二次函数最值课件公开课
合集下载
二次函数的图像和性质PPT市公开课一等奖省优质课获奖课件

本节课我们学习了什么?你还有什么疑问?
第9页
第10页
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
第5页
5.2 二次函数图像和性质(1)
观察函数y=-x2图像,说出图像特征.
图像有最高点,过(0,0) y有最大值.
当x<0时,y随x增大而增大.
抛物线关于y轴对称.
当x>0时,y随x增大而减小. 抛物线开口向下.
5.2 二次函数图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合
二次函数图像是怎样?
试着画一画吧!
第2页
5.2 二次函数图像和性质(1)
例1 画出函数y=x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
列表时自变量要 均匀和对称!
第3页
5.2 二次函数图像和性质(1)
观察函数y=x2图像,说出图像特征.
当x<0时,y随x增大而减小.
图像有最低点,过(0,0) y有最小值.
抛物线关于y轴对称. 当x>0时,y随x增大而增大.
抛物线开口向上.
第4页
5.2 二次函数图像和性质(1)
例2 画出y=-x2图像.
第6页
5.2 二次函数图像和性质(1)
比较函数y=-x2与y=x2图像,说出图像 特征异同点.
假如是函数y=2x2与y=-2x2(1)
在同一坐标系上画函数y=2x²,y=-2x²,
y=
1 2
x²和y=
-
1 2
x²图像,并说出图像特征.
第8页
5.2 二次函数图像和性质(1)
第9页
第10页
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
第5页
5.2 二次函数图像和性质(1)
观察函数y=-x2图像,说出图像特征.
图像有最高点,过(0,0) y有最大值.
当x<0时,y随x增大而增大.
抛物线关于y轴对称.
当x>0时,y随x增大而减小. 抛物线开口向下.
5.2 二次函数图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合
二次函数图像是怎样?
试着画一画吧!
第2页
5.2 二次函数图像和性质(1)
例1 画出函数y=x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
列表时自变量要 均匀和对称!
第3页
5.2 二次函数图像和性质(1)
观察函数y=x2图像,说出图像特征.
当x<0时,y随x增大而减小.
图像有最低点,过(0,0) y有最小值.
抛物线关于y轴对称. 当x>0时,y随x增大而增大.
抛物线开口向上.
第4页
5.2 二次函数图像和性质(1)
例2 画出y=-x2图像.
第6页
5.2 二次函数图像和性质(1)
比较函数y=-x2与y=x2图像,说出图像 特征异同点.
假如是函数y=2x2与y=-2x2(1)
在同一坐标系上画函数y=2x²,y=-2x²,
y=
1 2
x²和y=
-
1 2
x²图像,并说出图像特征.
第8页
5.2 二次函数图像和性质(1)
高中数学优质课课件:二次函数的最值

•求s关于x的函数关系式及自变量x的取值范围;
•怎样才能围出最大面积,最大面积是多少?
课堂小结 提炼精华
这节课你学到了哪些知识? 我们用到了哪些数学方法?
课后拓展 B组 2
1 题2: 已知 y x 1, 且 1 x 2 , 令S xy ,则: 2 1 1 小 (1)当x= 时,S有最 值,是 2
1 3 S (2) 函数S的取值范围是 2 2
(②号本P.4 T5改编)
题3: 有长为24米的篱笆,一面利用墙 (墙的最大可用长度a为10米),围成中间隔有一道 篱笆的长方形花圃.设花圃的宽AB为x米, 2 面积为S米 .
二次函数限定范围下的最值问题
桐庐县城关初中 申屠建华
课前热身 复习回顾
你会作二次函数
y x 2x 3
2
的图象吗?
例题重现 变式深入
例题 求函数 y x 2x 3 的最值
2
变式1:当x≥-1时,求函数的最值 变式2:当x ≥ 2呢? 变式3:当x ≤ -2 时呢? 变式4:当-2≤x≤2时呢?
X=1 对称轴在限定范围内 (-2≤x≤2)
变式5:已知二次函数y= (x-m)2-4,当 -2≤x≤2时,求函数的最小值
分类讨论
应用新知 展示自我
2 y 2 x 4 x 6 , 当 分别满足 题1:已知函数 下列条件时,求函数的最值.
(1)
x2
2 x 2
(2)
(①号本P.6 T2改编)
数形结合
知识归纳 学会迁移
1、当函数自变量没有限定范围时,二次函数在 2、当函数自变量限定范围时,二次函数总是在
顶点处 取得最值
顶点或端点 处 取得最值,我们要讨论 对称轴与限定范围的位置关系
专题研究(公开课)二次函数之面积最值问题PPT课件

