活性焦联合脱硫脱硝技术分析解析

合集下载

活性焦烟气联合脱硫脱硝技术

活性焦烟气联合脱硫脱硝技术

H2 SO4 3
(5)
H2 SO4 3 + n H2 O 3
H2 SO4 ·n H2 O 3
(6)
式中 , 3 代表吸附态 。前 3 个反应是物理吸
37
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
130 MW (66 万 m3 /h) 2 台机组上安装了该工艺 。 1989 年 在 德 国 的 Hoechs t 燃 煤 电 厂 的 77 MW (321 3 万 m3 /h) 机组上也安装了该工艺 。
日本电力能源公司 ( EPDC) 的 350 MW 空气 流化床 燃烧 (AFBC) 锅 炉中 安 装 了 活 性 焦 脱 除 NOx 工艺 , 并于 1995 年开始运行。该工艺仅采用了 一个移动床吸附塔 , 处理的烟气量为 1161 3 万 m3 /h , 在 140 ℃的烟气操作温度下 , 活性焦循环速率为 14 600 kg /h 。通过稳定运行 2 200 h 以上的结果来 看 , 在 N H3 /NOx 摩尔比为 01 85 时 , NOx 脱除率可 达到 80 % 。由于从 A FBC 锅炉出来的 SO2 排放浓 度很低 , 所以在 SO2 被活性焦吸附的同时 , 在第 一吸附塔中 NOx 也能得到有效的脱除[5 ] 。
第1期
煤 化 工
煤质技术
2009 年 1 月
活性焦烟气联合脱硫脱硝技术
李 艳 芳
(煤炭科学研究总院 北京煤化工研究分院 , 北京 100013)
摘 要 : 概述了活性焦烟气联合脱硫脱硝技术的工程应用及研究现状 , 介绍了该技术的工艺特点及

活性焦一体化脱硫脱硝烟气净化技术

活性焦一体化脱硫脱硝烟气净化技术

活性焦一体化脱硫脱硝烟气净化技术作者:罗志强来源:《E动时尚·科学工程技术》2019年第05期摘要:为了解决城市垃圾焚烧污染问题,本文选取活性焦作为主要材料,通过设置活性炭循环传输通道,搭建烟气输送口,对活性炭采取再生处理,利用脱硫脱硝吸附装置及氨气蒸发装置,构建脱硫脱硝烟气净化吸附系统。

测试结果表明,本系统的应用使得单台锅炉烟气处理量增加了3万m3/h,并且HCL、SO2、NOX、粉尘排放量均有所改善。

各项材料指标在净化条件允许范围之内,此系统的设计有助于我国解决燃煤污染问题。

关键词:活性焦;垃圾焚烧;一体化大部分城市以焚烧作为垃圾处理主要方式,生成大量重金属、NOX颗粒物、SO2等污染物,对环境造成严重污染[1]。

当前采用常规焚烧污染物处理工艺均未达到焚烧污染控制标准,其中,NOX颗粒物、SO2含量较高,如何脱硫脱硝成为当前研究难点。

本文将根据活性焦性质,提出一体化脱硫脱硝净化处理方案,通过实践应用验证方案可靠性。

一、活性焦性质活性焦是1种以煤炭为原料制作的吸附材料,成本較低,化学性质稳定,具有较好的还原性和热稳定性,通常情况下,作为还原剂使用。

1、物理特性活性焦内部含有较多微孔,使得该材料具有较好的吸附性。

按照国际标准,按照孔径大小不同,可以将其划分为大孔、中孔、小孔3种孔径,用于不同催化需求的化学处理[2]。

其中,大孔孔径在50nm以上,中孔孔径范围2-50nm,小孔孔径为2nm。

2、化学特性该材料表面附着大量含氮官能团和含氧官能团,容易吸附酸性及碱性物质,与活性炭相比,此材料脱硫性能更强一些。

3、再生特性材料净化烟气时,表面吸附大量物质,采用水洗法或者加热法等,可生成硫酸、单质硫、液态二氧化硫等[3]。

通过分析活性焦特性可知,此材料适合净化焚烧烟气。

因此,本文将选取此材料作为焚烧烟气净化处理主要材料,对净化吸附系统进行设计研究。

二、活性焦一体化脱硫脱硝烟气净化吸附系统1、系统组成本系统以活性焦为核心材料,设计烟气净化吸附系统。

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种新型的烟气处理技术,它采用活性炭吸附脱除烟气中的二氧化硫和氮氧化物,有效地减少了烟气中有害气体的排放,保护了环境。

