2 焊丝熔化及熔滴过渡
第2章 焊丝的熔化与熔滴过渡

滴,由于受到各种大小不同的作用力,具体形状和位置不断变 化,从而熔滴以不同的形式脱离焊丝或焊条,过渡到熔池中去。
一
熔滴上的作用力
熔滴上的作用力可分为重力、表面张力、电弧力、熔滴爆破力 和电弧气体的吹力等。
1
重力
重力对熔滴过渡的影响依焊接位置的不同而不同。平焊时, 熔滴上的重力促使熔滴过渡;而在立焊及仰焊位置则阻碍熔滴 过渡。
1)
s
m y m
100%
焊接中飞溅的产生
a. 伴随气体析出而引起的飞溅.
b. c. d.
气体爆炸引起的飞溅
电弧斑点力引起的飞溅
短路过渡再引燃引起的飞溅 焊接方法和规范 过渡形式 电源动特性 气体介质 极性 焊丝、焊件表面的清洁度
2)影响飞溅的因素
a. b. c. d. e. f.
图2-21 射流过渡形成机理示意图
图2-22 熔滴过渡频率(或体积)与电流的关系 钢焊丝 φ1.6mm,Ar+O2(1%),弧长6mm,DCEP
图2-23 不同材质焊丝的临界电流
图2-24 焊丝直径、伸出长度与临界电流的关系
图2-25 射流过渡时飞溅示意图
磁控旋转射流过渡
a.正常射流过渡 b.旋转射流过渡
c. 5) a. b.
c.
d.
图2-12 短路过渡示意图
图2-13 短路过渡过程电弧电压和电流动态波形图
图2-14 短路过渡的主要形式
a.固态断路 b.细丝小电流时 c.中等电流小电感时
图2-15 短路过渡频率与电弧电压的关系
图2-16 送丝速度与短路过渡频率、短路时间和短路电流峰值的关系
2 接触过渡(短路过渡)
1) 定义:当电流较小,电弧电压较低时,弧长较短,熔滴未长成大 滴就与熔池接触形成液态金属短路,电弧熄灭,随之金属熔滴在 表面张力及电磁收缩力的作用下过渡到熔池中去,熔滴脱落之后 电弧重新引燃,如此交替进行。 短路过渡的过程: 稳定性及其影响因素
焊丝的熔化与熔滴过渡

4,熔滴过渡的控制
• 脉冲电流控制法
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
4,熔滴过渡的控制
• 波形控制法
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
4,熔滴过渡的控制
• 脉动送丝法
• 射流过渡:
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
2,熔滴过渡的主要形式和特点 • 射流过渡:跳弧条件
U颈 E l2 -l1
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
2,熔滴过渡的主要形式和特点
• 射流过渡:临界电流
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
2,熔滴过渡的主要形式和特点
• 射流过渡:临界电流
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
2,熔滴过渡的主要形式和特点
• 短路过渡:是细焊丝(0.8-1.2mm)气体保护焊在采用小电 流和低电压规范时常见的一种熔滴过渡形式。特点是电 弧时而短路熄灭,时而引弧燃烧;焊丝端头熔滴则是时 而与熔池接触过渡,时而被电弧加热长大。
2 焊丝的熔化与熔滴过渡
• 2. 2 熔滴过渡与飞溅
3,焊丝的熔覆系数和飞溅
• 熔敷效率和熔敷系数
• 电弧焊接过程中,焊丝(条)悠比过渡到焊缝中的金员 重量与使用撑烽丝(条)重量之比称为熔敷效率。用焊条 焊接时,是按焊芯质量来计算。一般情况下熔敷效率可 达90%左右,熔化极员弧焊及埋弧自动焊的熔敷效串要 更高一些。CO2焊和手弧焊有时其熔敷效率只能达到80 %左右,就是说约有l 0%-20%的焊丝金屑被飞溅、氧 化和蒸发掉。
2 焊丝的熔化与熔滴过渡
焊工知识:二氧化碳气体保护电弧焊

焊丝的熔化与熔滴过渡目的与要求:了解并掌握焊接电弧热和力的特点。
