初中数学应用型问题专题讲解

合集下载

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)1.威立到小吃店买水饺,他身上带的钱恰好等于15 粒虾仁水饺或20 粒韭菜水饺的价钱,若威立先买了9 粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.122.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载。

租车方案有()A.4种B.3种C.2种D.1种3.“保护好环境,拒绝冒黑烟。

”某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.则每辆A型车的售价是()A.14万元B.18万元C.22万元D.26万元4.小明在某商店购买商品A,B共两次,这两次购买商品A,B的数量和费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购物 4 3 93第二次购物 6 6 162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种6.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为张,2元的贺卡为张,那么、所适合的一个方程组是()A.B.C.D.7.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种9.某花农培育甲种花木10株,乙种花木8株,共需成本6400元;培育甲种花木4株,乙种花木5株,共需成本3100元。

七年级数学尖子生培优竞赛专题辅导第二十一讲 应用题(含答案)

七年级数学尖子生培优竞赛专题辅导第二十一讲 应用题(含答案)

第二十一讲 应用题趣题引路】2003年“信利杯”数学竞赛有一道有趣的应用型问题:某人租用一辆汽车由A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:h )如图21-1所示若汽车行驶的平均速度为80km/h ,而汽车每行驶1km 需要的平均费用为1.2元试指出此人从A 城出发到B 城的最短路线(要有推理过程),并求出所需费用最少为多少元?图21-1OHGFEDC B A57111514136171012189解:从A 城出发到达B 城的路线分成如下两类:(1)从A 城出发到达B 城,经过O 城.因为从A 城到O 城所需要最短时间为26h ,从O 城到B 城所需最短时间为22h.所以,此类路线所需最短时间为26+22=48(h ).(2)从A 城出发到达B 城,不经过O 城。

这时从A 城到达B 城,必定经过C ,D ,E 城或F ,G ,H 城,所需时间至少为49h.综上,从A 城到达B 城所需的最短时间为48h ,所走的路线为A →F →0→E →B.所需的费用最少为80×48×1.2=4608(元).在本讲中,将介绍各类应用题的解法与技巧。

知识拓展】当今数学已经渗人到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点。

应用性问题能引导学生关心生活、关心社会,使学生充分体会到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心。

