专题学习-线段的和差倍分
证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长(或大)折半 ②短(或小)加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。
3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用已知条件而添。
4、传递:在加倍或折半后,还不易或不能证明结论,则要找与被证二量有等量关系的量来传递,或者添加这个量来传递。
此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。
参考例4、例5、例6。
例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和AC 为边向形外作的正方形。
求证:FH=2AD/ BAC+ / ACN=180证明:延长AD 至N 使AD=DN则ABNC 是平行四边形CN=AB=FA AC=AH又/ FAH+ / BAC=180 •••△ FAHY NCA ••• FH=AN例 2、△ ABC 中,/ B=2 / C ,AD 是高,M 是BC 边上的中点。
$•••1求证:DM=2 AB/ 2=Z B •••/ 2=2Z 1•••/ 1 = / DNM 又 AN=DN=ND • DM=2 A B1贝J BFAC••• BF=AE•••△ AEC 心 BFD •DF 二CE 二 CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1线交AC 于F ,求证:AF=2 FC2、AB 和AC 分别切© O 于B 和C, BD 是直径。
求证/ BAC 二Z CBD3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。
求证:BD=2CE例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E ,证明:取AB 的中点N ,连接MN 、DN贝J MN // AC / 1 = / C••• DM=DN例 3 △ ABC 中,AB=AC , E 是AB 的中点,D 在AB 的延长线上,且 DB=AC 。
线段的和差倍分问题的证明

ABE DC线段的和差倍分问题的证明证明线段的倍分问题: 一、运用定理法即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。
此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。
例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM =21AB 二、比例线段法即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。
例2 如图,在△ABC 中,BD 是∠B 的平分线,△ABD 的外接园交BC 于E ,若AB =21AC , 求证:CE =2AD 。
对应练习1、已知:如图所示,点D 、E 分别是等边ABC ∆的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 21=.2、如图所示,在ABC ∆中,AB=AC ,︒=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 21=. Q A DP C B E AEADF3、已知:如图所示,锐角ABC ∆中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD .4、如图,在ABC ∆中,延长BC 到D ,使CD=2BC ,E 在AC 上,且AE=2EC ,D 的延长线交AB 于F ,求证:EF DE 27=二、割补法证明线段的和差问题:这是证明线段的和差倍分问题的一种重要方法。
即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。
在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。
但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。
线段的和差与倍分

线段的和差与倍分学习目标:1.能用直尺和圆规作出线段的和、差。
2.理解线段中点的概念及意义,会用刻度尺画出一条线段的中点,并能用符号语言表示出来学习重难点:线段中点的应用学习过程一、知识回顾1.如何比较线段的长短?2.如图所示,A地到B地有a,b,c,d(图中从上到下)四条道路,其中最短的是,理由是。
二、预习自学活动一、作出符合要求的线段思考,木料截断的位置在什么地方?已知线段AB,画出它的中点C。
A B如图,如果点C把线段AB分成相等的两条线段AC与BC,那么点C叫做线段AB的中点。
几何语言:(1)(2)(3)三、例题分析例1、已知C是线段AB上的一点,AC=5厘米,CB=3厘米,M是线段AB的中点,画出符合要求的图形,并求出MC的长。
