(微积分基本定理) 牛顿—莱布尼茨公式
牛莱公式与定积分计算

π
例4
求
2
0
sin 4
x
cos
xdx.
或 1e2x dx 0
解 令sin x t,则cos xdx dt,
当x 0时,t 0,当x π时,t 1,则 2
π
所以 2 sin4 x cos xdx 0
1 t 4dt
0
1 5
t
5
1 0
1. 5
π
π
方法二
2
0
sin4
x
cos
xdx
2
0
sin4
上述公式称为定积分的换元积分公式,简称换元公式.
注意:
(1)定积分的换元法在换元后,积分上,下限也要作相 应的变换,即“换元必换限”.
(2)在换元之后,按新的积分变量进行定积分运算,不 必再还原为原变量.
(3)新变元的积分限可能α>β,也可能α<β,但一定要求
满足 ( ) a,( ) b,即 t 对应于 x a ,t 对应于 x b .
1 0
201 et dt
2[e et
2e (e
1
]
0
1)
2.
练习:P120 3(11)
小结:牛—莱公式,定积分换元积 分法和分部积分法
作业:P120 3(1)、(9)、(10)
b a
f
( x)dx
F ( x)
b a
F(b) F(a).
上式称为牛顿-莱布尼茨公式.
牛顿-莱布尼茨公式揭示了定积分与不定积 分之间的内在联系,并提供了计算定积分的简便 的基本方法,即求定积分的值,只要求出被积 函数 f(x)的一个原函数F(x),然后计算原函数在 区间[a,b]上的增量F(b)–F(a)即可. 该公式把计算定积分归结为求原函数的问题,.
人教版高中数学第一章1.6微积分基本定理

的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 下列积分值为 2 的是( )
A.∫50(2x-4)dx C.∫311xdx
B.∫0π cos xdx D.∫0π sin xdx
解析:∫50(2x-4)dx=(x2-4x)|50=5,∫0π cos xdx=sin
x|π0 =0,∫311xdx=ln x|31=ln 3,∫π0 sin xdx=-cos x|0π =2.
x 的原函数为
F(x)
π
=12x-12sin x,所以 sin2 x2dx=12x-12sin x|20=π4-12=
π-2 4. π-2 答案: 4
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
=sin 1-23. 答案:sin 1-23
类型 3 微积分基本定理的综合应用(互动探究)
牛顿莱布尼茨公式与积分运算

牛顿莱布尼茨公式与积分运算知识点:牛顿-莱布尼茨公式与积分运算一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分基本定理的表述,它建立了微分学与积分学之间的联系。
公式如下:如果函数f(x)在区间[a, b]上连续,并且在区间(a, b)内可导,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫(from a to b) f(x)dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数,即F’(x) = f(x)。
二、积分运算的基本性质1.线性性质:设f(x)和g(x)是两个可积函数,α和β是两个常数,则有:∫(from a to b) (αf(x) + βg(x))dx = α∫(from a to b) f(x)dx + β∫(from a to b) g(x)dx2.保号性:如果f(x)在区间[a, b]上非负(非正),则∫(from a to b)f(x)dx非负(非正)。
3.可加性:如果f(x)和g(x)在区间[a, b]上可积,且它们的区间分界点相同,那么:∫(from a to b) f(x)dx + ∫(from a to b) g(x)dx = ∫(from a to b) (f(x) + g(x))dx4.换元积分法:设 Integration variable change : x = g(t),dx = g’(t)dt,则有:∫(from a to b) f(x)dx = ∫(from g(a) to g(b)) f(g(t))g’(t)dt三、积分运算的基本公式1.幂函数的积分公式:∫(from a to b) x^n dx = (1/n+1)x^(n+1) + C,其中C为积分常数。
2.指数函数的积分公式:∫(fro m a to b) e^x dx = e^x + C。
3.对数函数的积分公式:∫(from a to b) ln|x| dx = ln|x| + C。
微积分基本定理