掌握溶滴过渡的形式、特点,初步掌握其应用。
一、焊丝的加热和熔化特性(一)焊丝的热源焊丝熔化的热源电弧热(主)+电阻热(次)(二)焊丝的熔化特性焊丝的熔化特性——焊丝的熔化速度与焊接电流之间的关系区别清楚与焊丝熔化有关的几个概念:熔化速度(mm/min & kg/h)熔化系数(g/A?h)熔敷系数(g/A?h)熔敷速度(kg/h)熔敷效率(%)飞溅率(%)损失系数(%)焊丝的熔化特性主要受焊丝材料、直径和伸出长度等因素影响。
二、熔滴上的作用力(重点)熔滴上的作用力是影响熔滴过渡及焊缝成形的主要因素。
1、重力2、表面张力3、电弧力(注意其包含几项力在内!)4、熔滴爆破力5、电弧的气体吹送力在不同的焊接条件下,力的种类、大小不同,形成了不同的熔滴过渡形式三、熔滴过渡及特点(难点:从力的角度出发、从其规律讲起)熔滴过渡过程复杂,对电弧的稳定性、焊缝成形和冶金过程均有影响。
规律:随着电流的增加,熔滴过渡的体积减小、频率加快。
熔滴过渡:自由过渡、接触过渡、渣壁过渡每一种又可以再分为不同的亚型。
目前,熔滴过渡的名称尚未规范、统一。
自由过渡(重点):滴状过渡喷射过渡:易在(富)氩气氛种获得,熔深大\熔敷效率高,适用于中、厚板平位置的填充、盖面。
(有上、下限电流\可加脉冲)爆炸过渡接触过渡:短路过渡(重点):在各种气氛中,低电压、细焊丝(小电流)(但电流密度不小)均可获得;热输入小、焊接变形小、全位置焊性能好但一般飞溅较大;适用于薄板焊接或中厚板的打底焊接。
搭桥过渡渣壁过渡:沿渣壳(埋弧焊)沿套筒(焊条电弧焊)常见焊接方法的熔滴过渡形式焊条手工焊酸性焊条:细滴过渡碱性焊条:粗滴过渡+短路过渡CO2焊:滴状过渡(粗丝)、短路过渡、表面张力过渡(STT)(细丝)MIG(焊铝):喷射过渡、亚射流过渡MAG(熔滴过渡形式最多、最灵活):短路过渡关于熔滴过渡技术的最新发展(特别介绍)STT、冷金属过渡(CMT)双脉冲(超脉冲)(double pulse、super pulse)过渡。
2.焊丝熔化及熔滴过渡资料

三、熔滴上的作用力
1. 重力及表面张力 2. 电弧力 3. 爆破力
16
1. 重力及表面张力
焊丝直径较大而电流较小时重力及表面张力起主要作用
Fδ=2Rπσ 细焊丝
17
重力及表面张力
18
2. 电弧力
电弧对熔滴和熔池的机械作用力包括:
电磁收缩力 等离子流力 斑点力
电弧力只有在焊接电流较大的时候,才对 熔滴过渡起主要作用;电流小时,重力表 面张力其主要作用。
熔滴过渡录像
24
1.熔滴过渡分类:
接触过渡
自由过
渣壁过
25
(a) E5003熔滴直径变化 (b) E5015熔滴直径变化 (c) E5015焊条短路过渡
不同焊条焊接时的熔滴过渡过程高速摄影
26
1.熔滴过渡分类:
大颗粒过渡
颗粒过渡排斥过渡
细滴过渡
(1)自由过渡喷射过渡射 射流 滴过 过渡 渡
电弧焊基础知识
焊丝熔化及熔滴过渡
Welding wire Melting and droplet transfer
材料成型及控制工程 2011
1ห้องสมุดไป่ตู้
主要内容
一、焊丝熔化的热量来源 二、焊丝熔化速度及熔化系数 三、熔滴上的作用力 四、主要熔滴过渡形式及其特点 五、熔滴过渡的控制
2
一、焊丝熔化的热量来源
焊丝接正时 Um=UW 焊丝接负时 Um=UK- UW
所以影响产热的因素包括:
电流、 影响电子发射的因素( UK、 UW )、 影响电阻热的因素(Rs)
9
影响产热的因素
焊丝材料 有无氧化膜 焊丝熔点 焊丝直径 焊丝伸出长度 焊丝电阻率
第二章焊丝的熔化和熔滴的过渡

图2-3 不锈钢焊丝熔化速度与电流的关系
School of Material Science & Engineering
中国矿业大学材料科学与工程学院
第二章 焊丝的熔化和熔滴过渡
2.电弧电压的影响
等速送丝熔化极气体保炉焊时, 等速送丝熔化极气体保炉焊时,焊丝熔化速度与 电弧电压和电流的关系. 电弧电压和电流的关系.
