变量与常量优秀教学设计
变量常量教学设计

变量常量教学设计教学设计:变量和常量一、教学目标1. 了解变量和常量的概念及其在编程语言中的应用。
2. 掌握变量和常量的声明和定义方法。
3. 能够使用变量和常量解决实际问题。
二、教学内容1. 变量的概念和作用。
2. 变量的声明和定义方法。
3. 常量的概念和作用。
4. 常量的声明和定义方法。
5. 变量和常量的应用实例。
三、教学过程引入:(5分钟)1. 通过给学生出示一个问题,让学生思考变量的作用:如果要求计算1到100的和,你会如何解决这个问题?2. 引导学生思考,使用变量可以简化这个问题的解决过程,避免手动计算。
3. 引入变量的概念:变量是在程序中用于存储和代表数据的一种机制。
讲解:(15分钟)1. 介绍变量的声明和定义方法:a. 声明变量时要指定其数据类型,如整数类型、浮点数类型、字符类型等。
b. 变量的定义包括变量的名称和初始值,初始值可以是一个常量或者另一个变量的值。
2. 举例说明变量的应用:a. 声明一个整数类型的变量用于存储年龄,然后将其赋值为18。
b. 声明一个浮点数类型的变量用于存储圆的半径,然后将其赋值为3.14。
c. 声明一个字符类型的变量用于存储性别,然后将其赋值为男。
3. 引入常量的概念:常量是在程序中值不能被改变的数据。
4. 介绍常量的声明和定义方法:a. 常量的声明和定义与变量类似,只是在声明时使用const关键字来表示常量。
5. 举例说明常量的应用:a. 声明一个整数类型的常量用于存储一年的天数,将其赋值为365。
b. 声明一个字符类型的常量用于存储pi的值,将其赋值为3.1415926。
练习:(20分钟)1. 设计练习题,让学生通过使用变量解决实际问题。
例如:声明两个整数类型的变量分别表示长度和宽度,计算矩形的面积。
2. 设计练习题,让学生通过使用常量解决实际问题。
例如:声明一个整数类型的常量表示圆的半径,计算圆的周长和面积。
讨论:(15分钟)1. 鼓励学生分享自己设计的练习题的解决方法,引导学生理解变量和常量在解决实际问题中的作用。
人教版八年级数学下册第19章19.1.1变量与常量(教案)

4.引导学生在探索变量与常量过程中,培养严谨的数学态度和逻辑推理的素养。
5.培养学生的团队协作意识,通过小组讨论、互动交流,提升合作探究的能力。
三、教学难点与重点
1.教学重点
-理解变量与常量的定义及表示方法,并能正确区分两者。
-掌握函数概念的基本内涵,了解变量之间关系的表示方式。
在新课讲授的案例分析部分,我选取了一个与学生生活密切相关的例子,这样做的目的是让学生们感受到数学知识在解决实际问题中的应用。通过这个案例,我看到了学生们开始尝试将数学概念与实际情境联系起来,这是一个很好的开始。
实践活动环节,学生们在分组讨论中表现出了很高的热情。他们通过讨论和实验操作,亲身体验了变量与常量的变化过程,这种亲自动手的方式似乎比单纯的讲授更能加深他们的理解。
在小组讨论环节,我发现有的小组在分析问题时还不够深入,可能是因为他们对变量的理解还不够透彻。我适时地介入,提出了几个引导性的问题,帮助学生进一步思考。看到他们在讨论中逐渐找到问题的解决办法,我感到很欣慰。
最后,我发现在总结回顾环节,有些学生仍然对自己的理解不够自信,可能需要在课后进行个别辅导,确保他们能够真正掌握变量与常量这一知识点。此外,我也会在课后反思自己的教学方法,探索更有效的教学策略,以提升学生们的数学核心素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与常量的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对变量与常量的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
变量与常量教学设计(精品课)

1 第1课时变量与常量
Ⅰ.教学任务分析
教学目标知识与技能1.了解常量、变量的概念.
2.会写出简单问题中的数量关系,并辨别其中的常量和变量.
过程与方法 1.通过实例体验在一个过程中有些量固定不变,有些量不断变化.
2.体验在一个过程中常量与变量的相对存在.
情感与态度 1.感受“数学中有生活,生活中有数学”,培养学习数学的兴趣.
2.体验矛盾事物的对立统一的辩证唯物主义思想.
教学重点会识别常量和变量.
教学难点常量与变量的相对存在.