解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.一、用数式模型解决应用题数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.例1:(2003年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人)1 123 2(1的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?解析:抓住“平均价格”“平均日总收入”等关键词.解:(1)风景区是这样计算的:调整前的平均价格:1010152025165++++=(元).调整后的平均价格:55152530165++++=(元).所以调整前后的平均价格不变,平均日人数不变,故平均日总收入持平.(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元),现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元),故平均日总收入增加了:1751609.4%160-≈. (3)游客的说法较能反映整体实际.二、用方程模型解应用题研究和解决生产实际和现实生活中有关问题常常要用到方程(组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.例2:(2003年重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min 内可以通过560名学生;当同时开启一道正门和一道侧门时,4min 内可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min 内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.解析:列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,由题意得: 2(2)5604()800x y x y +=⎧⎨+=⎩,, 解得:12080x y =⎧⎨=⎩,. (2)这栋楼最多有学生4×8×45=1440(名), 拥挤时5min4道门能通过:5×2(120+80)(1-20%)=1600(名), 因1600>1440,故建造的4道门符合安全规定.三、用不等式模型解应用题现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.例3:(2003年苏州中考题)我国东南沿海某地的风力资源丰富,一年内日平均的风速不小于3m/s 的时间共约160天,其中日平均风速不小于6m/s 的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 kW ·h ;(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元,该发电场拟购风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电量不少于102000kW ·h ,请你提供符合条件的购机方案.解:(1)(100×36+60×150)x =12600x ;(2)设购A 型发电机x 台,则购B 型发电机(10-x )台, 解法一 根据题意得: 0.30.2(10) 2.6126007800(10)102000x x x x +-⎧⎨+-⎩≤,≥, 解得 5≤x ≤6.故可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电机4台. 解法二 假设恰好将购机款用完, 则0.3x +0.2(10-x )≈2.6,解得x =6, 若x =6,则年发电量至少为:12600×6+7800(10-6)=106800>102000,符合要求. 故可购A 型发电机6台,B 型发电机4台.四、用函数知识解决的应用题函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.例4:(2003年扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.20元,卖出每份0.30元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社; (1)填表:(2)y 与x 的函数关系式,并求月利润的最大值.解析:(1)填表:(2 其余10天可获利润:10[(0.3-0.2)×120-0.1(x -120)]=240-x (元); 故y =x +240,(120≤x ≤200),当x =200时,月利润y 的最大值为440元.点评:根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x 的取值范围. 另外,初三还会提及统计型应用题,几何型应用题. 好题妙解】佳题新题品味例1 (北京市东城区)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的23,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的35,零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?解析:设总票数为a 张,六月份零售票应按每张x 元定价,则 五月份团体票售出数为:322535a a ⨯=, 票款收入为:2241255a a ⨯=(元);零售票售出数为:111236a a ⨯=, 票款收入为:181663a a ⨯=(元).六月份团体票所剩票数为:2245315a a ⨯=, 票款数收入为:464161515a a ⨯=(元); 零售票所剩票数为:111236a a ⨯=, 票款数收入为:1166a x ax ⋅=(元).由题意,得24864153156a a a ax +=+, 解得:x =19.2.例2 (广州市)2003年2月27日《广州日报》报道:2002年底广州市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A 级标准.因此,市政府决定加快绿化建设,力争到2004年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则广州市自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)解析:设广州市的总面积为1,广州市自然保护区面积年平均增长率为x ,根据题意得: 1×4.65%×(1+x )2=1×8% ∴(1+x )2≈1.720. ∵ x >0,∴ 1+x >0. ∴ 1+x ≈1.312, ∴ x =0.312.点评:增长率公式:第一年A ;年均增长率x ,则第n 年:1(1)n n P A x -=+.例3 (哈尔滨市)建网就等于建一个学校,哈市慧明中学为加强现代信息技术课教学,拟投资建一个初级计算机机房和一个高级计算机机房,每个计算机机房只配置1台教师用机,若干台学生用机.其中初级机房教师用机每台8000元,学生用机每台3500元;高级机房教师用机每台11500元,学生用机每台7000元.已知两机房购买计算机的总钱数相等,且每个机房购买计算机的总钱数不少于20万元也不超过21万元,则该校拟建的初级机房、高级机房各应有多少台计算机?解折:本题中既有相等关系又有不等关系,用等式(不等式)表示全部题意是关键. 解:设该校拟建的初级机房有x 台计算机,高级机房有y 台计算机,则有: 0.80.35(1) 1.150.7(1)200.80.35(1)2120 1.150.7(1)21x y x y +-=+-⎧⎪+-⎨⎪+-⎩,≤≤,≤≤. 解得:26555587713527291414x y x y ⎧⎪=⎪⎪⎨⎪⎪⎪⎩,≤≤,≤≤.∵ x 为整数,∴ x =56,57,58. 同理,y =28,29. ∴5628x y =⎧⎨=⎩,;5829x y =⎧⎨=⎩,.中考真题欣赏例1 (安徽省)王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设王大伯种了x 亩茄子,y 亩西红柿,根据题意,得: 251700180044000x y x y +=⎧⎨+=⎩,. 解得:1015x y =⎧⎨=⎩,.共获纯利:2400×10+2600×15=63000(元). 答:王大伯一共获纯利63000元.例2 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A .请甲队单独完成此项工程;B .请乙队单独完成此项工程;C .请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?解析:这是一道策略优选问题.工程问题中:工作量=工作效率×工时. 解:(1)设乙工程队单独完成此项工程需x 天,根据题意得:1111012x x +=-. 去分母,整理得x 2-34x +120=0 解得x 1=4,x 2=30.经检验知,x 1=4,x 2=30都是原方程的解,因为x =4不合题意,所以只取x =30. 所以,甲工程队单独完成此项工程需用20天,乙队需30天. (2)各种方案所需的费用分别为: A .请甲队需2000×20=40000元; B .请乙队需1400×30=42000元;C .请甲、乙两队合作需(2000+1400)×12=40800元. 所以单独请甲队完成此项工程花钱最少.竞赛样题展示例1 (全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km 的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km 的速度返回,在出发后的第60天,考察队行进了24km 后回到出发点,试问:科学考察队在生态区考察了多少天?解折:挖掘题目中隐藏条件是关键!解:设考察队到生态区去用了x 天,返回用了y 天,考察用了z 天,则 x +y +z =60. 且17x -25y =-1,即 25y -17x =1.①这里x 、y 是正整数,现设法求出①的一组合题意的解,然后计算出z 的值.为此,先求出①的一组特殊解(x 0,y 0),(这里x 0,y 0可以是负整数).用辗转相除法. 25=1×17+8,17=2×8+1, 故1=17-2×8 =17-2×(25-17) =3×17-2×25.与①的左端比较可知,x 0=﹣3,y 0=﹣2. 下面再求出①的合题意的解.由不定方程的知识可知,①的一切整数解可表示为 x =﹣3+25t ,y =﹣2+17t , ∴ x +y =42t -5,t 为整数.按题意0<x+y<60,故仅当t=1时才合题意,这时x+y=42﹣5=37,∴z=60-(x+y)=23.答:考察队在生态区考察的天数是23天.点评:本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法.例2 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?解析:应付198元购物款讨论:第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形1:当198元为购物不打折付的钱时,所购物品的原价为198元.又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,104÷0.8=130(元).因此,554元所购物品的原价为130+500=630(元),于是购买小明花198+630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828﹣500)×0.8=712.4(元).情形2:当198元为购物打九折付的钱时,所购物品的原价为198÷0.9=220(元).仿情形1的讨论,购220+630=850(元)物品一次性付款应为500×0.9+(850﹣500)×0.8=730(元).综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元.例3(2002年全国数学竞赛题)某项工程,如果由甲、乙两队承包,225天完成,需付180000元;由乙、丙两队承包,334天完成,需付150000元;由甲、丙两队承包,627天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解折:关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:设甲、乙、丙单独承包各需x、y、z天完成,则1151211415117.20x yy zz x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,,解得4610.xyz=⎧⎪=⎨⎪=⎩,,再设甲、乙、丙单独工作一天,各需付u、v、w元,则12()180000515()150000420()160000.7u vv ww u⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,,解得455002950010500.uvw=⎧⎪=⎨⎪=⎩,,于是,由甲队单独承包,费用是45500×4=182000(元).由乙队单独承包,费用是29500×6=177000(元).而丙队不能在一周内完成.所以由乙队承包费用最少.过关检测】A级1.(2003年河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?2.(山东省竞赛题)某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费.某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)3.(第12届江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?(提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少.)B级1.(1999年全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机台.2.(第14届希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:购买17﹣24台,每台打八折;每次购买24台以上,每台打七五折.(1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;(2)现在有A、B、C三个单位,A单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?3.(2003年河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.4.某商场在一楼和二楼间安装一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏一级).问:(1)扶梯露在外面的部分有多少级?(2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离),则男孩第一次追上女孩时走了多少级台阶?5.某化肥厂库存三种不同的混合肥,第一种含磷60%,钾40%;第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100kg(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.6.(2002年黄冈竞赛题)有麦田5块A 、B 、C 、D 、E ,它们的产量(单位:吨)、交通状况和每相邻两块麦田的距离如图21﹣2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪块麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a 、b 、d 表示距离,且b <a <d .图 21﹣2⑦⑥⑤④③aa a abdABCD E。