A
∴S=1/2(12-2t) •4t
P
即S=- 4t²+24t=- 4(t-3)²+36(0<t<6)
(2)当t=3时,S最大值=36
B
Q
C
思考:以此题为背景,你能设计其它与面积有
关的问题吗?
.
4
探究问题三:抛物线上的面积问题
已知二次函数y=x2-2x-3 与x轴交于A、B两点
(A在B的左边),与y轴交于点C. (1)直接写出点A、B、C及顶点P的坐标
5在抛物线上除点p外是否存在点q使得sqbcspbc若存在求出点q的坐标若不存在请说明理由4在抛物线上除点c外是否存在点n使得若存在求出点n的坐标若不存在请说明理由
专题研究课
二次函数 与 面积问题
板桥初中 陈金国
.
1
热身运动
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道 篱笆的长方形花圃,设宽AB为x米,面积为S平方米。
∴ BC为(24-4x)米
∴ S=x(24-4x)
A
D
=-4x2+24 x (0<x<6)
(2)当x=
b 2a
3
时,S最大值=
4ac 4a
b
2
B
=36(平方米)
C
(3) ∵墙的可用长度为8米
∴ 0<24-4x ≤8 4≤x<6
∴当x=4米时,S最大值=32
平方米 .
3
问题探究二:如图,在△ABC中∠B=90º,AB=12cm,
若S存S△△在NNAA,BB =求= S出2△S点A△BACNB,的C,坐标,
.N2
.N3
若不 存在,请说明理由。
二次函数的最值问题课件

顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。
二次函数动点面积最值分割面积法PPT课件一等奖新名师优质课获奖比赛公开课

解答
(2023•娄底)如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0). (1)求抛物线旳解析式; (2)如图,在直线AB下方旳抛物 线上是否存在点P使四边形PACB旳面积最大?若存 在,祈求出点P旳坐标;若不存在,请阐明理由;
【解答】解:
课堂总结
• “二次函数中动点图形旳面积最值”试题解析一 般规律:
• 此类问题旳特征是要以静代动解题,首先找面积 关系旳函数解析式,关键是用含x旳代数式表达 出有关旳线段旳长度,若是规则图形则套用公式 或用割补法,若为不规则图形则用割补法.
(1)设y=a(x+1)(x﹣6)(a≠0), 把B (5,﹣6)代入a(5+1)(5﹣6)=﹣6,a=1, ∴y=(x+1)(x﹣6)=x2﹣5x﹣6。
(2)如图1,过P向x轴作垂线 交AB与点D,交X轴于M 设P(m,m2﹣5m﹣6),有A (-1,0),B (5,﹣6), 得YAB=-x-1 则D(m,﹣m﹣1) ∴PD= ﹣m﹣1- ( m2﹣5m﹣6)=-m2 +4m+5
∴S△ABP=(( -m2 +4m+5 )X6 = -3m2 +12m+15
∴当m=2时S△ABP最大 当m=2时,S四边形PACB有最大值为48,这时 m2﹣5m﹣6=22﹣5×2﹣6=﹣12, ∴P(2,﹣12),
题型一:分割面积法
【变式2】
题型一:分割面积法
【变式2】
题型一:分割面积法
【变式2】
【解题思绪,技巧套路】 (1)利用已知条件求出点B旳坐标,然后 用待定系数法求出抛物线旳解析式; (2)首先求出四边形BMCA面积旳体现式, 然后利用二次函数旳性质求出其最大值;
二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件