或记作
f ( x)dx F ( x) F (b) F (a).
b a b a
说明:
牛顿-莱布尼茨公式提供了计算定积分的简便 的基本方法,即求定积分的值,只要求出被积
函数 f(x)的一个原函数F(x),然后计算原函数
在
计算定积分归结为求原函数的问题。
1、已知f ( x)是一次函数,其图象过点(3,4), 且
1
0
f ( x)dx 1, 求f ( x)的解析式
2、已知f (a) (2ax a x)dx, 求f (a)的最大值。
2 2 0
1
练一练:已知f(x)=ax² +bx+c,且f(-1)=2,f’(0)=0,
1
0
f ( x)dx 2, 求a, b, c的值
' ' -1
+1
'
'
'
'
'
问题:通过计算下列定积分,进一步说明其定
积分的几何意义。通过计算结果能发现什么结 论?试利用曲边梯形的面积表示发现的结论.
2
sin xdx
2
0
sin xdx
我们发现:
(1)定积分的值可取正值也可取负值,还可以是0; (2)当曲边梯形位于x轴上方时,定积分的值取正值; (3)当曲边梯形位于x轴下方时,定积分的值取负值; (4)当曲边梯形位于x轴上方的面积等于位于x轴下方 的面积时,定积分的值为0.
得到定积分的几何意义:曲边梯形面积的代数和。
例3:计算 解
2
0
2 x , 0 x 1 f ( x)dx,其中 f ( x) 5, 1 x 2
微积分牛顿莱布尼茨公式

微积分牛顿莱布尼茨公式牛顿-莱布尼茨公式是微积分中的基本定理之一,也称为微积分基本定理或者牛莱公式。
该公式是微积分的重要工具,用于求解定积分和微分方程等问题。
下面我将为您详细介绍和解释这一公式。
牛顿-莱布尼茨公式可以用以下方式表述:设函数f(x)在区间[a,b]上连续且可导(即f'(x)存在),则该函数在[a,b]上的定积分可以被表示为:∫[a to b] f'(x) dx = f(b) - f(a)其中,∫ 符号表示积分,[a to b] 表示积分的区间,f'(x) 表示函数 f(x) 的导数。
该公式的物理含义是:函数曲线下方的面积等于函数在区间[a,b]上的两个端点所对应的函数值之差。
让我们来看一个具体的例子来理解牛顿-莱布尼茨公式的应用。
假设有一个函数 f(x) = 2x,在区间 [1, 3] 上。
我们可以求这个函数在该区间上的定积分,即∫[1 to 3] f'(x) dx。
首先,我们需要求出函数f'(x),即函数f(x)的导数。
对于f(x)=2x,它的导数f'(x)=2接下来,我们将导数 f'(x) 代入定积分公式,得到∫[1 to 3] 2 dx。
将上限 3 和下限 1 代入函数 f(x) = 2x,得到 f(3) = 2 * 3 = 6和 f(1) = 2 * 1 = 2然后,我们将 f(3) - f(1) 代入定积分公式,得到∫[1 to 3] 2dx = 6 - 2 = 4所以,函数f(x)=2x在区间[1,3]上的定积分是4这个例子展示了牛顿-莱布尼茨公式的应用。
通过求解函数的导数,并将导数代入定积分公式,可以得到函数在给定区间上的定积分值。
当对复杂函数进行定积分时,牛顿-莱布尼茨公式可以极大地简化计算。
我们可以通过求函数的导数来得到原函数,然后将原函数代入定积分公式来求解定积分。
这种方法比直接计算定积分更加方便且高效。
需要注意的是,牛顿-莱布尼茨公式只适用于连续可导的函数。
微积分基本定理

2 2 (2 1) ( 2 ln 2 ln 1) 1 2 ln 2 x |1 2(ln x) |1
公式 1: 公式:
b
a
1 b dx = lnx|a x
b
a
f ( x)dx F ( x) | F (b) F (a)
b a
例 4.计算下列定积分 3 1 2 1 (3x - x2 )dx 解:∵ (x ) = 3x ,
1
x
1dx e ___ e 1
初等函数
练习 2:求下列定积分: (1) (x2+2x+3)dx; (2) (3)
0 - π 2 1
(cos x-ex)dx;
x 2 sin2 dx. 0 2
练习3:求下列定积分:
(练习) A.π
(1+cosx)dx等于 B.2 C.π-2
微积分基本定理:
设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),则,
b
a
f ( x)dx F (b) F (a)
这个结论叫微积分基本定理(fundamental theorem of calculus),又叫牛顿-莱布尼茨公式(Newton-Leibniz Formula).
5.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x 轴所围的面积为 线方程. 解:如右图.设切点A(x0,y0),由 .试求:切点A的坐标及过切点A的切
y′=2x,得过点A的切线方程为
y-y0=2x0(x-x0),即y=2x0x- 令y=0,得x= .即C( ,0). .
设由曲线和过A点的切线及x轴所围成图形面积为S,
C.3
答案:D
D.2
牛顿-莱布尼茨公式