2019初中数学一元二次方程应用——商品销售问题专题训练7(附答案详解)

2019初中数学一元二次方程应用——商品销售问题专题训练7(附答案详解)

2019初中数学一元二次方程应用——商品销售问题专题训练7(附答案详解)1.从5月份开始,水蜜桃和夏橙两种水果开始上市,根据市场调查,水蜜桃售价为20元/千克,夏橙售价为15元/千克.(1)某水果商城抓住商机,开始销售这两种水果.若第一周水蜜桃的平均销量比夏橙的平均销量多100千克,要使该水果商城第一周销售这两周水果的总销售额不低于9000元,则第一周至少销售水蜜桃多少千克?(2)若该水果商城第一周按照(1)中水蜜桃和夏橙的最低销量销售这两种水果,并决定第二周继续销售这两种水果.第二周水蜜桃售价降低了1%2a,销量比第一周增加了2%a,夏橙的售价保持不变,销量比第一周增加了%a.结果两种水果第二周的总销售额比第一周增加了6%5a,求a的值.2.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?3.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为千克、销售利润为元;(2)若将这种水果每千克降价x元,则每天的销售量是千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?4.现有一个产品销售点在经销某著名特色小吃时发现:如果每箱产品赢利10元,每天可销售50箱,若每箱产品涨价1元,日销量将减少2箱.(1)现该销售点为使每天赢利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元?才能使每天的盈利最高?5.我市“建设社会主义新农村”工作组到某乡大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,其费用p(万元)与大棚面积x(公顷)的函数关系式为p=0.9x2;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.若某菜农期望通过种植大棚蔬菜当年获得5万元收益(扣除修建和种植成本后),从投入的角度考虑应建议他修建多少公项大棚?6.某商人开始将进价为每件8元的某种商品按每件10元出售,每天售出100件;后来他利用提高售价的方法来增加利润,发现这种商品每提价1元,每天的销售量就会减少10件.(1)他若想每天的利润达到350元,求此时的售价应为每件多少元?(2)每天的利润能否达到380元?为什么?7.百货大楼服装柜在销售中发现:某品牌童装每件成本元,现以每件元销售,平均每天可售出件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价元,那么平均每天就可多销售件.要想平均每天销售这种童装盈利元,请你帮商场算一算,每件童装应定价多少元?8.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,乙种每件进价60元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)服装店在销售中发现:甲服装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件甲服装降价4元,那么平均每天就可多售出8件,要想平均每天销售甲服装上盈利1200元,那么每件甲服装应降价多少元?9.2017年中秋节来期间,某超市以每盒80元的价格购进了1000盒月饼,第一周以每盒168元的价格销售了300盒,第二周如果单价不变,预计仍可售出300盒,该超市经理为了增加销量,决定降价,据调查,单价每降低1元,可多售出10盒,但最低每盒要赢利30元,第二周结束后,该超市将对剩余的月饼一次性赔钱甩卖,此时价格为70元/盒.(1)若设第二周单价降低x元,则第二周的单价是______ ,销量是______ ;(2)经两周后还剩余月饼______ 盒;(3)若该超市想通过销售这批月饼获利51360元,那么第二周的单价应是多元?10.沐阳特产专卖店销售某种物产,其进价为每千克元,若按每千克元出售,则平均每天可售出千克,后来经过市场调查发现,单价每降低元,平均每天的销售量增加千克,若专卖店销售这种特产平均每天获利元,且销量尽可能大,则每千克特产应定价为多少元?解:方法:设每千克特产应降价元,由题意,得方程为:________;方法:设每千克特产降价后定价为元,由题意,得方程为:________.请你选择其中一种方法完成解答.11.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.12.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.降价前销售这种学习机每月的利润是多少元?经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?在的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.答案:1.(1) 水蜜桃销量至少为300千克;(2)a=20.解:(1) 设第一周夏橙销售量为x千克,()20100159000x x ++≥,200x ≥,水蜜桃销量至少为:200+100=300千克.(2)()()16201%30012%152001%90001%25a a a a ⎛⎫⎛⎫-⨯++⨯+=+ ⎪ ⎪⎝⎭⎝⎭, 设%a t =,原式化简为:250t t -=.121,05t t ==(舍). ∴ a =20.2.(1)若降价6元,则平均每天销售数量为32件;(2)每件商品应降价10元时,该商店每天销售利润为1200元解:(1)若降价6元,则平均每天销售数量为32件.(2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得 (40﹣x )(20+2x )=1200,整理,得x 2﹣30x+200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,40-20=20<25∴x 2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元3.(1)销售量:260,利润:312,(2)100+200x (千克);(3)张阿姨应将每千克的销售价降至5元.解:(1)销售量:100+20×=100+160=260,利润:(100+160)(6﹣4﹣0.8)=312,则每天的销售量为260千克,销售利润为312元.故答案为:260,312;(2)将这种水果每千克降低x 元,则每天的销售量是100+×20=100+200x (千克).故答案为:(100+200x );(3)设这种水果每千克降价x 元,根据题意得:(6﹣4﹣x )(100+200x )=300,2x 2﹣3x =1=0,解得:x =0.5或x =1.当x =0.5时,销售量是100+200×0.5=200<240;当x=1时,销售量是100+200=300>240.∵每天至少售出240千克,∴x=1.6﹣1=5.答:张阿姨应将每千克的销售价降至5元.4.(1)每箱应降价5元;(2)当152x=时,才能使利润最大化.解:(1)设每箱应涨价x元. (10+x)(50-2x)=600解得x1=10 x2=5∵要顾客得到实惠∴每箱应降价5元(2)设每天的最大利润为y元y=(x+10)(50-2x)即y=-2x2+30x+500当152x=时,才能使利润最大化.5.应建议修建公顷大棚.解:当﹣0.9x2+4.5x=5时,即9x2﹣45x+50=0,x1=,x2=,从投入、占地与当年收益三方面权衡,应建议修建公顷大棚.6.(1)13元或15元.(2)380元。