思考:若例1中点C是直线AB上一点,MC的长是多少呢?(四)课堂总结(1)要得到线段的中点,首先必须确保_________________________________. (2)等分点的概念:类似于中点定义,将线段等分成3份的点叫做线段的三等分点,把线段等分成4份的点叫做线段的四等分点四、达标练习1、如图,已知cm=,DC3=,D是AC的中点,且cmBC4则AB= ,AC=____.2、已知C是线段AB上的一点,6,8==,M是AB的中点。
画出符合要求的AC cm CB cm图形,并求出MC的长。
3、如图,已知线段20是线段的中点,在MB上,N为PB的中点,NB=4cm,=,M AB PAB cm求PM的长。
M P NA B五、课堂小结:本节课我们新学到哪些内容?六、课下作业1、如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做线段AB 的中点.此时AM 、BM 和AB 有如下关系: .2、如图,已知cm AB 20=,cm CD 8=,E 、F 分别为AC 、BD 的中点,求EF 的长.3、已知线段cm AB 10=,C 是线段AB 的中点,E 、F 分别为AC 、CB 的中点,求EF 的长. 如果8AB cm =呢?12AB cm =呢?由此可以发现什么规律?4、如图:已知AB:BC:CD=2:3:4,E,F 分别是线段AB,CD 的中点,且AD=45cm ,求线段EF 的长。
第三讲--线段的和差倍分问题

如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.26.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.25.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【考点】四边形综合题.【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC 得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF 可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=DP.【点评】本题主要考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.例4 (2013•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.思路分析:(1)过点B 作BG ⊥OE 于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;(2)选择图2,过点B 作BG ⊥OE 交OE 的延长线于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B 作BG ⊥OE 于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.2.(2015•随州)问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,试判断BE 、EF 、FD 之间的数量关系.【类比引申】如图(2),四边形ABCD 中,∠BAD ≠90°,AB=AD ,∠B+∠D=180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足 关系时,仍有EF=BE+FD .26.已知二次函数y=x 2﹣(2k +1)x +k 2+k (k >0),若该二次函数与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于C 点,P 是y 轴负半轴上一点,且OP=1,直线AP 交BC 于点Q ,求证:.(3)由题意可得:点P的坐标为(0,1),则0=x2﹣(2k+1)x+k2+k0=(x﹣k﹣1)(x﹣k),故A(k,0),B(k+1,0),当x=0,则y=k2+k,故C(0,k2+k)则AB=k+1﹣k=1,OA=k,可得,y BC=﹣kx+k2+k,当x﹣1=﹣kx+k2+k,解得:x=k+,则代入原式可得:y=,则点Q坐标为运用距离公式得:AQ2=()2+()2=,则OA2=k2,AB2=1,故+=+1==,则.。
线段与角的和差倍分计算

线段与角的和差倍分计算一、线段的和差倍分计算已知线段AB=a,延长BA至点C,使AC=AB.D为线段BC的中点。
求CD的长度和a的值。
解析:根据线段的定理,AC=AB+BC,又因为BC=2CD,所以AC=AB+2CD。
又因为AC=2AB.D,所以AB+2CD=2AB.D,化简得CD=(2D-1/2)a,a=3AD。
在一条直线上顺次取A,B,C三点,已知AB=5cm,点O是线段AC的中点,且OB=1.5 cm,求BC的长度。
解析:因为O是AC的中点,所以OC=OA,又因为OB=1.5 cm,所以BC=BO+OC=1.5+OA。
根据勾股定理,OA^2+AC^2=OC^2,代入已知条件,得到OA=√(25-3.75)=4.3301.所以BC=1.5+4.3301=5.8301,约等于6 cm。
