, d, l, ε, , , v (2)基本量刚为L, M,t,所以m=3 (3)选出m=3个基本变量: 、v 、d (4)组成n-m=4个无量纲数组,求解
5.1 量纲分析 流体力学常用物理量的量纲
1
5.1 量纲分析 量纲齐次性原理:完整物理方程中各项的量纲必须相同。 以单位重量的流体沿流线能量守恒形式的伯努利方程为例
V2 p z const 2g g
方程左边各项的量纲依次为
V 2 L2T 2 dim L 2 2 g LT
dim z L
p ML1T 2 dim L 3 2 g ML LT
对于量纲齐次的方程用方程中的任一项去除其它项,可以使方 程无量纲化,从而减少方程的变量个数。 2
5.1 量纲分析 2. Π 定理(白金汉定理) 对于某个物理现象或过程,如果可以用n个变量来描述,写 成数学表达式为:f(x1,x2,x3,…,xn)=0, 而这些变量含有m个基本 量纲,则该现象可以用(n-m)个无量纲量数组的表达式来描述, 即 F(1,2, … n-m)=0
(1)几何相似(空间相似) ——两流动的对应边长成同一比例,对应角相等。
线性比例系数 面积比例系数
l' 基本比例常数 l A ' l '2 CA 2 Cl2 A l Cl
b c nm x1a x2 x3 xn
nm nm nm
3
5.1 量纲分析 应用白金汉定理求某现象的无量纲数组的方法步骤: (1)列与该物理现象相关的全部n个变量
(2)找出基本量纲,设为m个 (3)从n个变量中选出包含全部基本量刚的m个基本变量 (4)用基本变量与其它的任一个变量组成无量纲方程,并解出 n-m 个无量纲数组 (5)利用无量纲数组建立描述该现象的方程
Fgra mg g l 3
表面张力
Fsur l
弹性力
Fela kA kl 2
8
5.1 量纲分析 (3)流体力学中常见的无量纲数组
① 雷诺数
Vl V 2l 2 Finer Re Vl Fvis ② 欧拉数
Fpre p pl 2 Eu 2 2 2 V V l Fi的几点说明 (1)无量纲数组的特性 ① 对于确定的物理现象,无量纲数组个数是固定的
但是形式上不是唯一的 ② 无量纲数的算术运算的结果仍是无量纲数
(2)作用在流体上的力 惯性力 黏性力 压力 重力
2 V Finer ma l 3 V 2l 2 l du V Fvis A A l 2 Vl dy l 2 Fpre pA pl
1 a1V b1d c1p
2 a 2V b 2 d c 2
3 V d l
a3 b3 c3
4 a 4V b 4 d c 4
将上述表达式写成量纲形式
1 M 0 L0t 0 (ML3 )a1 (Lt 1 )b1 ( L)c1 (ML1t 2 )
⑤ 马赫数
(4)量纲分析的物理意义
简化试验方案 物理量量纲的推导 校验方程 确定相似试验条件
10
5.2 相似原理与模型实验 1. 相似的概念 为使模型流动能表现出实型流动的主要现象和特性,并从 模型流动上预测出实型流动的结果,就必须使两者在流动上相 似,即两个互为相似流动的对应部位上对应物理量都有一定的 比例关系。
解得a3=0, b3=0,c3=-1, 故 l 3 d
4 M 0 L0t 0 (ML3 )a 4 (Lt 1 )b4 (L)c4 (L)
解得a4=0, b4=0,c4=-1, 故
4
d
6
5.1 量纲分析 (5)所解问题用无量纲数表示的方程为
p l F , , , 0 2 V Vd d d l p F , , 上述公式还可以写成 1 2 V Vd d d