必修二圆的方程

合集下载

高中数学必修二课件:圆的一般方程(42张PPT)

高中数学必修二课件:圆的一般方程(42张PPT)

此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )

高中数学必修二4.1.2圆的一般方程课件(1)

高中数学必修二4.1.2圆的一般方程课件(1)
1. 圆的一般方程和标准方程; 2. 配方法和待定系数法.
课后作业
P124 A组 第6题 B组 第3题
小 结: 用待定系数法求圆的方程的步骤:
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式; 2. 根据条件列出关于a、b、r或D、E、F
的方程;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
例3.已知线段AB的端点B的坐标是 (4, 3),端点A在圆(x+1)2 +y2=4 上运动,求线段AB的中点M的轨迹 方程.
例4. 等腰三角形的顶点A的坐标是 (4, 2),底边一个端点B的坐标是 (3, 5),求另一端点C的轨迹方程, 并说明它是什么图形.
例4. 等腰三角形的顶点A的坐标是
(4, 2),底边一个端点B的坐标是
(3, 5),求另一端点C的轨迹方程,
并说明它是什么图形.
解:设c点坐标为(a,b) 则 (a-4)^2+(b-2)^2=(4-3)^2+(2-5)^2=10 端点C的轨迹方程以(4,2)为圆心 10 为半径的圆 A,B,C三点不共线,点(5, -1)除外,B点除外

1 4
( (x
x 2+y2 ) -3 )2+y2

1 2

化简得: x2 + y2+2x-3=0 ②
这就是所求的曲线方程。
y
把 ② 左边配方得(x+1)2+ y 2= 4
所以方程 ② 的曲线是以C( —1,0) M.
为圆心,2为半径的圆, 它的图形如图:

高二数学必修二 第四章 圆与圆的方程知识点总结

高二数学必修二 第四章 圆与圆的方程知识点总结

第四章 圆 与 方 程★1、圆的定义:平面内到肯定点的间隔 等于定长的点的集合叫做圆,定点圆心,定长为圆的半径。

设M (x,y )为⊙A 上随意一点,则圆的集合可以写作:P = {M |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。

(3)求圆的方程的方法:待定系数法:先设后求。

确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,须要求出D ,E ,F ; 干脆法:干脆依据已知条件求出圆心坐标以及半径长度。

另外要留意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。

★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的间隔 为22B AC Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线:设点斜式方程,用圆心到该直线间隔 =半径,求解k ,②若求得两个一样的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线肯定为另一条切线)(3)22=r 2,圆上一点为(x 0,y 0),则过此★4、圆与圆的位置关系:通过两圆半径的与(差),与圆心距(d )之间的大小比拟来确定。

高一数学必修二 4.1.2 圆的一般方程

高一数学必修二 4.1.2 圆的一般方程

知识梳理
12
【做一做2】 已知点P(x0,y0)是圆x2+y2=4上的动点,点M是OP(O
是原点)的中点,则动点M的轨迹方程是
.
答案:x2+y2=1
重难点突破
12
1.圆的标准方程和一般方程的对比 剖析:(1)由圆的标准方程(x-a)2+(y-b)2=r2(r>0),可以直接看出圆 心坐标(a,b)和半径r,圆的几何特征明显. (2)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0),知道圆的 方程是一种特殊的二元二次方程,圆的代数特征明显. (3)相互转化,如图所示.
知识梳理
12
【做一做1-1】 圆x2+y2-2x+4y=0的圆心坐标是 ( ) A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)
解析:D=-2,E=4,则圆心坐标为 - -2 ,- 4 , 即(1,-2).
22
答案:A
知识梳理
12
【做一做1-2】 圆x2+y2-6x+8y=0的半径等于 ( ) A.3 B.4 C.5 D.25
高一数学必修二教学课件
第四章 圆与方程
4.1.2 圆的一般方程
学习目标
1.正确理解圆的一般方程及其特点. 2.能进行圆的一般方程和标准方程的互化. 3.会求圆的一般方程以及简单的轨迹方程.
知识梳理
12
1.圆的一般方程 (1)方程:当 D2+E2-4F>0 时,方程 x2+y2+Dx+Ey+F=0 叫做圆的一
;当
Hale Waihona Puke D2+E2-4F<0 时,不表示任何图形.