School of Material Science & Engineering
中国矿业大学材料科学与工程学院
第二章 焊丝的熔化和熔滴过渡
1.电弧热 1.电弧热 单位时间内阴极区和阳极区的产热量如果分别用电功率P 单位时间内阴极区和阳极区的产热量如果分别用电功率PK和 表示,计算公式如下: PA表示,计算公式如下: PK=I(UK-UW-UT)(2-1) PA=I(UA+UW+UT) ( 2 - 2) 在通常电弧焊的情况下,弧柱的平均温度为6000K左右, 6000K左右 在通常电弧焊的情况下,弧柱的平均温度为6000K左右, <1V;当焊接电流密度较大时, 近似为零, UT<1V;当焊接电流密度较大时,UA近似为零,故上两式 可简化为: 可简化为: P K = I (U K 一U W ) ( 2 - 3) PA= IUW ( 2 - 4) 这是熔化极电弧焊熔化焊丝的主要热源. 这是熔化极电弧焊熔化焊丝的主要热源. 规律:电流一定时,阴极区和阳极区的产热取决于U 规律:电流一定时,阴极区和阳极区的产热取决于UK和UW. 熔化极气体保护焊,为冷阴极电弧,UK>>UW,PK>PA 熔化极气体保护焊,为冷阴极电弧,
School of Material Science & Engineering
co2气体保护焊熔滴过渡形式

co2气体保护焊熔滴过渡形式
CO2气体保护焊是一种常用的焊接方法,其作用是在焊接过程中用纯净的CO2气体环境保护焊接熔滴,从而确保焊缝的质量。
而CO2气
体保护焊的熔滴过渡形式是指焊丝在焊接过程中形成熔滴的过程和形
态变化。
首先,焊丝在通过焊枪进入焊接区域后,会被电弧加热并熔化。
当焊丝被完全熔化时,就会形成一个熔滴。
这个熔滴的形态会随着焊
接电流和电弧长度的变化而发生变化。
一般来说,焊接电流越大,电
弧长度越短,熔滴就会更大;反之,焊接电流越小,电弧长度越长,
熔滴就会更小。
其次,熔滴在焊丝末端形成后,会由重力和表面张力的作用下滴
落到焊接区域。
这个过程需要注意的是,熔滴滴落的速度和形态会受
到焊接电流和焊接速度的影响。
当焊接电流较大、焊接速度较快时,
熔滴滴落速度较快,形成的焊缝较宽;反之,焊接电流较小、焊接速
度较慢时,熔滴滴落速度较慢,形成的焊缝较窄。
最后,熔滴在滴落到焊接区域后,会迅速冷却凝固并形成焊缝。
这个过程是焊接过程中最关键的一步,关系到焊缝的质量。
如果熔滴
在滴落到焊接区域时没有受到适当的保护,会受到氧气的影响而产生
气孔等缺陷。
因此,通过CO2气体保护,可以避免氧气对焊缝的影响,确保焊缝的质量。
综上所述,CO2气体保护焊的熔滴过渡形式是一个动态的过程,其形态和滴落速度会受到焊接电流、电弧长度和焊接速度的影响。
在实际操作中,需要根据焊接要求和焊接工艺参数来调整这些因素,以获得良好的焊接效果。
只有掌握了CO2气体保护焊的熔滴过渡形式,才能实现焊缝的质量控制,提高焊接工艺的稳定性和可靠性。
焊丝的熔化和熔滴过渡以及电弧产热,温度分布

熔滴过渡:电弧焊时,焊丝(或焊条)的末端在电弧的高温作用下加热熔化,熔化的金属积累到一定程度便以一定的方式脱离焊丝末端,并过渡到熔池中去,这个过程称作熔滴过渡。