Ⅱ.教学过程设计
问题及师生行为设计意图
一、创设问题,激发兴趣
导语:“万物皆变”这种一个量随另一个量的变化而变化的现象,在大千世界中,在我们的生
产和生活中大量存在.
比如,学校组织学生秋游,现知道景点的门票为80元/人,学生按半价(即
40元/人),若前往的学生人数为x 人,学生需付门票为y 元,则y 与x 的关
系式为:_________.
请学生回答:x y 40.其中变化的是人数x 和门票费y ,而40保持不变.
通过图片,展示一
个量随另一个量的变化
而变化的现象,希望能
吸引学生的注意力,激
发学习兴趣,同时,为
学习新知识作好铺垫.
x 人的身高随年龄而变化行星在宇宙中的位置随时间而变化汽车行驶里程随时间而变化
气温随海拔而变化。
常量与变量的教案

【篇一:常量与变量教案】
7.1常量与变量
教学目标:
1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量与变量。
重点:常量与变量的概念。
难点:本节的范例。
教学过程:
一、创设情景,引入新课
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。它是函数学习的入门,也为后面引出变量间的单值对应关系进而学习函数的定义做了铺垫。本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
教学内容
(人教版)初中数学八年级下册第71页。
(3)若汽车行驶了4小时,则其中常量、变量分别是什么?
常量是4小时;变量是s,v.
(4)从以上3题你发现了什么?
在一个过程中,常量与变量相对地存在。
三、例题讲解:
一家快递公司的收费标准如图,用t表示邮件的质量,p表示每件快递费,n表示快递邮件的件数。课本141页
(1)填写下表
(2)在投寄快递邮件的事项中,t,p,n是常量,还是变量?
生:h、n在改变,110与10不变。
师:当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,在某一个过程中,有些量固定不变,有些量不断改变,我们今天这节课就来学习这两种量。
二、新课教学
1、常量与变量概念。
在一个过程中,可以取不同数值的量称为变量。如上面公式中h和n、s和r是变量。2、学生练习(小试牛刀)
师:同学们,你知道你的睡眠时间充足吗?根据科学研究表明,一个10岁至50岁的人每天所需睡眠时间(h小时)可用公式h=(110-n)/10计算出来,其中n代表这个人的岁数,请赶紧算算你所需的睡眠时间吧!(出示投影)
八年级数学上册《常量与变量》教案、教学设计

3.小组分享:各小组向全班同学分享自己的讨论成果,展示问题解决过程和数学表达式的建立。
4.互动交流:鼓励学生提问、发表观点,促进全班范围内的互动交流,加深对常量与变量知识的理解。
(四)课堂练习
1.练习设计:根据学生的掌握情况,设计不同难度的练习题,涵盖识别常量与变量、列表达式、数据分析等方面。
二、学情分析
八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有初步的了解。在此基础上,他们对《常量与变量》这一章节的学习将面临以下挑战:
1.抽象思维能力:学生对抽象概念的理解能力尚需提高,需要通过具体实例和形象教学手段帮助他们理解常量与变量的本质区别。
2.问题解决能力:学生在解决实际问题时,可能难以把握问题中的常量和变量,需要教师引导他们学会分析问题、提炼关键信息。
2.教师提问:请同学们思考,在生活中还有哪些类似的现象?这些现象中的常量和变量是什么?