高一数学必修二知识点解析:圆的方程

高一数学必修二知识点解析:圆的方程

高一数学必修二知识点解析:圆的方程数学是一门很特别的科目,想要学好数学并不能难,只要掌握重要的知识点就可以得心应手,小编为大家整理了高一数学必修二知识点解析:圆的方程一文,希望能够帮助到各位同学们的复习。

高一数学知识点解析:圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

高中数学必修二-圆的方程

高中数学必修二-圆的方程

圆的方程知识集结知识元圆的标准方程知识讲解一:圆的标准方程,其中为圆心,为半径.注意:1.如果圆心在坐标原点,这时,圆的方程就是.有关图形特征与方程的转化:如:圆心在x轴上:b=0;圆与y轴相切时:;圆与x轴相切时:;与坐标轴相切时:;过原点:2.圆的标准方程圆心为,半径为,它显现了圆的几何特点.3.标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a、b、r这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.例题精讲圆的标准方程例1.'求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y―1=0切于点M(2,―1).'例2.'已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为,求圆C的标准方程.'例3.'已知一圆经过点A(2,―3)和B(―2,―5),且圆心C在直线l:x―2y―3=0上,求此圆的方程.'圆的一般方程知识讲解一:圆的一般方程当时,方程叫做圆的一般方程.为圆心,为半径.注意:由方程得(1)当时,方程只有实数解.它表示一个点.(2)当时,方程没有实数解,因而它不表示任何图形.(3)当时,可以看出方程表示以为圆心,为半径的圆.二:几种特殊位置的圆的方程条件方程形式标准方程一般方程圆心在原点过原点圆心在x轴上圆心在y轴上圆心在x轴上且过原点圆心在y轴上且过原点与x轴相切与y轴相切例题精讲圆的一般方程例1.若方程x 2+y 2+2λx +2λy +2λ2―λ+1=0表示圆,则λ的取值范围是()A .(1,+∞)B .C .D .R例2.方程所表示的曲线是()A .一个圆B .圆C .半个圆D .四分之一个圆例3.方程表示圆,则a 的取值范围是_________.A .或B .C .D .点与圆的的位置关系知识讲解点和圆的位置关系如果圆的标准方程为,圆心为,半径为,则有(1)若点在圆上(2)若点在圆外(3)若点在圆内例题精讲点与圆的的位置关系例1.点(a+1,a―1)在圆的内部,则a的取值范围是________.例2.点P(,10)与圆的位置关系是()A.在圆外B.在圆内C.在圆上D.与的值有关例3.过点C(―1,1)和点D(1,3)且圆心在x轴上的圆的方程是()A.x2+(y―2)2=10B.x2+(y+2)2=10C.(x+2)2+y2=10D.(x―2)2+y2=10例4.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.轨迹问题知识讲解一:用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是:(1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于或的方程组.(3)解方程组,求出或的值,并把它们代入所设的方程中去,就得到所求圆的方程.二:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等.3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用表示轨迹(曲线)上任一点的坐标;(2)列出关于的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点);(5)作答.例题精讲轨迹问题例1.