熔化极电弧焊时,焊丝的作用:1、作为电弧的一极导电并传输能量,2、作为填充材料向熔池提供熔化金属并和熔化的母材一起冷却结晶形成焊缝。
焊丝熔化的热源:1、熔化极电弧焊焊丝的熔化主要依靠阴极区(直流正接)或者阳极区(直流反接)所产生的热量及焊丝自身的电阻热。
弧柱的热辐射是次要的。
2、非熔化极电弧焊填充焊丝时,主要依靠弧柱热来熔化焊丝。
电弧的静特性:是指在电极材料,气体介质和弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压的变化关系,也成伏-安特性。
Ua=f(i)Ua=U k+U C+U AU a—电弧电压;U k阴极压降;U C弧柱压降;U A阳极压降电弧产热能量关系:焊接电弧是具有很强能量的导电体,其能量来源于焊接电源。
单位时间焊接电源向阴极区、弧柱区、阳极区提供的总能量表示为:P=P K+P C+P A=I U k+IU C+IU A阴极区产热:在阴极压降的环境下,电子和正离子不断的产生,消失,运动,构成了能量的转变和传递过程。
P K=I(U k– U w– U T)U k阴极压降,U w电子逸出电压,U T弧柱区温度等效电压阳极区产热:P A= I(U A + U w+ U T)弧柱区的产热:P C=IU c电弧的温度分布:1、纵向温度分布:阴极区和阳极区的电流密度和能量密度均高于弧柱区,但是温度的分布却与电流密度和能量密度不同,是电极的温度低而弧柱区温度较高,这是因为电极区受到电极材料的熔点和沸点的限制,而弧柱区中的气体和金属蒸气不受这一限制,而且气体介质的导热性能不如金属电极好,热量的散射相对较少,故而有较高的温度。
一般来讲,阴极因为要发射电子消耗能量较多,故温度比阳极低一些,阴极温度为2200~3500k,而阳极温度为2400~4200K。
2019最新2焊丝熔化及熔滴过渡英语

(1)电弧热
阴极区:PK=IUK-IUw-IUT
阳极区:PA=IUA+IUw+IUT
UK阴极压降
UA阳极压降
电流密度较大时:近似为0
Uw逸出电压
UT弧柱温度等效电压
电弧温度6000K时:小于1V
5
(1)电弧热
阴极区:PK=IUK-IUw=I(UK-Uw) 阳极区:PA=IUw
焊丝接负时:焊丝加热与熔化取决于(Uk-Uw)。 很多因素影响阴极电子发射,即影响的Uk大小。 如 电流、温度、材料等。
焊丝接正时:主要取决于材料逸出功和电流的大 小。当电流一定时,由于逸出功为常数,此时, 焊丝熔化系数为定值。
6
(1)电弧热
阴极区:PK=I(UK-Uw) 阳极区:PA=IUw 熔化极气体保护焊时,Uk>>Uw ,Pk>Pw
37
3.喷射过渡
亚射流过渡: 亚射流过渡特点: --弧长比较短,潜弧,熔深大 --有短路现象,但短路时间短 --与短路过渡比:先颈缩后短路,短路时间短,短路电流小 --与射滴过渡的区别:有短路现象存在。 --电弧稳定,飞溅小
38
4.爆炸过渡
CO2焊时,熔滴在形成长大过程中,发生 激烈的冶金反应,生成大量的CO气体, 使熔滴急剧膨胀爆炸。
高电压小电流MIG焊。
28
2.颗粒过渡
排斥过渡:
弧根小 电流较大,斑点压力大 高电压较大电流CO2气体保护焊 直流正接时,斑点压力很大,
CO2、MIG都有明显的大颗粒排斥 过渡
29
2.颗粒过渡
细滴过渡:
高弧压,更大电流 电流比较大,电磁收缩力增
大,表面张力减小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.喷射过渡
富氩或氩气保护焊,可分为: 富氩或氩气保护焊,可分为: 射滴过渡 射流过渡 旋转射流过渡 亚射流过渡
射滴过渡: 射滴过渡:
熔滴直径达到与焊丝直径相近 电弧力使之强制脱离焊丝 时,电弧力使之强制脱离焊丝 端头,并快速通过电弧空间, 端头,并快速通过电弧空间, 向熔池过渡的形式。 向熔池过渡的形式。
30
3.喷射过渡
形成条件:钢焊丝脉冲MIG焊、铝焊丝MIG焊,( 主 形成条件:钢焊丝脉冲 焊 铝焊丝 焊
要)电流必须达到一定的临界值,过渡形式才会从滴 电流必须达到一定的临界值, 状过渡变为射滴过渡 。
射滴过渡特点: 射滴过渡特点:
斑点力和重力促进熔滴过渡 表面张力阻碍熔滴过渡 飞溅小, 飞溅小,成型好 电流有临界值,且电流区间窄, 电流有临界值,且电流区间窄,难调 电弧成钟罩型
11
影响焊丝熔化速度的因素
图1-24 铝焊丝熔化速度与电流、焊丝 直径的关系
图1-25 不锈钢焊丝熔化速度与电流、 伸出长度的关系 12
影响焊丝熔化速度的因素
图1-26 电压 电压对焊丝熔化速度的影响
13
影响焊丝熔化速度的因素
14
影响焊丝熔化速度的因素
电流:电流↑→熔化速度↑ 熔化速度↑ 电流:电流↑→熔化速度 电压: 电压: 较长弧长范围内,电压变化→不影响焊丝的熔化 较长弧长范围内,电压变化→ 在较短弧长范围内,电压↓→熔化系数↑(自调节作用 熔化系数↑ 在较短弧长范围内,电压↓→熔化系数 在更短弧长范围内,电压↓→熔化系数 熔化系数↓ 在更短弧长范围内,电压↓→熔化系数↓ 电流极性:焊丝为阴极时,熔化速度大, 电流极性:焊丝为阴极时,熔化速度大, 气体介质:反接时介质的影响不大,正接时介质的影响比 气体介质:反接时介质的影响不大, 较复杂, 较复杂,无明显规律 伸出长度:Ls↑→熔化速度↑ 熔化速度↑ 伸出长度:Ls↑→熔化速度 焊丝直径:d↑→熔化速度↓ 熔化速度↓ 焊丝直径:d↑→熔化速度
斑点面积比较小的时 候,斑点压力常常阻 碍熔滴过渡; 碍熔滴过渡;斑点面 积比较大的时候, 积比较大的时候,笼 罩整个熔滴, 罩整个熔滴,斑点压 力促进熔滴过渡。 力促进熔滴过渡。
22
3. 爆破力
当熔滴内部因冶金反 应而生成气体或者含 有易蒸发金属时, 有易蒸发金属时,在 电弧高温的作用下, 电弧高温的作用下, 使气体体积膨胀而产 生的内压力, 生的内压力,致使熔 滴爆破, 滴爆破,这一内压力 称为爆破力, 称为爆破力,它促进 熔滴过渡, 熔滴过渡,但产生飞 溅。
所以影响产热的因素包括: 电流、 影响电子发射的因素( UK、 UW )、 影响电阻热的因素(Rs) 影响电阻热的因素(Rs)
9
影响产热的因素
焊丝材料 有无氧化膜 焊丝熔点 焊丝直径 焊丝伸出长度 焊丝电阻率
一般10- 一般 -30mm 对导电性能良好的Cu、 , 对导电性能良好的 、Al,电阻热可 忽略, 忽略, 对于不锈钢等不容忽略
2
一、焊丝熔化的热量来源
焊丝的作用有两个: 焊丝的作用有两个: 电极导电 填充金属 作为填充金属,其熔化和过渡的特性将会对 焊缝的质量产生较大的影响。