初中数学专题辅导

初中数学专题辅导

初中数学专题辅导一.应用方程处理问题在进入了二十一世纪的今天,世界的高科技迅猛发展,带动了各学科的发展,数学也是一样,特别是计算机的应用,给数的发展助以强大的动力。

在这种情况下,数学教育更加重视提高人的素质,强调了加强应用意识,发展创造能力,这是教育中带有方向性的问题。

在中学数学里加强了问题解决的培养和训练,由一般性问题解决向开放性问题解决发展,因此列方程解应用题被人们更加重视起来。

列方程解应用题的内容很丰富,列方程解应用题不仅要求能熟练地解方程,而且要求具有从实际问题中抽象出数量关系,并用代数式和方程将这种关系表达出来的能力。

这就需要有较强的分析能力和综合能力。

【考点解析】例. 张清是运输公司的经理,他接受了这样的运输任务:把第一仓库的50吨面粉和第二仓库的70吨面粉运往甲、乙两个面包加工厂,其中甲厂接收40吨面粉,乙厂接收80吨面粉。

显然,张清是可以安排出很多运输方案的,考虑到厂家的利益,要使总的运费最省,如果1吨面粉的运输费用如表一所示,那么,张清应该怎样安排运输任务才能使总的运费最低?工厂运价甲乙仓库第一仓库6元8元第二仓库4元5元表一分析:这是一个生产实际问题,在我们的日常生活中经常遇到,首先应把这个实际问题转化为数学问题。

工厂运货量甲乙仓库(40)(80)第一仓库(50)x1x2第二仓库(70)x3x4表二解:假设张清安排的运输方案如表二,那么x x x x 1234、、、应满足下面的数量关系:x x x x x x x x x x x x 1234132412345017024038044123+=+=+=+=⎧⎨⎪⎪⎩⎪⎪+-()()()()()()()()()其中、、、非负其中式可以由得到也就是说我们得到了有四个未知量,三个独立方程组成的四元一次方程组,因此,可以把x x x 234、、分别用x 1表示出来。

如果设总运费为N ,那么有N x x x x x x x x x x x =+++=+-+-++=-≤≤68456850440530710304012341111111()()()()由和非负可得:所以,只要x 1取最大值40,总运费N 取最小值670,也就是说,由第一仓库给甲厂运40吨面粉,给乙厂运10吨面粉,再由第二仓库给乙厂运70吨面粉,即完成了给定任务,还使总运费最省,共计670元。

初中数学有效的课堂提问

初中数学有效的课堂提问

初中数学有效的课堂提问
提问是教学中非常重要的一环,它可以激发学生的思考和积极参与课堂互动。

在初中数学教学中,有效的提问可以帮助学生理解概念、巩固知识、发展思维能力以及培养解决问题的能力。

以下是一些初中数学有效的课堂提问示例:
1. 概念理解型提问:
- 什么是平行线?请举一个例子。

- 请解释一下什么是相似三角形。

- 两条直线的夹角是什么?如何计算夹角的大小?
2. 案例应用型提问:
- 假设你有50个学生,需要将他们随机分成5个小组,请问每个小组有多少人?
- 一个半径为5cm的圆的周长是多少?面积是多少?
- 小明每天上学要花费40分钟,一周上5天学,那么他上学一周总共花费了多少时间?
3. 探究性提问:
- 如果两个数相加等于10,那么它们的差是多少?
- 如果一个三角形两条边的长度已知,你能推导出第三条边的范围吗?
- 你能找到两个互质的数吗?请解释为什么它们是互质的。