点P(4,―2)与圆x2+y2=4上任一点连结的中点轨迹方程是()A.(x―2)2+(y+1)2=1B.(x―2)2+(y―1)2=4C.(x―4)2+(y―2)2=1D.(x―2)2+(y―1)2=1例2.'已知曲线C上任意一点到原点的距离与到A(3,―6)的距离之比均为.(1)求曲线C的方程.(2)设点P(1,―2),过点P作两条相异直线分别与曲线C相交于B,C两点,且直线PB 和直线PC的倾斜角互补,求证:直线BC的斜率为定值.'例3.'已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.'例4.'点P是圆上的任意一点,PC的中点是M,试求动点M的轨迹方程.'备选题库知识讲解本题库作为知识点“圆的方程”的题目补充.例题精讲备选题库已知圆C与直线x+y+3=0相切,直线mx+y+1=0始终平分圆C的面积,则圆C方程为()A.x2+y2-2y=2B.x2+y2+2y=2C.x2+y2-2y=1D.x2+y2+2y=1例2.圆x2+(y-2)2=9的半径是()A.3B.2C.9D.6例3.已知圆C与y轴相切于点(0,5),半径为5,则圆C的标准方程是()A.(x-5)2+(y-5)2=25B.(x+5)2+(y-5)2=25C.(x-5)2+(y-5)2=5或(x+5)2+(y-5)2=5D.(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=25例4.以A(-2,1),B(1,5)为半径两端点的圆的方程是()A.(x+2)2+(y-1)2=25B.(x-1)2+(y-5)2=25C.(x+2)2+(y-1)2=25或(x-1)2+(y-5)2=25D.(x+2)2+(y-1)2=5或(x-1)2+(y-5)2=5当堂练习单选题练习1.圆x2-6x+y2-16=0的周长是()A.25πB.10πC.8πD.5π若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为()A.2B.-1C.-2D.0练习3.已知点M(3,1)在圆C:x2+y2-2x+4y+2k+4=0外,则k的取值范围()A.B.C.k>-6D.练习4.已知x,y满足x2-4x-4+y2=0,则x2+y2的最大值为()A.12+8B.12-8C.12D.8练习5.方程x2+y2+mx-2y+3=0表示圆,则m的范围是()A.B.C.D.)练习6.圆心在(-1,0),半径为的圆的方程为()A.(x+1)2+y2=5B.(x+1)2+y2=25C.D.(x-1)2+y2=25填空题练习1.质点P的初始位置为P1(,1),它在以原点为圆心,半径为2的圆上逆时针旋转150°到_,点P2的坐标为________(用数字表示).达点P2,则质点P经过的弧长为__练习2.已知圆C经过点A(1,3)、B(2,2),并且直线m:3x-2y=0平分圆C.则圆C的方程为_________________.练习3.若圆x2+y2+Dx+Ey+F=0关于直线Dx+Ey+2F+8=0对称,则该圆的半径为___练习4.已知圆心在直线y=x上的圆与直线x+y=0及x+y+4=0都相切,则圆的方程为_________________.练习5.已知点A(2,0),B(0,4),O为坐标原点,则△AOB外接圆的标准方程是_________________.解答题练习1.'已知点A(4,1),B(-6,3),C(3,0).(1)求△ABC中BC边上的高所在直线的方程;(2)求过A,B,C三点的圆的方程.'练习2.'求过三点P(2,2),M(5,3),N(3,-1)的圆的方程.'练习3.'△ABC的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程.'练习4.'已知圆C过点A(3,1),B(5,3),圆心在直线y=x上.(1)求圆C的方程;(2)过圆O1:x2+(y+1)2=1上任一点P作圆C的两条切线,切点分别为Q,T,求四边形PQCT面积的取值范围.'。