上述三个问题中旳函数解析式具有哪些共同旳 特征?
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如
[公开课课件]二次函数在给定区间上的最值
![[公开课课件]二次函数在给定区间上的最值](https://img.taocdn.com/s3/m/e3d9732f581b6bd97f19ea5f.png)
解(1)因为二次函数y=x² +2x-3 的对称轴为x=-1,区间[-3,-2] 在它的左侧,而左侧为单调 递减,如图: 所以f(x)min=f(-2)=-3 f(x)max=f(-3)=0
(2)如图: f(x)min=f(-1)=-4; y f(x)max=f(1)=0 (3)如图: f(x)min = f(0) =-3; f(x)max = f(2)= 5
可知: ymax =f (2)当a<
a 2
2 a a ( )= 4 2
a2 4ቤተ መጻሕፍቲ ባይዱ
时,即-1<a<0时,
-1 o
a 2
a x
a 解:函数图象的对称轴方程为x= ,又x∈[-1,a] 2 a 1 1 故a>-1, 2 > - 2 ,∴对称轴在x= - 2 的右边. a ∴(1)当 -1< 2 ≤a时,即a≥0时 , 由二次函数图象 2 a a y 可知: ymax =f ( )= 4 2 a a2 (2)当a< 时,即-1<a<0时, 4 2
问题6: 求函数y=-x(x-a)在x∈[-1,a]上的最大值
五、动函数动区间的二次函数的值域
问题6: 求函数y=-x(x-a)在x∈[-1,a]上的最大值
a 解:函数图象的对称轴方程为x= ,又x∈[-1,a] 2 a 1 1 故a>-1, 2 > - 2 ,∴对称轴在x= - 2 的右边. a ∴(1)当 -1< 2 ≤a时,即a≥0时,由二次函数图象
y
b 2a
(2)二次函数y=ax² +bx+c (a<0)
b 4ac b 2 顶点坐标 , 2 a 4 a 在(-∞, 2ba )上,单调递增;在( 2ba ,+ ∞)上,单调递减。
二次函数的最值问题 课件(19张PPT)-中考数学一轮复习(浙教版)