本文将探讨活性炭联合脱硫脱硝技术的原理、应用及其优势。

一、技术原理活性炭联合脱硫脱硝技术利用活性炭的吸附特性,将烟气中的有害气体吸附到活性炭表面上,从而达到脱硫脱硝的目的。

具体而言,该技术分为三个步骤:吸附脱硫、吸附脱硝和再生吸附剂。

1. 吸附脱硫烟气中的二氧化硫经过烟气净化设备的处理后,进入活性炭吸附器内。

在吸附器内,烟气与活性炭接触时,活性炭表面的微孔会对二氧化硫进行吸附作用,将其从烟气中去除。

此过程中,活性炭的表面积越大,其脱硫效果就越好。

烟气中的氮氧化物主要包括氮氧化物和一氧化氮等有害物质。

这些物质通常是通过液态还原剂在还原反应器内还原为氨,再通过吸附剂进行吸附,形成固体颗粒物质,从而达到去除氮氧化物的目的。

通常活性炭的吸附剂是一种具有高表面积、孔径适中、催化活性好、吸附能力强的物质。

3. 再生吸附剂吸附后的活性炭会逐渐失去吸附能力,需要进行再生处理。

一般情况下,对活性炭在吸附过程中脱除的二氧化硫和氮氧化物,再度进行煅烧和氧化处理,使其脱离吸附剂表面,从而使吸附剂恢复正常的吸附性能。

同时,煅烧后的二氧化硫和氮氧化物会形成氧化物排放,需要采用其他烟气净化设备进行处理。

二、技术应用活性炭联合脱硫脱硝技术已经在国内外得到了广泛的应用,尤其是在火力发电厂、钢铁厂等大型企业中的烟气治理中。

通过该技术,可以有效地去除燃煤烟气中的二氧化硫和氮氧化物等有害气体,使环保达到国家标准,并且对环境污染减少,净化作用良好。

与此同时,由于原料和制造成本的不断降低,活性炭的市场需求也越来越大。

在烟气治理中广泛应用活性炭的同时,如何降低其制造成本,提高其利用效率也是分析的方向。

三、技术优势相对于其他烟气净化技术,活性炭联合脱硫脱硝技术具有许多优势。

其中最突出的几点包括:1. 高效性:活性炭联合脱硫脱硝技术能够有效地去除烟气中的二氧化硫和氮氧化物等有害气体,同时净化率高。

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨一、活性炭联合脱硫脱硝技术的原理活性炭联合脱硫脱硝技术是一种通过在燃煤锅炉烟气中喷入活性炭并将矿物吸附剂与之混合,以达到同时去除烟气中的二氧化硫和氮氧化物的技术。