3.学生回答:学生分享自己的观察和思考,如温度、降雨量、植物生长等,尝试区分这些现象中的常量和变量。
4.教师引导:根据学生的回答,总结常量与变量的概念,引出本节课的学习主题。
(二)讲授新知
1.教学内容:讲解常量与变量的定义,通过具体实例阐述它们在数学表达中的表示方法。
2.设计丰富多样的例题和练习,培养学生的问题解决能力。
3.加强小组合作指导,提高学生的合作交流能力。
4.结合实际问题,引导学生体会数学知识在生活中的应用,培养数学应用意识。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握常量与变量的概念,能够区分实际问题中的常量和变量。
2.学会使用变量表示数量关系,并能够根据问题情景列出相应的表达式。
20_1 常量和变量 教案

20.1 常量和变量教学目标1.通过实例,让学生了解变量、常量的意义能举出现实中的常量与变量;2.通过探索两个数量之间的关系和变化规律,发展学生的抽象思维和符号感;3.通过对问题的讨论引出常量与变量的概念,为学习函数的定义作准备;4.学生通过积极参与课堂上对问题的分析,感受现实生活中函数的普遍性,体会事物之间的相互联系与制约。
教学重难点【教学重点】从具体的事例了解常量、变量的意义。
【教学难点】能用含一个变量的式子表示另一个变量。
教学过程一、新课导入在实际生活中,人们常需要用量化的方式来描述一个事物的变化过程,这会涉及一些量,其中,一些量是不变的,一些量是变化的.我们知道,在一个匀速运动的过程中,路程=速度×时间.这里的路程、速度和时间就是三个不同的量.这些量在不同的变化过程中会有怎样的具体表现形式呢?师生活动:学生讨论交流、总结发言,教师引出新课.设计意图:从生活实例引出本节课的学习内容,直观形象,激发学生学习兴趣.二、新课讲解1.合作探究问题1.小明在上学的途中,骑自行车的平均速度为300 m/min。
(1)填写下表:时间t/min 5 10 20 55 …路程s/m …(2)在这个问题中,哪些量是不变的,哪些量是变化的?变化的量之间存在着怎样的关系?师生活动:学生观察题目信息,独立思考后,发言交流.教师引导后,得出表格内应填:1500、3000、6000、16500…平均速度300 m/min是不变的,路程和时间都是变化的,它们之间满足关系s=300t.设计意图:通过实际问题,让学生自己填表,并观察表格中的数据进行归纳,总结。
问题2.桃园村办企业去年的总收入是25000万元,计划从今年开始逐年增加收入3500万元。
在这个问题中,一共有几个量?其中哪些量是不变的,哪些量是变化的?变化的量之间存在着怎样的关系?师生活动:学生观察统计图,发言交流.解释题中变化的量和不变的量。
教师引导,得出题中一共有四个量,即去年的总收入、从今年起每年增加的收入、第几年和第几年的总收入.去年的总收入25000万元和以后每年增加的收入3500万元都是不变的量,第几年和第几年的总收入都是变化的量.如果用n(n取正整数)表示从今年起的第n年,用W表示第n年的总收入,那么它们之间满足关系W=25000+3500n.设计意图:仿照问题1,通过实际问题,让学生观察统计图中的信息,并得出相应的结论,为后面说明常量与变量做铺垫.问题3.类似地,请你再举出两个实际问题的例子,并分别说明它们各含有几个不同的量,其中哪些量是不变的,哪些量是变化的。
1常量和变量一等奖创新教案
1常量和变量一等奖创新教案一、教学目标1.理解常量和变量的概念,区分它们的不同之处。
2.掌握常量和变量在编程中的应用方法。
3.能够运用常量和变量解决实际问题。
二、教学内容1.常量的定义和使用。
2.变量的定义和使用。
3.常量和变量在编程中的应用。
三、教学过程及教学方法1.导入新知识2.查找资料让学生使用互联网或图书馆的资源,并了解常量和变量的具体定义和应用。
3.理解常量的概念通过举例,让学生理解常量的定义和特点。
例如:π的值在数学中是一个常量,不会因为具体计算的对象而改变。
让学生思考,是否还有其他的常量?常量和变量有什么区别?4.常量的应用让学生分小组,每个小组选择一个常量来进行讨论和应用。
例如:天气预报中的最低气温、最高气温和降水量等都属于常量。
学生可以从气象预报网站获取一周天气数据,并将最低气温、最高气温和降水量保存为常量,然后编写程序,通过获取当天日期,自动显示当天的天气情况。
5.理解变量的概念通过举例,让学生理解变量的定义和特点。
例如:人的年龄是一个变量,会因为时间的推移而改变。
6.变量的应用让学生分小组,每个小组选择一个变量来进行讨论和应用。
例如:市人口数量是一个变量,每年都会有所增长或减少。