∴ 2 x 16 . 5
探 究
∵w=(x-2)(900-200x)=-200(x-2)(x-4.5),
拓
∴对称轴为直线 x 2 4.5 13 . 24
展 ∵a 200 0,
生 长
∴当 2 x 16 时,w随着x的增大而减小.
x/ 元
O
2 16
5
x=
13 4
∴当
x
16
5 时,w取到最大值,最大值为312元.
H
究
问题2 窗户透光面积怎么求?
窗户透光面积=长×宽=AD×AB.
问题3 在这个等量关系中有几个变量?哪个变量作为自变量?
3个.
AD或AB.
问题4 如果设AB为x米,那么你能用x表示AD吗?
AD为 3 7x 米. 4
问 题 背
例 如图,小明家窗户的上部是由两个正方形组成的矩形,窗框 材料总长为6米,如何改进设计才能使窗户透光面积最大,最大面积
=-2(x-50)2+5000.
∴当x=50时,S取到最大值,最大值为5000平方米.
答:与墙垂直的一边AB为50米,矩形果园ABCD的面积最大,
最大值是5000平方米.
问题5 回顾解题过程,你还有什么疑惑吗?
AB一定能取到50米吗?
问
题 解:设矩形果园ABCD的面积为S平方米,AB为x米, 背 则BC为(200-2x)米.
问 题
S/ m2
背
5000
景
S/ m2 5000 4800
问 题 探 究
O
x/ m 100
x=50
x/ m
O
60 100
x=50
问题7 观察函数图象,并说一说二次函数的最值在自变量的哪些值取到?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ 花圃宽为(24-4x)米
=-4x2+24 x (0<x<6)
(2)当x=
b 2a
3
时,S最大值=
4ac b2 4a
=36(平方米)
(3) ∵墙的可用长度为8米
A
D
∴ 0<24-4x ≤8 4≤x<6
∴当x=4cm时,S最大值=32 平方米 B
C
2.用长8m的铝合金条制成如图的矩形窗框,那么当长、
-b
②顶点坐标是( _2_a_
4ac-b2
, _4_a_ );
-b
③对称轴是_X_=_2_a_;
④函数的最大值或最小值:
-b
4ac-b2
当a>0,x=__2a_时,y有最_小__值,为y=__4_a_;
当a<0,x=__-2ba__时,y有最_大_值,为y=_4a_4c_a-b_2。
⑴ 已知:二次函数
y 1 (x 2) 2 6
的图象如2图所示,当 x= y有最 小值,为 -6 。
2 时,
⑵二次函数 y 5 x2 1= 2 时,y有最大 值,为 15。
x ⑶二次函数y x2 2x 5有最小值时,自变量 的值是
__-_1___。
2020 12:38:15 AM00:38:152020/12/16
• 11、自己要先看得起自己,别人才会看得起你。12/16/
谢 谢 大 家 2020 12:38 AM12/16/2020 12:38 AM20.12.1620.12.16
• 12、这一秒不放弃,下一秒就会有希望。16-Dec-2016 December 202020.12.16
m ⑷已知二次函数 y x2 6x m的最小值为1,那么的
值是__1_0___。
例1: 分别在下列各范围上求函数
y=x2+2x-3的最值
y
(1) X取任意实数
(2) 2 x 2
(3) 1 x 3
-2 -1 O
2x
例1: 分别在下列各范围上求函数
y=x2+2x-3的最值
(3) 1 x 3
宽分别为多少时,才能使窗框的边的透光面积最 大?最大的透光面积是多少?
A
D
解:设AD=X m, 窗框的透光 E
F
面积为y ,由题意得:
B
C
⒈求二次函数的最值问题是二次函数 中的常见题型,在现实生活中有广泛 的应用,主要包括以下两个方面:
⑴用二次函数表示实际问题中的 函数关系。
⑵求函数的最大值或最小值。
A
D
xx
x
x
B
C
例2:如图,在一面靠墙的空地上用长为24米的篱笆,围成
中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x
米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
解:(1) ∵ AB为x米、篱笆长为24米∴ S=x(24-4x)
⒉求最值的方法:
⑴配方法:y ax2 bx c
y a(x h)2 k
⑵公式法:顶点坐标:(
b
4ac b2
,
)
2a 4a
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1620. 12.16W ednesday, December 16, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。00:3 8:1500: 38:1500 :3812/ 16/2020 12:38:15 AM
•
8、业余生活要有意义,不要越轨。20 20年12 月16日 星期三 12时38 分15秒 00:38:1 516 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。上午 12时38 分15秒 上午12 时38分 00:38:1 520.12. 16
• 10、你要做多大的事情,就该承受多大的压力。12/16/
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月16 日星期 三上午 12时38 分15秒 00:38:1 520.12. 16
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 12时38 分20.1 2.1600: 38Dece mber 16, 2020
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Wednesday, December 16, 2
02016-Dec-2020.12.16
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1600:38:1516 December 202000:38
(5,27)
(-1,3)
(1,-5)
在一面靠墙的空地上用长为24米的篱笆,围成中间隔 有二道篱笆的长方形花圃,
问题1:如果设花圃的宽AB为x米,则另一边 BC=__2_4_-_4_x_;花圃的面积为S平方米,则S与x的函
数关系式S=___4_x_2__2_4_x ___,自变量的取值范围
___0_﹤__x _﹤_6____; 问题2:当x取何值时所围成的花圃面积最大,最大值 是多少?
•
3、越是没有本领的就越加自命不凡。 20.12.1 600:38: 1500:3 8Dec-20 16-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 00:38:1 500:38: 1500:3 8Wednesday, December 16, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 620.12. 1600:3 8:1500: 38:15D ecembe r 16, 2020
y
-2 -1 O
1 23 x
1:已知二次函数y=2x²-4x-3, (1)y有最大值还是最小值?若有,请求出最值。
(1,-5)
1:已知二次函数y=2x²-4x-3, (2)若2≤X≤5,求y的最值。
(5,27)
(2,-3) (1,-5)
1:已知二次函数y=2x²-4x-3
(3) 若-1≤X≤5,求y的最值。
⒈掌握二次函数的图象与性质。
⒉会求二次函数顶点坐标,并会根据顶点 坐标求最值。
⒊会用二次函数表示实际问题中的函数关 系来求实际问题中最值。
1.形如y= ax²+bx+c (a、b、c、是常数, 且 a≠0 )的函数叫做y关于x的二次函数。
2.二次函数y=ax²+bx+c(a≠0)
①开口方向:当a>0时,_开_口_向__上_,当a<0时,开__口_向__下;