该技术主要包括两个部分,一是活性炭脱硫技术,二是活性炭脱硝技术。

在活性炭脱硫技术中,烟气中的二氧化硫在与喷入的活性炭接触后,通过化学吸附和物理吸附等机制吸附到活性炭上,从而实现了对二氧化硫的去除。

而在活性炭脱硝技术中,喷入的活性炭与氨气在燃煤锅炉的烟气中发生氨基化反应,生成亚硝酸盐或亚硝酸,再通过亚硝化反应将NOx还原成N2。

二、活性炭联合脱硫脱硝技术的优势与传统的脱硫脱硝技术相比,活性炭联合脱硫脱硝技术具有一系列明显的优势。

活性炭联合脱硫脱硝技术具有高效率的特点。

在活性炭的作用下,烟气中的二氧化硫和氮氧化物可以被有效地吸附和还原,使脱硫脱硝效率得到大幅度提高。

该技术具有良好的适应性。

活性炭联合脱硫脱硝技术能够适用于不同种类的燃煤锅炉,且对烟气中的杂质和湿度变化的适应能力强。

活性炭联合脱硫脱硝技术具有较低的成本。

相比传统的脱硫脱硝技术,该技术需要的设备和投入都相对较少,且运行成本也较低。

活性炭联合脱硫脱硝技术对环境的影响较小。

该技术在去除大气污染物的产生的废渣也相对较少,对环境影响较小。

三、活性炭联合脱硫脱硝技术的应用活性炭联合脱硫脱硝技术已经被广泛应用于我国的电力、冶金、化工、石化等行业。

以电力行业为例,由于燃煤锅炉是主要的大气污染源,因此脱硫脱硝技术在电力行业中有着广泛的应用前景。

在大型火电厂中,通过引入活性炭联合脱硫脱硝技术,可以有效地降低烟尘、二氧化硫和氮氧化物的排放浓度,实现了大气污染物的减排。

该技术也为火电厂的清洁生产提供了有力的技术支持。

活性炭联合脱硫脱硝技术还可以应用于一些特殊行业,如冶金、化工等。

在这些行业中,由于生产过程产生的废气中含有较高浓度的二氧化硫和氮氧化物,因此引入该技术可以有效地减少废气对环境的影响,保障生产过程的环境安全。

活性焦联合脱硫脱硝工艺试验研究

活性焦联合脱硫脱硝工艺试验研究

活性焦联合脱硫脱硝工艺试验研究熊银伍【摘要】为了开发活性焦联合脱硫脱硝工艺,选取一种商用活性焦在微型反应器上进行NH3对NO、SO2脱除影响及NO和SO2脱除交互影响试验,提出了活性焦联合脱硫脱硝工艺路线,并在实验室搭建的模拟装置上进行了工艺路线的模拟试验验证。

结果表明,活性焦脱硝是低温SCR反应,NH3的存在使SO2吸附量提高约18%,说明NH3与SO2发生化学反应,有利于SO2脱除,但生成的硫铵会降低工业装置的稳定性;当活性焦无吸附NH3时,NO对SO2脱除无影响,当活性焦吸附NH3时,通入NO前后,SO2出口体积分数由0.15%降至0.13%左右,说明NO对SO2脱除有促进作用;通入SO2气体后,NO出口体积分数由0.045%迅速增至0.065%,说明SO2与NO争抢NH3,不利于脱硝。

通过工艺路线模拟试验发现,当联合脱硫脱硝空速为400 h-1时,脱硫效率≥95%,脱硝效率≥70%,验证了活性焦联合脱硫脱硝工艺的可行性。

%In order to develop combined removal of SO2/NO process by activated coke,a commercial activated coke was chosen as research object,the influence of NH3 on desulfurization and denitrification as well as the interactive effects of NO and SO2 removal was investigated on micro reactor. The route of combined removal of SO2/NO process was obtained and the simulated experiment was conducted in the lab. The results showed that the denitrification was low-temperature SCR reaction. The participation of NH3 increased SO2 adsorption by 18%which indicated that the reaction of NH3 and SO2 was helpful to remove SO2 ,while the generated ammonium sulfate reduced the stability of industrial device. When the activated cokedidnˊt adsorb NH3 ,the presence of NO had no effects on SO2 removal. When the activated coke adsorbed NH3 ,the concentration of SO2 at outlet decreased from 0. 15% to 0. 13% after piping NO. The concentration of NO at outlet in-creased from 0. 045% to 0. 065% after piping SO2 . The results indicated that the NO benefited desulfurization,while the reaction of SO2 and NH3 hindered denitrification. The combined removal ofSO2/NO process was feasible by simulation experiment. The desulfurization ef-ficiency was equal or more than 95% and the denitration efficiency was equal or more than 70% when the space velocity was 400 h-1 .【期刊名称】《洁净煤技术》【年(卷),期】2015(000)002【总页数】6页(P14-19)【关键词】活性焦;脱硫;脱硝;烟气【作者】熊银伍【作者单位】煤炭科学技术研究院有限公司煤化工分院,北京 100013; 煤基节能环保炭材料北京市重点实验室,北京 100013; 煤炭资源高效开采与洁净利用国家重点实验室,北京 100013【正文语种】中文【中图分类】X701;TD849我国60%以上的燃煤被火电站和燃煤工业锅炉消耗,同时我国也是世界上少数几个以煤炭为主要能源的国家之一。