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

第四章 圆 与 方 程 4.1 圆 的 方 程 4.1.1 圆的标准方程圆的标准方程圆心为C(x 0,y 0),半径为r 的圆的标准方程为(x -x 0)2+(y -y 0)2=r 2,特别地,圆心在原点时,圆的标准方程为x 2+y 2=r 2.(1)如果圆的标准方程为(x +x 0)2+(y +y 0)2=a 2(a ≠0),那么圆的圆心、半径分别是什么? 提示:圆心为(-x 0,-y 0),半径为|a|.(2)如果点P(x 0,y 0)在圆x 2+y 2=r 2上,那么x 20 +y 20 =r 2,若点P 在圆内呢?圆外呢?提示:若点P 在圆内,则x 20 +y 20 <r 2;若点P 在圆外,则x 20 +y 20 >r 2.1.辨析记忆(对的打“√”,错的打“×”) (1)圆的标准方程由圆心、半径确定.( √ ) (2)方程(x -a)2+(y -b)2=m 2一定表示圆.( × )(3)原点在圆(x -x 0)2+(y -y 0)2=r 2上,则x 20 +y 20 =r 2.( √ ) 提示:(1)如果圆的圆心位置、半径确定,圆的标准方程是确定的. (2)当m =0时,表示点(a ,b).(3)原点在圆上,则(0-x 0)2+(0-y 0)2=r 2,即x 20 +y 20 =r 2. 2.圆(x -1)2+y 2=3的圆心坐标和半径分别是( ) A .(-1,0),3B .(1,0),3C .()-1,0, 3D .()1,0 , 3【解析】选D.根据圆的标准方程可得,(x -1)2+y 2=3的圆心坐标为(1,0),半径为 3 . 3.到原点的距离等于 3 的点的坐标所满足的方程是________.【解析】设点的坐标为(x ,y),根据到原点的距离等于 3 以及两点间的距离公式,得(x -0)2+(y -0)2= 3 ,两边平方得x 2+y 2=3,是半径为 3 的圆. 答案:x 2+y 2=3类型一 圆的标准方程的定义及求法(数学抽象、数学运算)1.以点(2,-1)为圆心,以 2 为半径的圆的标准方程是( ) A .(x +2)2+(y -1)2= 2 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2= 2【解析】选C.由题意,圆的标准方程是(x -2)2+(y +1)2=2. 2.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .x 2+(y -3)2=1D .x 2+(y +3)2=1【解析】选C.由题意,设圆的标准方程为x 2+(y -b)2=1,由于圆过点(1,3),可得1+(3-b)2=1,解得b =3,所以所求圆的方程为x 2+(y -3)2=1.3.已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25【解析】选C.圆C 的圆心坐标C(6,8),则OC 的中点坐标为E(3,4),半径|OE|=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.4.圆心在直线x -2y -3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________. 【解析】方法一(几何性质法):设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a). 因为该圆经过A ,B 两点,所以|CA|=|CB|,所以(2a +3-2)2+(a +3)2 =(2a +3+2)2+(a +5)2 , 解得a =-2,所以圆心为C(-1,-2),半径长r =10 . 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知,⎩⎨⎧a -2b -3=0,(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,解得a =-1,b =-2,r =10 (负值舍去), 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法三(几何性质法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3+52+2 =12, 所以弦AB 的垂直平分线的斜率为k =-2,所以弦AB 的垂直平分线的方程为y +4=-2x ,即2x +y +4=0. 又圆心是直线2x +y +4=0与直线x -2y -3=0的交点, 所以圆心坐标为(-1,-2),所以圆的半径长r =(2+1)2+(-3+2)2 =10 , 故所求圆的标准方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=101.直接法求圆的方程圆的方程由圆心、半径决定,因此求出圆心和半径即可写出圆的标准方程. 2.待定系数法求圆的方程(圆心(a ,b)、半径为r)特殊位置 标准方程 圆心在x 轴上 (x -a)2+y 2=r 2 圆心在y 轴上 x 2+(y -b)2=r 2 与x 轴相切 (x -a)2+(y -b)2=b 2 与y 轴相切(x -a)2+(y -b)2=a 23.利用圆的性质求方程求圆的方程时,可以利用圆的性质求圆心、半径,如弦的垂直平分线过圆心,过切点垂直于切线的直线过圆心等.类型二点与圆的位置关系的判断(数学抽象、数学运算)1.点P(m,5)与圆x2+y2=24的位置关系是( )A.在圆外 B.在圆内C.在圆上 D.不确定【解析】选A.把P(m,5)代入x2+y2=24,得m2+25>24,所以点P在圆外.2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,所以点P(3,2)在圆内.3.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.【解析】因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,所以m=10.则圆的方程为(x+2)2+y2=10.答案:(x+2)2+y2=10.4.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.【解析】由题意知,点A在圆C上或圆C的外部,所以(1-a)2+(2+a)2≥2a2,所以2a+5≥0,所以a≥-52.因为a≠0,所以a的取值范围为⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).【思路导引】1.将点P的坐标代入圆的方程,看方程的等于号变成了什么符号,然后进行判断.2.验证点P与圆心的距离与半径之间的关系.3.将点的坐标代入圆的方程,解方程即可得出m的值,进而得方程.4.不在圆的内部,即在圆上或圆外.