3
一、焊丝熔化的热量来源
焊丝熔化的热量来源分两种情况: 焊丝熔化的热量来源分两种情况: 熔化极电弧焊: 熔化极电弧焊: 阴极区产生的电弧热 阳极区产生的电弧热 焊丝伸出长度上的电阻热 弧柱区的热量作用比较小 非熔化极电弧焊: 非熔化极电弧焊:弧柱区产热熔化焊丝
37
4.爆炸过渡
CO2焊时,熔滴在形成长大过程中,发生 激烈的冶金反应,生成大量的CO气体, 激烈的冶金反应,生成大量的CO气体, 使熔滴急剧膨胀爆炸。 飞溅大,金属过渡少。
38
接触过渡:焊丝(或焊条) 接触过渡:焊丝(或焊条)端部的熔滴与熔池表面通过接触而 过渡的方式。可分为: 过渡的方式。可分为:短路过渡 搭桥过渡 短路过渡:电流较小, 短路过渡 电流较小,电弧 电流较小 电压较低,弧长比较短, 电压较低,弧长比较短, 熔滴未长成大滴就与熔池 接触形成液态金属短路, 接触形成液态金属短路, 电弧熄灭, 电弧熄灭,金属熔滴过渡 到熔池中去。随后, 到熔池中去。随后,电弧 重新引燃,如此交替, 重新引燃,如此交替,这 种过渡称为短路过渡。 种过渡称为短路过渡。
6
(1)电弧热
阴极区:P 阴极区:PK=I(UK-Uw) 阳极区:P 阳极区:PA=IUw 熔化极气体保护焊时,Uk>>Uw 熔化极气体保护焊时,Uk>>Uw ,Pk>Pw 所以,同种材料,在相同的电流的作用下, 焊丝作为阴极的产热将比焊丝作为阳极时 产热多。因为散热条件相近,所以焊丝接 负时比焊丝接正时熔化快。
2.颗粒过渡
排斥过渡: 排斥过渡:
弧根小 电流较大,斑点压力大 高电压较大电流CO2气体保护焊 直流正接时,斑点压力很大, CO2、MIG都有明显的大颗粒排斥 过渡
28
2.颗粒过渡
细滴过渡: 细滴过渡:
高弧压,更大电流 电流比较大,电磁收缩力增 大,表面张力减小 熔滴存在的时间短,熔滴细 化,过渡频率增加 电弧稳定性比较高,飞溅少, 焊缝质量高 CO2细丝较大电流
第一章 电弧焊基础知识
§2 焊丝熔化及熔滴过渡
Welding wire Melting and droplet transfer
材料成型及控制工程 2007
1
主要内容
一、焊丝熔化的热量来源 二、焊丝熔化速度及熔化系数 三、熔滴上的作用力 四、主要熔滴过渡形式及其特点 四、主要熔滴过渡形式及其特点 五、熔滴过渡的控制
短路过渡 (2)接触过渡 搭桥过渡 渣壁过渡 (3)渣壁过渡 套筒过渡
26
2.颗粒过渡
电弧电压高,电流小,粗滴过渡、细滴过渡、排斥过渡。
粗滴过渡(大颗粒过渡) : 粗滴过渡(大颗粒过渡)
高弧压,小电流 重力克服表面张力作用 电弧稳定性和焊缝质量都 比较差。 高电压小电流MIG焊。
27
15
三、熔滴上的作用力
1. 重力及表面张力 2. 电弧力 3. 爆破力
16
1. 重力及表面张力
焊丝直径较大而电流较小时重力及表面张力起主要作用
Fδ=2Rπσ
细焊丝
17
重力及表面张力
18
2. 电弧力
电弧对熔滴和熔池的机械作用力包括: 电磁收缩力 等离子流力 斑点力 电弧力只有在焊接电流较大的时候,才对 电弧力只有在焊接电流较大的时候,才对 熔滴过渡起主要作用;电流小时,重力表 面张力其主要作用。
7
(2)电阻热: (2)电阻热: 电阻热