活性焦法脱硫技术及经济分析

活性焦法脱硫技术及经济分析

活性焦法脱硫技术及经济分析1、 工艺技术介绍活性焦法烟气脱硫主要是通过烟气中的SO2等组分在活性焦上吸附和催化氧化反应实现的。

烟气经过吸附脱硫塔的活性焦床层时,在110~150 ℃的适宜条件下,烟气中的SO2与氧气及水蒸气在活性焦上发生化学吸附,生成硫酸或水合硫酸,贮存在活焦的微孔内,这样SO2被除去。

在脱硫的同时可对重金属离子、类金属离子、粉尘、二噁英和卤化氢等污染物有完全或一定协同脱除的作用。

吸附饱和的活性焦在重力的作用下移出吸附塔,经过物料输送系统输送到脱附再生塔,经过预热段预热后,在加热段350~400 ℃的温度下解吸,活性焦得到再生,浓SO2脱附气被导出,活性焦经过冷却段冷却后,输送到吸附反应塔上部完成一个循环。

工艺原理:活性焦法烟气脱硫可分为吸附和再生两个过程。

吸附过程:活性焦脱硫是发生在活性焦表面的吸附和催化氧化反应。

当烟气中有氧和水蒸气存在时,SO2首先吸附在活性炭材料上,然后通过活性焦发达的比表面和丰富的孔结构进行扩散和传递至微孔,被烟气中的O2氧化为SO3,SO3再和水蒸气反应生成稀硫酸并贮存于活性焦微孔中,实现SO2的脱除。

实际反应步骤应该分为两步,即物理吸附和化学吸附。

SO2(g)→SO2*O2(g)→2O*H2O(g)→H2O*2SO2*+O2*→2SO3*SO3*+H2O*→H2SO4*前三步发生在催化剂表面上,主要是物理吸附,然后通过吸附在表面的SO2与O2生反应,生成的SO3与H2O应生H2SO4,所以后面两步主要是化学吸附。

化学吸附的总反应式如下:2SO2+2H2O +O2→2H2SO4再生过程:活性焦再生是将SO2吸收饱和的活性焦经加热后再生,可获得高SO2浓度的再生气,再生气通过制酸工序可制作商品硫酸等副产品。

再生反应:2H2SO4+C=2SO2+CO2+ 2H2O活性焦法脱硫在应用过程中存在如下几个方面的问题:(1)活性焦磨损:化学再生和物理循环过程中活性焦会气化变脆;破碎及磨损而粉化,并因微孔堵塞丧失活性。

活性焦脱硫脱硝脱汞一体化技术及运用分析

活性焦脱硫脱硝脱汞一体化技术及运用分析

活性焦脱硫脱硝脱汞一体化技术及运用分析作者:翁淑容傅月梅来源:《科学与信息化》2016年第28期摘要在煤炭燃烧的过程中会产生大量的二氧化硫、氮氧化物以及重金属汞,对环境造成污染。

本文主要对活性焦脱硫脱硝脱汞一体化技术进行了研究分析,分别从煤炭燃烧的污染现状、活性焦脱硫脱硝脱汞的工艺运用两方面进行了阐述,为提升活性焦脱硫脱硝脱汞的工艺水平提供理论依据。

关键词活性焦;脱硫脱硝脱汞;一体化技术Abstract In the process of coal combustion will produce large amounts of sulfur dioxide,nitrogen oxides, and mercury, causing pollution to the environment. This paper mainly studied on the mercury removal technology integration of active coke desulfurization denitrification,respectively from the pollution of coal combustion, mercury removal process using activated coke desulfurization and denitrification in two aspects the paper provides theoretical support for the technology to enhance the level of active coke desulfurization denitration and mercury removal.Key words Active coke; Desulfurization and denitration; Integrated technology1 煤炭燃烧污染现状分析目前来说,能源问题与环境污染问题是影响世界经济健康发展与可持续发展的主要两大问题。

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨

活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种利用活性炭对废气中的硫氧化物和氮氧化物进行吸附还原处理的技术。