某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B,___。
现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在哪里?解析:根据三角形中位线定理,AC^2+BD^2=2AM^2+2MC^2.又因为AC=CD=DB,所以AM=MC=MD=MB=AC/2=CD/2=DB/2.所以AC^2+BD^2=4AM^2+4MC^2=8AM^2,所以AM^2=(AC^2+BD^2)/8.因为AC=CD=DB=AB/3,所以AB^2=3AC^2=3BD^2,代入上式得到AM^2=AB^2/12.所以M在AB的中点。
点D是线段AB的中点,C是线段AD的中点,若AB=4cm,求线段CD的长度。
解析:根据线段的定理,AC=AB/2=2cm,BD=AB/2=2cm,又因为CD=AC/2=1cm,所以CD的长度为1cm。
已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB的中点,AC=8,EB=5,求线段DE的长。
解析:根据线段的定理,AC+CB=AB,所以AB=AC+CB=8+2EB=18.又因为D和E分别是AB和CB的中点,所以DE=AD-EB=AB/2-EB=9/2.线段AC∶CD∶DB=3∶4∶5,M,N分别是CD,AB的中点,且MN=2 cm,求AB的长。
证题技巧之三——证明线段或角地和差倍分

证题技巧之三——证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长〔或大〕折半②短〔或小〕加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,终究是折半还是加倍要以有利于利用条件为准。
3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用条件而添。
4、传递:在加倍或折半后,还不易或不能证明结论,如此要找与被证二量有等量关系的量来传递,或者添加这个量来传递。
此时,添线从两方面考虑:①造等量②为证等量与被证二量相等而添。
参考例4、例5、例6。
例1 AD是△ABC的中线,ABEF和ACGH是分别以AB和AC为边向形外作的正方形。
求证:FH=2AD证明:延长AD至N使AD=DN如此ABNC是平行四边形∴=AB=FA AC=AH又∠FAH+∠BAC=180°∠BAC+∠A=180°∴△FAH≌△NCA ∴FH=AN ∴FH=2AD例2、△ABC中,∠B=2∠C,AD是高,M是BC边上的中点。
求证:DM=12AB 证明:取AB 的中点N ,连接MN 、DN 如此 MN ∥AC ∠1=∠C ∠2=∠B ∴∠2=2∠1 ∴∠1=∠DNM ∴DM=DN又 AN=DN=ND ∴DM=12AB 例3 △ABC 中,AB=AC ,E 是AB的中点,D 在AB 的延长线上,且DB=AC 。
求证:CD=2CE证明:过B 作CD 的中线BF如此 BF ∥12AC ∠A=∠DBF ∵AB=AC ,E 是AB 的中点∴BF=AE又DB=AC ∴△AEC ≌△BFD ∴DF=CE ∴CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长线交AC 于F ,求证:AF=12FC 2、AB 和AC 分别切⊙O 于B 和C ,BD 是直径。
求证∠BAC=2∠CBD3、圆内接△ABC 的AB=AC ,过C 作切线交AB 的延长线于D ,DE 垂直于AC 的延长线于E 。
线段的和差倍分教案

线段的和差倍分教案篇一:三角形专题线段的和差倍分专题:三角形之线段的和差倍分1、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE。
(2)当直线MN绕点C旋转到图2的位置时,问DE 、AD、BE 有何关系,并说明理由。
A2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D. 求证:DE?AD?BE.3、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD4、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:?BD=CF?BD=2CE.5、?如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,过D 点作EF∥BC交AB于E,交AC于F,求证:EF=BE+CF.?在△ABC中,BD平分∠ABC,CD平分∠ACG,过D点作EF∥BC 交AB于E,交AC于F,试探究BE、EF与CF的数量关系.篇二:【教案】2.4线段的和与差2.4线段的和与差教学目标1.理解线段可以相加减,掌握用直尺、圆规作线段的和、差. 2.利用线段的和与差进行简单的计算。
教学重点和难点重点:用直尺、圆规作线段的和、差。
难点:进行简单的计算。