PR=I2RS Rs=ρLs/S
8
(3) (3)总热量
接负:Pm=P 接负:Pm=PK+PR= I(UK-Uw)+ I2Rs I( 接正:Pm=P 接正:Pm=PA+PR= I(Uw + IRs)+ I2Rs 合并: Pm= I(Um+ IRs) I( IRs) 焊丝接正时 Um=U Um=UW 焊丝接负时 Um=U Um=UK- UW
31
3.喷射过渡
形成条件:钢焊丝 形成条件:钢焊丝MIG 焊中, 焊中,电流必须达到一 定的临界值。 定的临界值。 射流过渡过程: 射流过渡过程:
射流过渡:熔滴呈细小颗粒, 射流过渡:熔滴呈细小颗粒,
沿焊丝的铅笔尖状的端头以喷 射状态快速通过电弧空间向熔 池过渡的形式。 池过渡的形式。
32
3.喷射过渡
35
3.喷射过渡
亚射流过渡:大电流MIG焊铝合金时,弧压较低, MIG焊铝合金时 亚射流过渡:大电流MIG焊铝合金时,弧压较低,电弧
呈半潜状态,熔滴尺寸约等于焊丝直径的射滴过渡, 呈半潜状态,熔滴尺寸约等于焊丝直径的射滴过渡,伴随 着瞬时短路,熔滴过渡频率达100 200个/s。 100~ 着瞬时短路,熔滴过渡频率达100~200个/s。介于短路与 射滴之间的过渡形式,其实应该称亚射滴过渡。 射滴之间的过渡形式,其实应该称亚射滴过渡。 形成条件:铝合金铝焊丝、 形成条件:铝合金铝焊丝、短弧焊 亚射流过渡过程:弧长 亚射流过渡过程: 比较短,熔滴形成、长大, 比较短,熔滴形成、长大, 在形成射滴过渡之际熔滴 与熔池短路, 与熔池短路,在电磁收缩 力的作用下细颈破断, 力的作用下细颈破断,完 成过渡,电弧重新引燃。 成过渡,电弧重新引燃。
36
3.喷射过渡
亚射流过渡: 亚射流过渡: 亚射流过渡特点: 亚射流过渡特点: --弧长比较短,潜弧,熔深大 --弧长比较短 潜弧, 弧长比较短, --有短路现象,但短路时间短 --有短路现象 有短路现象, --与短路过渡比:先颈缩后短路,短路时间短,短路电流小 --与短路过渡比 先颈缩后短路,短路时间短, 与短路过渡比: --与射滴过渡的区别:有短路现象存在。 --与射滴过渡的区别 有短路现象存在。 与射滴过渡的区别: --电弧稳定,飞溅小 --电弧稳定 电弧稳定,
23
四、主要熔滴过渡形式及其特点
1.熔滴过渡分类: 熔滴过渡分类: 2.颗粒过渡 3.喷射过渡: 喷射过渡: 4.爆炸过渡 5. 接触过渡 6. 渣壁过渡: 渣壁过渡:
24
1.熔滴过渡分类: 熔滴过渡分类:
接触过渡
分类:
大颗粒过渡 颗粒过渡 排斥过渡 细滴过渡 射滴过渡 (1)自由过渡 喷射过渡 射流过渡 旋转射流过渡 爆炸过渡
跳弧: 跳弧:电弧从熔滴的根部扩张到颈缩的根部 过渡机理: 过渡机理:
33
3.喷射过渡
射流过渡: 射流过渡:
射流过渡特点: 射流过渡特点: --跳弧 跳弧 --等离子流力 等离子流力 --铅笔尖 铅笔尖 --熔滴仅为焊丝直径的 熔滴仅为焊丝直径的30%~60% 熔滴仅为焊丝直径的 ~ --熔滴过渡频率 个/s以上 熔滴过渡频率200个 以上 熔滴过渡频率 --电弧平稳,飞溅小 --电弧平稳 电弧平稳, --电流有临界值 电流有临界值 --锥形电弧 锥形电弧 --指状熔深 指状熔深 --钢焊丝富氩 钢焊丝富氩MIG 钢焊丝富氩