本文将对活性炭联合脱硫脱硝技术进行探讨。

活性炭联合脱硫脱硝技术通过将活性炭作为吸附剂,吸附废气中的硫氧化物和氮氧化物,再经过还原反应,将其转化为无害的氮气和二氧化硫。

该技术具有处理效果好、投资成本低、运行成本低等优点,因此受到了广泛的关注和应用。

活性炭联合脱硫脱硝技术主要包括吸附和还原两个阶段。

在吸附阶段,活性炭用于吸附废气中的硫氧化物和氮氧化物。

活性炭具有大比表面积和孔径分布,可以有效地吸附废气中的有害气体。

在还原阶段,通过加热或加入还原剂,将活性炭吸附的气体进行还原反应,将其转化为无害气体。

活性炭联合脱硫脱硝技术的具体操作参数有吸附剂种类、床层高度、空气速度、反应温度等。

吸附剂的选择对于技术的效果具有重要影响。

一般来说,活性炭具有较好的吸附性能,可以选择合适的活性炭作为吸附剂。

床层高度和空气速度影响吸附物质在床层中的停留时间,需要根据实际情况进行调整。

反应温度会影响吸附剂的吸附和还原性能,需要控制在适宜的范围内。

活性炭联合脱硫脱硝技术的应用领域主要包括石油化工、电力、冶金等工业领域。

石油化工行业废气中的硫氧化物和氮氧化物含量较高,采用活性炭联合脱硫脱硝技术可以有效地减少废气对环境的污染。

电力行业燃煤发电过程中会产生大量的硫氧化物,采用该技术可以降低二氧化硫的排放量。

冶金行业烧结烟气中也含有大量的氮氧化物,采用活性炭联合脱硫脱硝技术可以降低废气对大气的污染。

活性炭联合脱硫脱硝技术是一种有效处理废气中硫氧化物和氮氧化物的技术。

该技术具有处理效果好、投资成本低、运行成本低等优点,适用于石油化工、电力、冶金等工业领域。

在实际应用中,需要合理选择吸附剂、调整操作参数,以达到最佳的处理效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活性焦联合脱硫脱硝技术宋丹(中国人民大学环境学院,北京 100872)摘要:本文介绍了活性焦联合脱硫脱硝技术的含义,重点分析了其脱除机理、工艺流程、优缺点、应用情况与发展前景,指出该技术可以有效地脱除烟气中的SO2和NO X,工艺简单,活性焦可以再生,脱除过程基本不耗水,无须对烟气进行加热,还实现了对硫的资源化利用,是适合我国国情的烟气脱硫脱硝技术,但仍需进一步的开发和研究。

关键词:活性焦;脱硫;脱硝;烟气Activated Coke Combined Desulfurationand Denitration TecnologyAbstract: This article described the meaning of activated coke combined desulfuration and denitration tecnology,and selectively analysed the reaction mechanism of the removal of SO2/NO X,the technological process,the advantages and disadvantages,the situation of application and the develpment of this tecnology.Pointed out that the activated coke combined desulfuration and denitration tecnology achieved effective removal of SO2/NO X with simple process,regenration of activated coke,no-water procudure and without any extra gas heating step.Besides,it accomplished the re-utilization of sulfur resources,which is in line with China’s national conditions and has broad application prospects.However,further research and develpment work is still needed.Keywords: activated coke;desulfuration;denitration;flue gas我国的能源结构以煤炭为主,是世界上最大的煤炭生产国和消费国。

大量的燃煤造成了以煤烟型为主的空气污染,燃煤烟气中的SO2和NO X 是大气污染物的主要来源,也是形成酸雨和光化学烟雾的主要物质,给生态环境带来严重危害。

目前最有效且最常用的脱硫脱硝方法为燃烧后的烟气脱硫脱硝。

烟气脱硫技术中应用较多的是石灰石—石膏法与湿式氨法,脱硝技术则应用选择性催化还原(SCR)工艺较广泛。

这些脱硫、脱硝单独处理的技术存在不少问题:如石灰石—石膏法工艺生成的大量硫酸盐难以处理,SCR法以NH3为还原剂则存在运输储存困难,工艺复杂,产生二次污染等问题。