教学时间:1课时教学类型:新授教学过程:一、复习旧知,作好铺垫1.已知线段AB,用圆规、直尺画出线段CD,使线段CD=AB. 2.两点间的距离是指()A.连结两点的直线的长度;B.连结两点的线段的长度;C.连结两点的直线;D.连结两点的线段.二、创设情景,激趣导入1.我们知道数(如有理数)可以相加减,那么作为几何图形的线段是否可以相加减呢?12.观察:如图所示,A、B、C三点在一条直线上,1)图中有几条线段?2)这几条线段之间有怎样的等量关系?A B C学生讨论三、尝试探讨,学习新知1.显然,图中有三条线段:AB、AC、BC,它们有如下的关系AB+ BC= AC,AC- BC= AB,AC- AB= BC2.由此,你可以得到怎样的结论两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的和(或差)3.例题1:如图,已知线段a、b,1)画出一条线段, 使它等于a+b2)画出一条线段, 使它等于a-b※学生尝试画图※教师示范,(注意画图语句的叙述)解:(1)①画射线OP;②在射线OP上顺次截取OA=a,AB=b线段OB就是所要画的线段.(2)①画射线OP;②在射线OP上截取OC=a,在射线OC上截取CD=b线段OD就是所要画的线段.2 b4.在例题1中为什么CD要“倒回”截?不“倒回”截行吗?5.思考:你会作一条线段使它等于2a吗?1)学生讨论2)2a是什么意思?(a+a)3)那么na(n为正整数,且n1)具有什么意义?6.尝试:例题2 如图,已知线段a、b,画出一条线段,使它等于2a-b1)学生独立完成2)反馈,纠正这两个例题是线段的和、差、倍的具体画法,教师在画图的过程中,要边画边讲.注意讲清以下问题:(1)先画的图形是已知的线段a,b.(2)画射线的目的是确定整个图形的起点,由于在没有画完的情况下,终点不能确定,而这种只有起点而没有终点的状态,只有用射线描述最为合适.(3)什么叫“顺次截取”?就是要沿着射线的方向,从起点开始,依照计算的顺序截取.(4)线段的和、差在画图中的区别是什么?“和”是在截取时不改变方向.而“差”在截取时的方向是变化的.3通过这两个例题.使学生能够掌握线段的和、差、倍的画图.(5)两个例题讲完后可以安排一个练习:已知线段a,b,c(a>b >c),画一条线段,使它等于2a+3b-c.7.将一条线段分成两条相等线段的点叫做这条线段的中点.若已知点M是线段AB的中点,你能得到哪些等量关系.AM?MB,AM?MB,BM?ABAB?2AM,AB?2MB8.已知线段AB,你会画出它的中点C吗?除了用尺测量,你还有其他方法吗?9.介绍用尺规作线段AB 的中点C.注意语言的叙述:解:(1)以点A为圆心,以大于AB的长a为半径作弧,以点B 为圆心,以a为半径作弧,两弧分别相交于点E、点F;(2)作直线EF,交线段AB于点C.点C就是所求的线段AB的中点. 1212四、反馈小结、深化理解1.学生自己总结本节课的学习内容,应回答出线段的和、差、倍、分的画法;线段中点的定义. 4a2.线段的和、差、倍的画法中应注意的问题.如步骤、方向等.3.一些关键词的用法,如“连结”、“顺次”等.五、学习训练与学习评价建议一、判断题(每题4分,共20分)(1)连接A、B两点,那么线段AB叫做A、B两点的距离.()(2)连接A、B两点的线段的长度,叫做A、B两点的距离.()(3)若AB=BC,则B是线段AC的中点.()(4)若AB=AM+BM,则点M在线段AB上.()(5)若点M在线段AB外,则必有ABAM+MB.()二、填空题(每题5分,共20分)(1)点M把线段PQ分成两条相等的线段,点M叫做线段PQ的______,这时有PQ=_______=_______.(2)延长线段AB到C,使BC=AB,反向延长AC到D使AD=AC,则CD=_______AB.(3)如图1.3-4,如果A、B两点将MN三等分,C为BN的中点,BC=5cm,则MN=________.(4)如图1.3-5,在直线PQ上要找一点A,使PA=3AQ,则A点应在________.图1.3-4图1.3-5 5篇三:线段和差倍分怎样证明线段的和差倍分问题怎样证明线段的倍分问题【典型例题】常规题型1、已知:如图所示,点D、E分别是等边?ABC的边AC、BC上的点,AD=CE,BD、AE交于点P,BQ?AE于Q.求证:PQ? 12PB.B C常规题型2、已知:如图所示,在?ABC中,AB=AC,?A?120?,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM.C N A能力挑战1、如图所示,在?ABC中,AB?12BC,D是BC的中点,M是BD的中点.求证:AC=2AM. ABD能力挑战2、已知:如图所示,在?ABC中,BD是AC边上的中线,BH平分?CBD,AF?BH,分别交BD、BH、BC于E、G、F.求证:2DE=CF.AD EBQ【经典练习】1、如图所示,已知?ABC中,?1??2,AD=DB,DC?AC.求证:AC? 1AB.21 2CD 2、已知:如图所示,D是?ABC的边BC上一点,且CD=AB,?BDA??BAD,AE是?ABD的中线.求证:AC=2AE. A E?AB于3、已知:如图所示,在?ABC中,AB=AC,?BAC?120?,D 是BC的中点,DEEE.求证:EB=3EA.AED?BAC?120?,4、已知:如图所示,在?ABC中,AB=AC,P是BC 上一点,且?BAP?90?.求证:PB=2PC.B P5、已知:如图所示,锐角?ABC中,?B?2?C,BE是角平分线,AD?BE,垂足是D.