学生可以从统计局的数据中获取该市过去几年的人口数据,并用变量来保存。
然后编写程序,根据输入的年份,自动显示该年度该市的人口数量。
7.常量和变量的比较让学生总结常量和变量的共同点和不同点,并展示出来。
8.应用实例设计一个程序,通过输入一个学生的成绩,判断该学生的等级(优、良、中、差)。
学生可以使用变量来保存成绩,然后编写程序来判断等级,并输出结果。
9.总结复习对常量和变量的概念、特点以及应用进行总结和复习。
四、教学评估1.学生的参与度和讨论质量。
2.学生对常量和变量的理解和应用能力。
3.学生设计和编写的程序的正确性和有效性。
五、教学资源1.互联网或图书馆资源,用于查找资料。
2.电脑、投影仪和显示设备,用于展示幻灯片和演示程序。
1 常量和变量 一等奖创新教案
1 常量和变量一等奖创新教案变量与函数(第1课时)一、内容和内容解析1.内容变量与常量概念.2.内容解析函数研究的是变量之间的对应关系,变量是函数概念的基础.变量是在某个变化过程中数值发生变化的量;相对地,在某个变化过程中数值始终不变的量叫常量.变量总是与某个变化过程联系在一起,因此,学习变量与常量,必须要在运动变化过程中进行.变量是为函数概念服务的.从逻辑关系讲,先有变量,再有函数,然后才有函数的表示方法(解析法、列表法和图象法).因此,确定变量与常量是在分析变化过程中进行的,而不是在函数解析式中寻找.函数概念的核心是变化和对应关系,理解函数概念需要有足够的变化过程的体会.综上所述,本课的教学重点:体会运动变化过程,了解变量和常量的含义.二、目标和目标解析1.目标(1)了解变量与常量的意义.(2)体会运动变化过程中的数量变化.2.目标解析(1)了解变量与常量的意义,要求知道变量和常量的特征,能指出具体变化过程中的变量和常量.(2)体会运动变化过程中的数量变化,要求通过考察实例,认识自然界和生活中存在着大量的运动变化现象,认识到研究这些运动变化过程的必要性,知道要用数学方法研究这些变化过程,需要分析变化过程中的数量变化,并在观察的基础上概括变量与常量的概念.三、教学问题诊断分析运动变化现象广泛地存在于自然界和生活实际中,学生具有比较丰富的生活经验.但从数学角度对变化过程进行研究,把一系列变化的数值都看作一个量,这还是第一次,这会给学生带来观念上的冲突.在先前的学习中,学生学习的是单个的数与数之间的关系,而变量本质上涉及一个数集,其中包含了很多数.用运动变化的观点分析变化过程中的数量变化,并结合实例体会变量所涉及的数集的含义,在此基础上概括和认识变量,这是学习的难点.四、教学支持条件分析只有在充分体会运动变化过程中的数量变化的基础上,才能真正了解变量的意义.因此,需要用动画或视频向学生直观地展示运动变化的过程.五、教学过程设计(一)创设情境,提出问题引言:“万物皆变”——行星在宇宙中的位置随时间而变化;气温随海拔而变化(见章头图);树高随树龄而变化;小球从斜坡滚下时位置随着时间的变化而变化;在平静的水面上丢下一颗石子,就会在水面上漾起圆形涟漪,这些涟漪慢慢扩展,其面积随着半径的增大而增大……这种一个量随另一个量的变化而相应变化的现象大量存在.怎样从数学的角度,用数学的方法研究这些变化过程的变化规律呢?本章,我们将学习研究这些变化规律的相关知识.设计意图:通过引言教学提出本章需要研究的问题,激发学习兴趣,引起合理的选择性注意,起先行组织者作用.(二)观察思考,形成概念1.观察思考,体会变化问题2 观察并思考下列问题:(1)汽车以60 km/h的速度匀速行驶,行驶的时间为t h,行驶的里程为S km,你能说出汽车行驶过程中变化的量和不变的量吗?(2)每张电影票的售价为10元,设某场电影售出x张票,票房收入为y元,你能说出其中变化的量和不变的量吗?(3)你见过水中涟漪吗?圆形水波慢慢地扩大,在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S分别为多少?在这个过程中,哪些量是变化的?(4)用10 m长的绳子围一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?在矩形改变形状的变化过程中,哪些量是变化的?哪些量是固定不变的?师生活动:教师展示问题(1)中汽车运动、(3)中圆形水波的扩展、(4)中的图形变化过程的动画或视频,引导学生关注其中的量.问题(1)(3)(4)用动画展示变化过程.学生在观察这些变化过程及其数量特征的基础上说出这些量是否变化.设计意图:引导学生观察不同的变化过程,体会变化过程中数值变化的量和数值不变的量,为形成变量和常量概念提供归纳样例.2.