5. 创新性提问:
- 如何使用最少的直线完成5个等分的正方形?
- 请你设计一个游戏,使用数学的概念和运算来解决难题。

- 你能想出一个问题,找到不同的解法,并解释为什么每个解法都是正确的吗?
以上提问示例可以帮助学生更好地理解和运用数学知识。

老师可以根据学生的实际掌握情况和课堂进度,选择适合的提问方式和难度,引导学生进行思考和探究,激发他们的数学兴趣和学习动力。

老师也应该在提问过程中给予学生足够的思考时间和展示机会,鼓励他们发表自己的观点和解题思路。

初中数学应用性问题探究

初中数学应用性问题探究
些既足未来社会所需要的 , 又是个体发展所必 划 在 1 内 生 产 50件 产 品 ( 天 生 产 量 相 活 问题 , 0天 0 每 学用结合 , 加深对 实际应用 的理解 和 需 的 , 对学 生走 向社 会适 应 未来生 活 有帮 同 )按原先 的生产速度 , 既 , 不能完成 任务 ; 如果 体 会 。
◎ 四川 省江油 市 三合 一 中 王 高 富
摘 要: 数学《 课程标准》 出了学生要 学 难适虚社会 。根据新《 提 数学课程标准》 编写 的现 应用题 , 能真正教好 、 才 学好应 用题 ; 其二 , 掌
会 运用 数 学的 思维 方式 去观 察 、 析现 实 社 行教材 , 分 改变了老教 材过分注重知识板块 的特 握应用题的解题步骤 , 实际应用题 的一般解题 会, 去解决现 实生活 中的实 际问题 , 强应用 点 , 增 注重结 合学生 的认知水 平 , 以螺旋上 升的 步骤是 “ 分析实际 问题——构建数学模 型~ 一 数 学的意识。现行教材的编排充分体现 了这 一 形式 呈现知识 体系 ,应 用性 问题 的呈现 也如 建立 数学 关 系式——解数 学关 系式 —— 回归
关键 词 : 学 应用 性 问题 课 程标 准 感很 强 , 数 无论作 为教学 引入 , 还是作为 背景介 养学生 的数学应用意识 , 养成学生平 时关 心周 绍, 都引 用了大量 的生活素 材 , 设 了丰富的 围发生 的数学现象 、 心各 学科 以及生活 中数 创 关 没有 价值 的数学 , 即使人人 能够接受也不 教学情境 , 有助于激 发学 生的学习兴趣。如人 学 问题 的 良好 习惯 ; 其五 , 做应用数学 知识 多 应进入课 堂。 数学教育 首要的足使学生学 习那 教 版七年级 下册第 19页 的例 2 3个小 组计 解决实 际问题的题 目, 3 : 练习时要引进相关 的生

初中数学培优专题四 三角函数应用解题模型

初中数学培优专题四 三角函数应用解题模型

专题四三角函数应用解题模型解题模型一“独立”型图形关系式针对训练1.(2018•台州)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)解题模型二“背靠背”型图形关系式针对训练2.(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?3.(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.(2018•陇南)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)5.(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).6.(2017•岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)7.(2017•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB 内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解题模型三“母抱子”型图形关系式针对训练8.(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)9.(2017•宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).10.(2016•青海)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)11.(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.12.(2016•兰州)如图,一垂直于地面的灯柱AB被一钢线CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.(2017•张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)14.(2017•呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)15.(2018•烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)16.(2017•铁岭)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)17.(2017•广元)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).18.(2017•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).19.(2017•西宁)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得∠DAC=30°,∠DBC=60°,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,≈1.732)?解题模型四“斜截”型图示:辅助线作法——延长四边形对边法针对训练20.(2016•娄底)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD 为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)21.(2018•随州)随州市新㵐水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.22.(2017•凉山州)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?解题模型五其他类型23.(2018•徐州)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)24.(2018•资阳)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.25.(2018•常德)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)26.(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)27.(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)28.(2017•常德)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)专题四三角函数应用解题模型解题模型一“独立”型图形关系式针对训练1.(2018•台州)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【小结】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算解题模型二“背靠背”型图形关系式针对训练2.(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【小结】本题考查了解直角三角形的应用,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.3.(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米).∵tan45°=,CD=40(千米),∴AD=(千米).∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).【小结】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.(2018•陇南)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【小结】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.5.(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【小结】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.6.(2017•岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【小结】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).7.(2017•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB 内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【解析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【小结】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答解题模型三“母抱子”型图形关系式针对训练8.(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【小结】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型9.(2017•宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).【小结】此题主要考查了解直角三角形的应用,正确得出AD=CD是解题关键.10.(2016•青海)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【小结】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键.11.(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【解析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m.在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m.∴BC=BD﹣CD=40﹣20=20m.则BC的距离为20m.(2)根据题意,得20÷2=10m/s<15m/s,则此轿车没有超速.【小结】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.12.(2016•兰州)如图,一垂直于地面的灯柱AB被一钢线CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【小结】本题考查解直角三角形的应用,解题的关键是明确题意,利用三角函数值求出相应的边的长度.13.(2017•张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【小结】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键14.(2017•呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【解析】过点C作CM⊥AB交AB延长线于点M,通过解直角△ACM得到AM的长度,通过解直角△BCM得到BM的长度,则AB=AM﹣BM.【小结】本题考查解直角三角形的应用、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.15.(2018•烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)【解析】先求得AC=PCtan∠APC=87、BC=PCtan∠BPC=21,据此得出AB=AC﹣BC=87﹣21=66,从而求得该车通过AB段的车速,比较大小即可得.解:在Rt△APC中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC中,BC=PCtan∠BPC=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s.又∵40km/h≈11.1m/s,∴该车没有超速.【小结】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键.16.(2017•铁岭)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)【解析】如图作BH⊥AD于H.,CE⊥AB于E.解直角三角形,分别求出BC、CD即可解决问题.解:如图,作BH⊥AD于点H,CE⊥AB于点E.∴BH=DH=30.∴DC=DH+CH=30+10.答:小明、小丽与舞台C的距离分别为20m和(30+10)m.【小结】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.(2017•广元)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).【小结】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用特殊角的三角函数值解答.18.(2017•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【小结】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.19.(2017•西宁)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得∠DAC=30°,∠DBC=60°,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,≈1.732)?【小结】本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算解题模型四“斜截”型图示:辅助线作法——延长四边形对边法针对训练20.(2016•娄底)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD 为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)解得x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.【小结】本题考查了解直角三角形的应用;由三角函数求出CH和AH是解决问题的关键.21.(2018•随州)随州市新㵐水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.∴AB=3BD=5×3=15.在Rt△ABH中,∵∠B=45°,∴BH=AH=AB=×15=15.在Rt△ACH中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC的长为30m.【小结】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).22.(2017•凉山州)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?【解析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°.【小结】本题考查了通过作辅助线构建直角三角形的能力,考查了相似三角形的判定和性质,本题中求证△PCB∽△PAO是解题的关键.解题模型五其他类型23.(2018•徐州)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【解析】(1)构造出两个直角三角形,利用两个角的正切值即可求出答案.24.(2018•资阳)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.答:此时风筝线AD的长度为12米.。