因此,在经济性、资源利用效率等方面具有明显优势的脱硫脱硝一体化技术成为近年来研究的热点。

活性焦联合脱硫脱硝法除了能脱除SO2和NOx,还能同时脱除烟气中的烟尘粒子、汞、二噁英、呋喃、重金属、挥发性有机物及其它微量元素,同时还具有工艺简单,成本低与可资源化利用等优点[1]。

因此,发展活性焦烟气联合脱硫脱硝技术,有利于控制我国燃煤SO2和NOx 排放以及经济的可持续发展。

1、活性焦联合脱硫脱硝技术概述活性焦联合脱硫脱硝技术是一种利用活性焦的吸附催化功能,同时脱除烟气中的硫氧化物、氮氧化物、烟尘,并回收硫资源的干法烟气处理技术[1]。

美国政府调查报告认为,该技术是最先进的烟气脱硫脱硝技术[2]。

1.1活性焦活性焦是以褐煤为主要原料研制出的一种具有吸附剂和催化剂双重性能的粒状物质,具有十分丰富的微孔结构,能吸附大分子、长链有机物。

是SO2的优良吸附剂,也是NH3还原NOx的优良催化剂。

作为催化剂的物质大都较一般物质具有更高程度的微孔结构,活性焦就是其中微孔结构最为发达的催化剂[1]。

活性焦中微孔对活性焦吸附量起着支配作用,中孔和大孔一般为吸附分析的进入通道,在通道内的扩散过程的快慢也会影响吸附率的大小。

活性焦的生产工艺与活性炭类似,生产设备基本相同,来源广泛,方便大规模生产,且价格低廉,生产成本不到活性炭的50%,适于大规模工业应用[3]。

一般火电厂烟气脱硫工艺使用的活性焦,形状是直径2.5~9mm、长度2.5~10mm的圆柱状。

与活性炭相比,烟气脱硫用活性焦需要有很强的吸附能力,而且机械强度高、燃点高、透气性好、具有较好的抗氧化性能,并可多次解吸循环使用,主要性能如下表[4]:表1.烟气脱硫用活性焦主要技术指标强度(%)堆密度(g/L)燃点(℃)碘值(mg/g)吸附硫容(%)比表面积(m2/g)耐压强度N孔直径(nm)孔容积(ml/g)>99 600~700 >350 >400 ≥10150~300 >380 1~100 0.05~12.2联合脱硫脱硝技术烟气脱硫脱硝一体化技术是指将脱硫、脱硝技术合并在同一个设备中进行。

按脱除机理不同,这些技术可分为 2 大类:联合脱硫脱硝技术(Combined SO 2/NOx Removal)和同时脱硫脱硝技术(Simultaneous SO 2/NOx Removal)。

这里所提及的联合、同时脱硫脱硝技术都是在同一个反应设备中完成的,而二者的差异在于,能否只用一种反应剂,并在不添加氨的条件下直接达到脱除的目的[5]。

联合脱硫脱硝技术实质上还是分两个工艺流程分别脱除SO 2和NOx ,采用NH 3作为还原剂,而同时脱硫脱硝技术才是真正意义上的一体化脱除技术。

2、活性焦联合脱硫脱硝原理目前各国学者对活性焦脱除SO 2和NOx 的机理研究较多,所得出的结论不尽一致,但基本能够达成共识的是:活性焦对SO 2和NOx 的吸附有物理吸附和化学吸附两种方式。

当烟气中无水蒸气和氧气存在时,主要发生物理吸附;当有足够量的氧气和水蒸气时,发生物理吸附的同时也发生化学吸附和表面反应[6]。

2.1 脱硫反应原理活性焦脱硫是基于SO 2在活性焦表面的吸附和催化氧化。

当烟气中没有氧和水蒸气存在时,活性焦吸附SO 2仅为物理吸附,吸附量较小:而当烟气中有氧和水蒸气存在时,在物理吸附之外还发生化学吸附,吸附的SO 2在活性焦的催化氧化下与烟气中的O 2反应生成SO 3,之后再和水蒸气反应生成硫酸,使其吸附量大为增加。