点与圆位置关系的判断与应用(1)位置关系的判断:①几何法:判断点到圆心的距离与半径的大小;②代数法:将点的坐标代入圆的方程左边,判断与r 2的大小. (2)位置关系的应用:代入点的坐标,利用不等式求参数的范围.【补偿训练】1.若点(3,a)在圆x 2+y 2=16的内部,则a 2的取值范围是( ) A .[0,7) B .(-∞,7) C .{7}D .(7,+∞)【解析】选A.由点在圆的内部,得9+a 2<16得a 2<7,又a 2≥0,所以0≤a 2<7. 2.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B .(0,1) C .⎝ ⎛⎭⎪⎫-1,15 D .⎝ ⎛⎭⎪⎫-15,1【解析】选D.因为点(2a ,a -1)在圆的内部,所以d =(2a )2+(a -2)2 =4a 2+a 2-4a +4 =5a 2-4a +4 < 5 , 解得-15 <a <1,所以a 的取值范围是⎝ ⎛⎭⎪⎫-15,1 .3.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5)D .[0,5]【解析】选C.由题意,得(a +1-a)2+(3-1)2>m ,即m<5, 又由圆的方程知m>0,所以0<m<5.类型三 与圆有关的最值问题(数学抽象、数学运算)角度1 与几何意义有关的最值问题【典例】已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.【思路导引】首先由条件观察x 、y 满足的条件,然后分析x 2+y 2的几何意义,求出其最值. 【解析】由题意知,x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取得最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12 =32 ,最小距离为1-12 =12.因此x2+y2的最大值和最小值分别为94,14.1.本例条件不变,试求yx的取值范围.【解析】设k=yx,变形为k=y-0x-0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k=yx,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即|-k|k2+1≤12,解得-33≤k≤33.即yx的取值范围是⎣⎢⎡⎦⎥⎤-33,33.2.本例条件不变,试求x+y的最值.【解析】令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时,在y轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b=±22-1,即最大值为22-1,最小值为-22-1.角度2 距离的最值问题【典例】1.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2【解析】选B.|PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值为3-(-3)-2=4.2.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.【解析】由题意知,点M在圆O内,O为圆心,MO的延长线与圆O的交点到点M(2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2 .答案:5+ 2【思路导引】1.转化为圆心到直线x=-3的距离减去半径;2.转化为M到圆心的距离加半径.1.与圆有关的最值问题的常见类型及解法(1)形如u=y-bx-a形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l=ax+by形式的最值问题,可转化为动直线y=-abx+lb在y轴上的截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离的方法采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值或最小值.1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+ 2 C.2+22D.1+2【解析】选B.圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为 2 ,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2 .2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )A.2 B.1 C.0 D.-1【解析】选B.x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,由几何意义可知最小值为(14-13)2=1.3.如果实数x,y满足(x-2)2+y2=3,求yx的最大值和最小值.【解析】方法一:如图,当过原点的直线l与圆(x-2)2+y2=3相切于上方时yx最大,过圆心A(2,0)作切线l的垂线交于B,在Rt△ABO中,OA=2,AB= 3 .所以切线l的倾斜角为60°,所以yx的最大值为 3 .同理可得yx的最小值为- 3 .方法二:令yx=n,则y=nx与(x-2)2+y2=3联立,消去y得(1+n2)x2-4x+1=0,Δ=(-4)2-4(1+n2)≥0,即n2≤3,所以- 3 ≤n≤ 3 ,即yx的最大值和最小值分别为 3 ,- 3 .【补偿训练】1.已知圆C的圆心为C(x0,x),且过定点P(4,2).(1)求圆C的标准方程.(2)当x为何值时,圆C的面积最小?求出此时圆C的标准方程.【解析】(1)设圆C的标准方程为(x-x0)2+(y-x)2=r2(r≠0).因为圆C过定点P(4,2),所以(4-x0)2+(2-x)2=r2(r≠0).所以r2=2x2-12x+20.所以圆C的标准方程为(x-x0)2+(y-x)2=2x2-12x+20.(2)因为(x-x0)2+(y-x)2=2x2-12x+20=2(x-3)2+2,所以当x=3时圆C的半径最小,则圆C的面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2.2.已知实数x,y满足方程x2+(y-1)2=14,求(x-2)2+(y-3)2的取值范围.【解析】(x-2)2+(y-3)2可以看成圆上的点P(x,y)到A(2,3)的距离.圆心C(0,1)到A(2,3)的距离为d=(0-2)2+(1-3)2=2 2 ,由图可知,圆上的点P(x ,y)到A(2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .即(x -2)2+(y -3)2 的取值范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .。