中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)

中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴N GP B x y2362121xOH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的主要特征是两个点在运动的过程中,直接或间接地构造了直角三角线,因此可以利用勾股定理去建立函数关系式. 勾股定理是初中数学的重要定理,在运用勾股定理写函数解析式的过程中,主要是找边的等量关系,要善于发现这种内在的关系,用代数式去表示这些边,达到解题的目的. 由于是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证明等腰三角形、相似三角形等,还有的再解一些与圆有关的体型. 要认真领会,达到举一反三的目的.1 牢记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS 的顶点P 、S 在半径OA 上,Q 在半径OB 上,R 在弧AB 上,连结OR.(1) 当∠AOR=30°时,求OP 长(2) 设OP=x ,OS=y ,求y 与x 的函数关系式及定义域2 在四边形的翻折与旋转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要熟练掌握.例题:如图,正方形ABCD 中,AB=6,有一块含45°角的三角板,把45°角的顶点放在D 点,将三角板绕着点D 旋转,使这个45°角的两边与线段AB 、BC 分别相交于点E 、F (点2222233621419x x x MH PH MP +=-+=+=E与点A、B不重合)(1)从几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域(3)试问△BEF的面积能否为8?如果能,请求出EF的长;如果不能,请说明理由.3 在一些特殊的四边形中,如矩形、正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能构造直角三角形,可以考虑用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的定义域(3)如果PD⊥AQ,求BP的值4 作底边上的高,可以构造直角三角形,利用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与△ABC 的顶点不重合),且AP=BQ,AQ、CP相交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出定义域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P、Q分别在AB、BC上移动过程中,AQ和CP能否互相垂直?如能,请指出P点的位置,请说明理由.5 在解圆的题目时,首选的辅助线是弦心距,它不仅可以运用垂径定理,而且构造了直角三角形,为用勾股定理写函数解析式创造了条件.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P 是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A 的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域(2)如果PC=PD,求PB的长(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论6 强调圆的首选辅助线是弦心距,它不仅可以平分弦,而且构造了直角三角形,为解题创建新思路.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的定义域(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由阶梯题组训练1 如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.3 ABCD中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M与点B分别在直线AP的两侧),且∠PAM=∠CAD,连结MD.(1)当点M在 ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数定义域;(2)请在备用图中画出符合题意的示意图,并探究:图中是否存在与△AMD相似的三角形?若存在,请写出并证明;若不存在,请说明理由;(3)当△为等腰三角形时,求BP的长.4 抛物线经过A(2,0)、B(8,0)、C(0,3316).(1)求抛物线的解析式;(2)设抛物线的顶点为P,把△APB翻折,使点Pl落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不能,请你说明理由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包括E、C)上的动点,线段AP的垂直平分线分别交BC、AD于点F、G,设BP=x,AG=y.(1)四边形AFPG是说明图形?请说明理由;(2)求y与x的函数关系式;(3)如果分别以线段GP、DC为直径作圆,且使两圆外切,求x的值.6 在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5. E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1)如图,当点F在线段DE上时,设BE=x,DF=y,试建立y关于x的函数关系式,并写出自变量x的取值范围;(2)当以CD为直径的⊙O与⊙E相切时,求x的值;(3)连结AF、BF,当△ABF是以AF为腰的等腰三角形时,求x的值.7 如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E 是边AD上的任意一点(点E与点A、D不重合),过E作弧AC所在圆的切线,交DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的解析式;(3)将△DEF沿直线EF翻折后得△D1EF,如图2,当EF=65时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(2003年上海第27题)二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,x CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,AEDCB图2∴△ADB ∽△EAC, ∴ACBD CE AB =, ∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式x y 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. 解:(1)连结OD. 根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP. 又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x y x 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2.类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.A 3(2)3(1)综上所述, 当BF=1时,线段AP 的长为2或6.本专题探究在图形的运动变化过程中,存在平行或相似的三角形,利用比例式来建立函数关系式. 难一些的题目其中的一个变量是比例式,一个变量是线段,也是利用相似或平行来构造比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情况下写出解析式后还会有一个证等腰或相似或相切的题目,可以二次函数专题中的解题思想进行处理.1 由平行得到比例式,从而建立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB ,点P 是边AC 上的一个点,AP=21PD ,∠APD=∠ABC ,连结DC 并延长交边AB 的延长线于点E(1) 求证:AD//BC(2) 设AP=x ,BE=y ,求y 关于x 的函数解析式,并写出它的定义域(3) 连结BP ,当△CDP 与△CBE 相似时,试判断BP 与DE 的位置关系,并说明理由2 由三角形相似得到比例式,建立函数关系式例题:如图,在正方形ABCD 中,AB=2,E 为线段CD 上一点(点E 与点C 、D 不重合),FG 垂直平分AE ,且交AE 于F ,交AB 延长线于G ,交BC 于H.