• 牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也 被称为微积分基本定理,揭示了定积分与被积函数的原函 数或者不定积分之间的联系。[1] • 牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增 量。牛顿在1666年写的《流数简论》中利用运动学描述了 这一公式,[2] 1677年,莱布尼茨在一篇手稿中正式提出了 这一公式。[1] 因为二者最早发现了这一公式,于是命名 为牛顿-莱布尼茨公式。
原函数存在定理
• 原函数是指已知函数f(x)是一个定义在某区间的函 数,如果存在可导函数F(x),使得在该区间内的 任一点都 举例dF(x)=f(x)dx。 则在该区间内就称函数F(x)为函数f(x)的原函数。
原函数的定义
• 已知函数f(x)是一个定义在某区间的函数,如果存 在可导函数F(x),使得在该区间内的任一点都有 • 若F'(x)=f(x),dF(x)=f(x)dx,则在该区间内就称函 数F(x)为函数f(x)的原函数。 • 例:sinx是cosx的原函数。
公式应用
• 牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可 以计算曲线的弧长,平面曲线围成的面积以及空间曲面围 成的立体体积,这在实际问题中有广泛的应用,例如计算 坝体的填筑方量。[1] • 牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运 动物体的路程,计算变力沿直线所做的功以及物体之间的 万有引力。[1] • 牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式 在微分方程,傅里叶变换,概率论,复变函数等数学分支 中都有体现。
不等式证明
• 积分不等式是指不等式中含有两个以上积分的不等式,当 积分区间相同时,先合并同一积分区间上的不同积分,根据 被积函数所满足的条件,灵灵活运用积分中值定理,以达到 证明不等式成立的目的。 • 在证明定积分不等式时, 常常考虑运用积分中值定理, 以便 去掉积分符号, 如果被积函数是两个函数之积时, 可考虑用 积分第一或者第二中值定理。对于某些不等式的证明, 运 用原积分中值定理只能得到“≥”的结论, 或者不等式根本 不能得到证明。而运用改进了的积分中值定理之后, 则可 以得到“>”的结论, 或者成功的算中, 如果 含有定积分式, 常常可以运用 定积分的相关知识, 比如积分 中值定理等, 把积分
牛顿布莱尼公式推导