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。

2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

一般方程推导出标准方程的方法是完成平方并合并同类项。

3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。

4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。

5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。

6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。

以上是数学人教版必修二中有关圆的方程的主要知识点。

希望对你有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程()()222x a y b r -+-=1.求标准方程的方法——关键是求出圆心(),a b 和半径r①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()2220x y rr +=≠过原点 ()()()2222220x a y b a b ab -+-=++≠圆心在x 轴上 ()()2220x a y rr -+=≠ 圆心在y 轴上 ()()2220x y b rr +-=≠ 圆心在x 轴上且过原点 ()()2220x a y aa -+=≠ 圆心在y 轴上且过原点 ()()2220x y b bb +-=≠与x 轴相切 ()()()2220x a y b bb -+-=≠ 与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切 ()()()2220x a y b a a b -+-==≠二、一般方程()2222040x y Dx Ey F D E F ++++=+->1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 42.2240D E F +->常可用来求相关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC ) 四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔0d r ∆>⇔<这个知识点能够出如此题型:告诉你直线与圆相交让你求相关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->]第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存有有效,当k 不存有时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程.___________________ii )点在圆上1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--=由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC APAC rk k ⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用弦长公式:12l x =-=(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 4.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时) 五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=对称,则实数m 的值为____.变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________. 变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存有实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫⎪⎝⎭?若存有,求出b 的值;若不存有,试说明理由.六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值; (2)y x -的最小值;(3)22x y +的最大值和最小值2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值.3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存有斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存有,写出直线l 的方程,若不存有,说明理由.3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线x =k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存有实数m ,使OP OQ ⊥,若存有,求出m 的值;若不存有,说明理由. 九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距)(1)12d r r >+⇔外离 (2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含 2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦) (2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=(3)相关圆系的简单应用 (4)两圆公切线的条数问题①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线 十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.(3)相关点法(平移转换法):一点随另一点的变动而变动↓ ↓动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消.参.得到动点轨迹方程,通过参数的范围得出x ,y 的范围. (4)求轨迹方程常用到的知识①重心(),G x y ,33A B C AB C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD ABCD AC=④定比分点公式:AMMB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理.典型例题例1:圆22:2440C x y x y +--+=的圆心到直线l :3440x y ++=的距离d = 。

相关文档
最新文档