(1) 证明:△ADE ∽△GFA(2) 设DE=x ,BG=y ,求y 关于x 的函数解析式及定义域(3) 当BH=41时,求DE 的长3 在学习利用相似比建立函数的解析式的时候,初中阶段的知识已经学了不少,对最后的压轴题的综合性的要求已经很高了. 一般会在写解析式前有一些证明或计算,写好解析式后再来一个证明等腰三角形或圆的位置关系等. 如果能够把一道复杂的压轴题拆分成几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延长线上一个动点,∠EDA=∠B ,AE//BC.(1) 找出图中的相似三角形,并加以证明(2) 设CD=x ,AE=y ,求y 关于x 的函数解析式,并写出函数的定义域(3) 当△ADE 为等腰三角形时,求AE 的长4 刚才研究的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中怎样写解析式. 例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD//x 轴,AO=CD=5,OC AD =52,cos a=53,P 是线段OC 上的一个动点,∠APQ=∠a,PQ 交射线AD 于点Q ,设P 点坐标为(x ,0),点Q 到D 的距离为y(1) 求过A 、O 、C 三点的抛物线解析式(2) 用含x 的代数式表示AP 的长(3) 求y 与x 的函数解析式及定义域(4) △CPQ 与△AOP 能否相似?若能,请求出x 的值,若不能,请说明理由5 当一个变量是比例式,另一个变量是一条线段,怎样来写函数的解析式呢?可以根据题目的要求,由相似三角形面积的比等于相似比的平方,或相似三角形周长的比等于相似比等建立函数解析式.例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 、C 的坐标分别为(-1,0),C (0,b ),且0<b <3,m 是经过点B 、C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D 、O 之间的距离(2) 如果BOCBDA S △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值范围 (3) 当∠ADO 的余切值为2时,求直线m 的解析式(4) 求此时△ABD 与△BOC 重叠部分的面积6 当我们学习到利用相似三角形的相似比来建立函数解析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只要能够分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连结MF 交线段AD 于点P ,连结NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值范围(2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆能够与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不能,请说明理由练习:1. 如图,在三角形中,AB=AC=8,BC=10,点D 、E 分别在BC 、AC 上(点D 不与B 、C 重合),且∠ADE=∠B ,设BD=x ,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的定义域(2) 点D 在BC 上的运动过程中,△ADE 是否有可能成为一个等腰三角形?如有可能,请求出当△ADE 为等腰三角形时x 的值;如不可能,请说明理由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且满足∠AED=∠A ,DE 的延长线交射线CB 于点F ,设AD=x ,EF=y.(1) 如图1,用含x 的代数式表示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的定义域(3) 连结EC ,如图2,求档x 为何值时,△AEC 与△BEF 相似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE=x ,BF=y.(1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是多少?(3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为多少?4. 已知在梯形ABCD 中,AD//BA ,AD <BC ,且BC=6,AB=DC=4,点E 是AB 的中点.(1) 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD ;(2) 如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF=∠C ,PF 交直线CD与点F ,同时交直线AD 于点M ,那么(3) 当点F 在线段CD 的延长线上时,设BP=x ,DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;(4) 当S △DMF =49S △BEP 时,求BP 的长.5. 如图,在四边形ABCD 中,∠B=90°,AD//BC ,AB=4,BC=12,点E 在边BA 的延长线上,AE=2,点F 在BC 边上,EF 与边AD 相交于点G ,DF ⊥EF ,设AG=x ,DF=y.(1) 求y 关于x 的函数解析式,并写出定义域;(2) 当AD=11时,求AG 的长;(3) 如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.6. 如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y.(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 若⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径;(3) 是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.7. 已知∠ABC=90°,AB=2,BC=3,AD//BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PC PQ =ABAD (如图1所示)(1) 当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;(2) 在图1中,连结AP. 当AD=23,且点Q 在线段AB上时,设点B 、Q 之间的距离为x ,PBCAPQ S S △△=y ,其中S △APQ 表示△APQ 的面积,S △PBC 表示△PBC 的面积,求y 关于x 的函数解析式,并写出函数定义域;(3) 当AD <AB ,且点Q 在线段AB 的延长线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,A B CO 图8 H在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2、【09广东】正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值练习1.如图,在△ABC 中,BC=8,CA= ,∠C=60°,EF ∥BC ,点E 、F 、D 分别在AB 、AC 、BC 上(点E 与点A 、B 不重合),连接ED 、DF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学集体备课教案
初中数学应用型问题专题讲解教案教学目标
知识与技能
1、掌握代数应用型试题的分类与特点;
2、通过各种类型应用型问题的探索与练习,培养学生的
创新意识与创新能力。