1牛顿布莱尼茨公式牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.2牛顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)3牛顿布莱尼茨公式意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。
牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成图形的面积.
2018/10/16
14
练习:
(1) (-3t 2)dt = ______
2 0
1
1 2 (2) ( x ) dx = ______ 1 x
2
(3) (3 x 2 x -1)dx = ______
2 -1
2
(4) (e 1)dx = ______
x 1
微积分基本定理
2018/10/16
1
知识回顾: 微积分在几何上有两个基本问题
1.如何确定曲线上一点处切线的斜率; 2.如何求曲线下方“曲线梯形”的面积。
y y
y
0
x
0
x
o
x
直线
几条线段连成的折线
曲线?
2
2018/10/16
用 “以直代曲”解决问题的思想和具体操作过程:
分割
以直代曲
作和
逼近
2018/10/16
3
求由连续曲线y=f(x)对应的曲边梯形面积的方法
n个小区间: a, x1 , x1, x2 , 每个小区间宽度⊿x =
b-a n
(1)分割:在区间[a,b]上等间隔地插入n-1个点,将它等分成
xi-1, xi , , xn-1, b,
(2)以直代曲:任取xi[xi-1, xi],第i个小曲边梯形的面积用高 为f(xi), 宽为Dx的小矩形面积f(xi)Dx近似地去代替. y (3) 作和:取n个小矩形面积的和作 为曲边梯形面积S的近似值:
f ( x) 的原函数
f ( x) )的数值差 F (b) - F (a)
来计算 f ( x) 在[ a, b]上的定积分的方法。
2018/10/16 7
牛顿—莱布尼茨公式
定理 (微积分基本定理)
如果 f (x) 是在区间[a , b]上的连续函数,并且
F(x) = f (x), ,则
a f ( x )dx = F (b) - F (a ).
(1) cos xdx;
0 2 3 0
(2) 2 sin xdx;
0 4 0
(3) ( x - 2 x)dx; (4) 1 (5) ( x )dx; 1 x
2018/10/16 15
2
练习:
(5) ( x - 2 x)dx = ______
3 0
2
(6) ( x cos x)dx = ______
0
(7) cos 2 xdx = ______
0
(8) sin xdx = ______
2 0 2
2018/10/16 16
练习:
y= f ( x)
S f (xi )Dx
(4)逼近:所求曲边梯形的面积 S为
i =1
n
Dx 0, ( n )
f (x )Dx S
i =1 i
n
2018/10/16
O
a
xi-1 xi xi
Dx
b
4
x
定积分的定义:
一般地,设函数f(x)在区间[a,b]上有定义,将区间 [a,b]等分成n个小区间,每个小区的长度 为 Dx(Dx = b - a ),在每个小区间上取一点,依次为 n x1,x2,…….xi,….xn,作和
(分割---以直代曲----求和------逼近)
1 由定积分的定义可以计算 0 x dx = 3
1 2
, 但
2018/10/16
6
对于一般函数 f ( x) ,设 F ( x) = f ( x) 是否也有
b
a
f ( x)dx =
b
a
F ( x)dx = F (b) - F (a).
若上式成立, 我们就找到了用 (即满足 F ( x) =
b a
b
记: F(b) - F(a) = F(x) |b a
则:
2018/10/16
b
a
f ( x)dx == F ( x) | = F (b) - F (a)
8
f(x)是F(x)的导函数 F(x) 是f(x)的原函数
例1:计算下列定积分
(1) 3x dx
2 1
5
3
(2) (2 x - 4)dx
2018/10/16
3
1
1 1 1 76 3 3 (3x - 2 )dx = (3 ) - (1 ) = x 3 1 3
2
10
基本初等函数的导数公式 ' 1.若f ( x) = c f ( x) =
2.若f ( x) = x
n
f ( x) =
' ' '
(n R)
3.若f ( x) = sin x f ( x) = 4.若f ( x) = cos x f ( x) = 5.若f ( x) = a
0
3 ' 2
5
解:(1)取 F ( x) = x , F ( x) = 3x
2
找出 f(x)的 原函数 是关健
3x2 dx = F (5) - F (2) = 117
解:(2)取 F ( x) = x2 - 4x, F ' ( x) = 2x - 4
(2 x - 4)dx = F (5) - F (0) = 5
x
f ( x) =
'
(a 0, a 1) (a 0, a 1)
11
6.若f ( x) = e x 8.2018/10/16 若f ( x) = ln x
f ' ( x) =
'
7.若f ( x) = log a x f ( x) = f ( x) =
'
例2:计算下列定积分
Sn = f (x1 )Dx f(x 2 )Dx f(x n )Dx
如果 Dx 无限趋近于0时,Sn无限趋近于常数S,那 么称常数S为函数f(x)在区间[a,b]上的定积分,记 作: S =
2018/10/16
b
a
f(x)dx .
5
问题情景
比较麻烦(四步曲),有没有更加简便有效的 方法求定积分呢?
0
2018/10/16
5
b
a
f ( x)dx = F ( x) | = F (b) - F (a)
b a
9
1 (3) (3 x - 2 ) dx 1 x
Байду номын сангаас3 2
解:(3)∵ ( x ) = 3 x ,
3 2
1 1 2 ( x ) = 3 x - 2 , x x
3
1 1 ( ) = - 2 x x
(1)
2
1
1 dx x
(2) 2 cos xdx
0
2018/10/16
12
例2:计算下列定积分
(3) sin xdx
0
(4)
2
1
1 dx x
2018/10/16
13
例 3:(1 )计算 y2 = x 与 y = x2 所围成图形的面积; (2 )计算曲线 y = 1 ,直线 y = x, x = 2, y = 0 所围