求证:AC=2BD.C6、如图所示,在?ABC中,AB=AC,?BAC?90?,BE平分?ABC,交AC于D,CE?BE于E点,求证:CE?1BD.2B C怎样证明线段的和差问题【典型例题】常规题型1、如图所示,已知?ABC中,?A?60?,BD、CE分别平分?ABC和?ACB,BD、CE交于点O.求证:BE+CD=BC. AEDB C能力挑战1、如图所示,在等腰直角三角形ABC中,?BAC?90?,AD=AE,AF?BE交BC于F,过点F作FG?CD于M,交BE延长线于点G,求证:BG=AF+FG.G AEB C能力挑战2、如图所示,在?ABC中,AB=AC,?A?100?,BE平分?ABC,求证:AE+BE=BC.AC B【练习】1、如图所示,已知?ABC中,?A?2?B,CD是?ACB的平分线,求证:BC=AC+AD.BC2、如图所示,若E为正方形ABCD的边BC上一点,AF为?DAE 的平分线,AF与CD相交于F点.求证:AE=BE+DF. A DFB3、如图所示,已知?ABC和?ADE均为等边三角形,B、C、D 在一直线上,求证:CE=AC+CD.ED?C?90?,4、如图所示,已知在?ABC中,AC=BC,AD是?BAC的平分线,求证:AB=AC+CD.CDB A5、如图所示,等边?ABC和等边?BDE,点A在DE的延长线上,求证:BD+DC=AD.CA B证明线段的和差倍分问题作业1、如图所示,在等腰三角形ABC中,P是底边BC上的任意一点.(1)求证:P点(本文来自: 千叶帆文摘:线段的和差倍分教案)到两腰的距离之和等于腰上的高.(2)若P点在BC的延长线上,那么点P到两腰的距离与腰上的高三者之间存在什么关系?AFE BC2、如图所示,等腰三角形ABC中,AB=AC,?A?108?,BD平分?ABC.求证:BC=AB+DC.ADC B3、如图所示,已知?ABC是等腰三角形,AB=AC,?BAC?45?,AD 和CE是高,它们相交于H,求证:AH=2BD.E H4、如图所示,在?ABC中,?ACB?90?,P是AC的中点,过A过BP的垂线交BC延长线于点D,E是垂足.若?DBE?30?,求证:BP=4PE.D。
(完整版)线段和差倍分及其应用专题

线段的和差倍分及其应用专题知识点:A、线段的和、差如图:①AB= + ;②AC= -;③BC= -;B、线段的中点如图:∵点C是线段AB的中点;∴①= =21;②=2 =2 ;解题思想:求线段的长度时,通常需要依据条件将线段表示成两线段的和、差。
★☆★解题需注意题设条件中的语言表达,能准确地把文字语言转化成图形语言,并要求能准确地书写符号语言。
如:“点C在线段AB上”与“点C在直线AB上”,你能根据文字语言将其转化成图形语言吗?试一试!例题讲解:【例1】、如图,D是AB的中点, E是BC的中点,BE=51AC=2cm,线段DE的长,求线段DE的长.练习:1、如图,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.A BCA BC2、如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.3、在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司需支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?4、如图所示,沿江街AB段上有四处居民小区A.C.D.B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?为什么?【例2】、点C 、D 顺次将线段AB 分成三部分,且AC = 2CD ,CD :DB = 1 :3,M 、N 分别为AC 、BD 的中点,MN = 7cm ,求线段AB 的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的和差倍分作图与计算
1、已知线段AB=80,M 为AB 中点,P 在MB 上,N 为PB 中点,且NB=14,求AP 长。
2、已知P 为线段AB 上一点,M 、N 分别是AP 、BP 中点,试说明MN=2
1AB 。
3、线段AB =1.8,延长AB 至C ,使得BC =3AB ,D 为BC 中点,求BD 的长。
4、已知线段AB 上有C 、D 两点,AD=35,BC=44,AC=2/3BD ,求AB 的长。
5、如图,C 、D 是AB 上两点,E 、F 分别是AC 、DB 中点,EF =m ,CD =n ,求AB 长。
6、已知线段AB =12,点C 在直线AB 上,且BC =6,M 是AC 中点,求AM 长。
(提示:
不只一种可能哦)
7、已知线段AB=12,在AB 上有C 、D 、M 、N 四点,且AC ∶CD ∶DB=1∶2∶3,AM=
21AC ,
DN=41
DB ,求MN 的长。
(提示:……上题提示了,还要提示?!)8、如图,C 、D 将AB 分成2∶3∶4三部分,E 是AB 中点,ED =2,求AB 的长。
9、在一条直线上有A 、B 、C 三点,M 为AB 中点,N 为BC 中点,若AB=a ,BC=b ,试
用a 、b 表示线段MN 的长度。
10、已知:线段a 、b ,求作:
①a +b
② 2a +b
③ 2b -a。