在O 2和水蒸气存在时,SO 2发生催化氧化及下列反应:2SO 2+O 2 → 2SO 3 (1)SO 3+H 2O → H 2SO 4 (2)H 2SO 4+H 2O → H 2SO 4·H 2O (3)总反应:2SO 2+O 2+4H 2O → 2H 2SO 4·H 2O (4)如果将活性焦的碳元素考虑到反应中去的话,SO 2的脱除机理可以用以下反应式表示[7]:氧的化学吸附(Oxygen chemisorption ) C+21O 2 → C-O or C(O) 瞬时结构(Fleeting complex ) C-O → C(O)SO 2的吸附(SO 2 adsorption ) C(O)+SO 2 → C-SO 3H 2SO 4的形成(H 2SO 4 formation ) C-SO 3+H 2O → C-H 2SO 4 活性焦的再生(Regenration ) C-H 2SO 4 → C+H 2SO 4总反应(Overall reaction ) C+SO 2+21O 2+H 2O → C+H 2SO 4 可以看出,在进行脱硫反应的时候,活性焦表面的碳元素会先与体系中存在的氧气形成碳—氧表面氧化物,该氧化物的结构是瞬时可变的,之后碳氧结构会参与一系列的催化氧化反应。

在再生阶段,生成的碳—硫酸结构会分解,碳元素重新暴露出来,可以再次进行吸附作用。

2.2脱硝反应原理在活性焦吸附脱硫系统中加入氨,可使NO X 与NH 3发生催化还原反应[8]:4NO +4NH 3+O 2 → 4N 2+6H 2O (5)6NO 2+8NH 3 → 7N 2+12H 2O (6)值得注意的是,在有O 2和H 2O 的条件下,加入的氨也有助于提高活性焦的脱硫活性,同时也可以降低活性焦的消耗:H 2SO 4 +NH 3 → NH 4HSO 4 (7)H 2SO 4 +2NH 3 → (NH 4)2SO 4 (8)如上反应式所示,加入的氨会与吸附二氧化硫后生成的H 2SO 4反应生产硫酸铵和硫酸氢铵,可以在活性焦吸附饱和时在一定程度上提高脱硫效果。

2.3活性焦再生反应原理活性焦再生有水洗和加热2种方法,水洗活性焦再生需要大量的水,而且产生酸水形成二次污染,故很少使用。

活性焦再生通常是将吸附饱和的活性焦加热到350℃以上,发生如下化学反应,释放出SO 2[1]:2H 2SO 4+C → 2SO 2+CO 2+2H 2O (9)3NH 4HSO 4 → 3SO 2+N 2+NH 3+6H 2O (10)(NH 4)2SO 4 → SO 3+2NH 3+H 2O (11)3SO 3+2NH 3 → 3SO 2+N 2+3H 2O (12)SO 3+C → SO 2+C ··O (13)其中C ··O 则表示上文中所提到的活性焦表面氧化物。

从上式可以看出,当二氧化硫以硫酸形态被吸附和再生时,要消耗活性焦的碳元素来还原硫元素,而若是以硫酸氨或硫酸氢氨形态被吸附,在高温时可直接受热分解,可在一定程度上减少活性焦的消耗。

2.4工艺的影响因素在该工艺过程中,SO2的脱除反应优先于NOx的脱除反应[9]。

在含有高浓度的SO2烟气中,进行的是SO2脱除反应;在SO2浓度较低的烟气中,NOx脱除反应占主导地位。

因此,吸收塔入口SO2浓度与脱硝效率存在一定的联系。

实验结果表明,在NOx进口浓度一定的情况下,随着SO2浓度的增高,NOx 的脱除率会逐渐降低,影响工艺整体的脱除效果。

此时,就需要使用二级吸收塔,对烟气进行再吸附,这样SO2的浓度就不会过高而影响NOx的脱除率[10]。

温度对SO2与NOx的脱除率也有影响,随着温度的升高,脱硫效率降低,脱硝效率增大[10]。

究其原因,随着温度的提高,接近活性焦的再生温度时,氨与二氧化硫生成的硫酸铵和硫酸氢铵会受热分解,产生二氧化硫和三氧化硫,降低脱硫效率。

相关文档
最新文档