过程与方法
灵活运用所学的数学知识,针对生活中的问题,建立适当的数学模型,恰当选用转化思想、类比思想和数形
结合等数学思想。

学会找知识与问题的结合点、解决问
题的突破点,提高解题能力。

情感、态度、价值观
1、通过同学们熟悉的问题,激发学生进一步探求知识的
激情。

感受到数学来源于生活。

2、在师生的共同活动中发展学生的探究意识和合作交流
习惯。

教学重点与难点
教学重点:应用型问题的分析方法,注意数学知识与生
活常识的联系,建立恰当的数学模型;
教学难点:怎样建立恰当的数学模型。

教学过程:
(幻灯片1)代数知识的应用
一、数与式的应用
二、方程(组)的应用
三、不等式(组)的应用
四、函数的应用
(幻灯片2)练习1:我国股市交易中,每买、卖一次需
交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时,全部卖出,该投资者实际赢利为()
A、2000元
B、1925元
C、1835元
D、1910元
学生先思考练习,老师分析解答。

(幻灯片3)练习2. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4 -y4,因式分解的结果是(x-y) (x+y) (x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).
(幻灯片4)例1:某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如月初出售,可获利15%,并可用本和利再投资其它商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况,如何购销获利较多?为什么?
分析:设此商场的投资为x元,月初出售可获利两次分别为15x%,(15%x+x)×10%
故月初出售可获利为
15x%+(15%x+x)×10%
月末出售可获利一次,为
30%x-700
(幻灯片5)解:设商场投资x元,月初售,月末获利
为y 1元,月末售,获利为y 2元
故y 1=15%x+(15%x+x) ×10%
=0.265x
y 2=30%x-700=0.3x-700
y 1-y 2=-0.035(x-20000)
y 1-y 2=-0.035(x-20000)
当x<20000时,y 1>y 2
当x=20000时,y 1=y 2
当x>20000时,y 1<y 2
答:当资金少于2万元时,月初出售获利多,当资金等于2万元时,月初、月末出售获利一样多,当资金多于2万元时,月末出售获利多。

(幻灯片6)总结:此题在比较的大小时,我选用的是比差法,同学们在做这一步时也可以借助一次函数的图象来完成。

(幻灯片7)例2:某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%(相对于进价),而这两台空调调价后售价恰好相同,那么商场把这两台空调售出( )
A 、既不获利也不亏本
B 、可获利1%
C 、要亏本2%
D 、要亏本1%
(幻灯片8)
解:设甲、乙两台空调进价分别为x 元、y 元,售价为a 元,则由题意得
进价进价售价利润率分析-=:x x a -=%10y a y -=%101.1a x =
9.0a y =
∴要亏本1%
答:应选D
(幻灯片9)例3:某城市平均每天生产垃圾700吨,由甲、乙两个处理厂处理。

已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元。

(1)甲、乙两厂同时处理该城市的垃圾,每天需几小时完成?
(2)如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需要多少小时?
(幻灯片10)解(1)设甲、乙两厂同时处理垃圾,每天需 要x 小时,
解得x=7
答:甲乙两厂同时处理需7小时。

(2)设甲厂每天处理垃圾至少需要y 小时,则
55y ×55500+(700-55y)×45
495≤7370 y ≥6
答:甲厂每天处理垃圾至少需要6小时。

(幻灯片11)练习3.(05锦州) 九(3)班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说: 假如我把43本书分给各个小组,若每组8本,还有剩余;若每组9本,却又不够.你知道该分几个小组吗? 请你帮9.01.129.01.1⨯=+=+∴a a a y x %101.09.01.129.01.122)(2-=-=⨯⨯-=++-a a a y
x y x a 700)4555(=+x
助班长分组 注意解题过程,不能光猜哟!
解:设分x 组:据题意有:
X 取整数, 所以应分为5组
(幻灯片11)例4.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情的生产情况进行了调查的基础上,对今年这种蔬菜例上市后市场售价和生产成本进行了预测,提供了两个方面的信息,如图甲,乙(注:甲,乙两图中的每个实心黑点对应的纵坐标分别指相应月份的售价和成本)生产成本6月份最低。

请根据图象提供的信息说明:
(幻灯片12)解:(1)3月份出售这种蔬菜每千克收益为1元
2)设图甲的函数的解析式为y 甲=kx+b
每千克收益为y 元,由图可知点(3,5),(6,3)在y=kx+b 的图象上
43
943
8><x x 843943:
<<x 解集为⎩⎨⎧+=+=∴b k b k 6335⎪⎩⎪⎨⎧=-=7
32b k 解得
y 乙=a(x-h)2+k 的顶点为(6,1),又过点(3,4) ∴4=a(3-6)2+1
∴a=31
∴y 乙=31(x-6)2+1
∴y=y 甲-y 乙=-3
2x+7-3
1(x-6)-1 ∴y=-31(x-5)2+37 ∴当x=5时,y 有最大值,最大值为3
7
答:5月份出售这种蔬菜,每千克收益最大。

(幻灯片13)小 结
A 代数知识应用的类型:数与式的应用;方程(组)的应用;不等式(组)的应用;函数的应用。

B 应用型问题解决的方法:体验生活,了解一些生活常识,掌握问题中的基本原理,选择好数学模型,并运用模型解决问题。

C 应用型问题解决的关键:恰当的建立数学模型。

布置作业。

相关文档
最新文档