分类概括,形成概念问题3 通过上述问题变化过程的观察,你认为这些问题中的量可以怎样分类师生活动:在学生进行分类的基础上,教师引导学生通过概括得出变量与常量的概念:在变化过程中,有些量的数值是不断变化的,有些量的数值是固定不变的,我们称数值发生变化的量叫变量,数值固定不变的量叫常量.设计意图:引导学生先分类、再归纳,引导学生概括出变量和常量的概念,发展数学概括能力.(三)辨别练习,巩固概念1.指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/每升,加油x L,车主加油付油费y元;(2)小明看一本200页的小说,看完这本小说需要t天,平均每天所看的页数为n;(3)用长为40 cm的绳子围矩形,围成的矩形一边长为x cm,其面积为S cm2.师生活动:学生独立完成,教师引导学生进行相互交流和评价.设计意图:辨别实际问题中的变量和常量,体会变量的含义.(四)生活举例,应用概念你能举出一个变化过程的例子,并说出其中的变量和常量吗?试一试!师生活动:学生举例,相互交流,教师进行适当点评.设计意图:让学生说说自己熟悉的变化过程,并确定其变量和常量,体会并初步用数量描述变化过程.(五)拓展思考,深化认识试一试,你能确定下列变化过程中的变量吗?(1)小敏长高了;(2)在汤中加水,汤变淡了;(3)小狗越来越可爱了.师生活动:学生发现这些问题中没有现成的量,尝试用数量描述.其中(1)(2)可用数量描述,而(3)不能用数量描述.(1)中可以假设小敏的身高为y,年龄为x,它们都是变量,没有常量;(2)中可以假设原来有汤a kg,含盐b kg,加水x kg,含盐比率为y(表示咸淡),则变量为y,x,常量为a,b.设计意图:让学生尝试对一些变化过程进行数量描述,在用数量描述变化过程中体会变量的含义,有些变化过程中没有常量.同时通过反例说明并不是所有的变化过程都能用变量表示.(六)回顾小结运动变化普遍存在于我们的生活中,通过学习,我们初步考察了运动变化的过程,引进了描述变化特征的数量——变量.1.什么叫变量?什么叫常量?2.你能举出实际生活中运动变化的例子,并指出其中的变量和常量吗?(七)布置作业1.教科书第71~72页练习题;2.举出三个运动变化的实例,说出其中的变量和常量.六、目标检测1.在某一变化过程中,___叫变量;__________叫常量.设计意图:考查变量和常量的意义.2.指出下列变化过程中的变量和常量:(1)自来水龙头平均每秒出水0.5 kg,水龙头开x s,出水y kg;(2)竖直向上抛出一颗石子直到落地为止,抛出t s时,石子离地面高度为h m;(3)移动电话月租费20元,市内通话费0.3元/min,市内月通话t min,应付费y元.设计意图:考查能否在具体问题中辨别变量和常量.3.试一试,用变量表示下列变化过程:(1)将一壶冷水烧开,水温越来越高;(2)食物放在冰柜中冷冻直到冻好为止,食物越来越冷.设计意图:考查用变量描述变化过程.参考答案:1.数值发生变化的量;数值始终不变的量.2.(1)变量:水龙头开的时间t(单位:s)和出水量y(单位:kg),常量:平均每分钟出水0.5 kg;(2)变量:抛出后的时间t(单位:s)和石子离地高度h(单位:m),没有常量;(3)变量:市内月通话时间t(单位:min)和应付费y(单位:元),常量:月租费20元,每分市内通话费0.3元.3.(1)变量:水温W(单位:C)和烧水的时间t(单位:min);常量:每分水温平均升高的度数n;(2)变量:食物的温度W(单位:C)和冷冻时间t(单位:min);常量:每分食物温度平均降低的度数k(单位:C).3。
初中变量和常量的概念教案
初中变量和常量的概念教案1. 让学生理解变量和常量的概念,掌握它们之间的区别和联系。
2. 培养学生从实际问题中抽象出变量和常量的能力,感受数学与生活的紧密联系。
3. 培养学生运用变量和常量解决实际问题的能力,提高学生的数学应用意识。
二、教学内容1. 变量和常量的定义及其区别和联系。
2. 实际问题中变量和常量的应用。
三、教学重难点1. 掌握变量和常量的概念,能够从实际问题中识别变量和常量。
2. 理解变量和常量在实际问题中的作用,能够运用它们解决实际问题。
四、教学方法1. 采用情境教学法,让学生在实际问题中感受变量和常量的存在。
2. 采用合作学习法,让学生通过讨论、交流,共同探讨变量和常量的特点和应用。
3. 采用引导发现法,引导学生从实际问题中发现变量和常量,培养学生的问题意识。
五、教学过程1. 导入:通过展示一幅图,让学生观察图中的变化,引出变量和常量的概念。
2. 新课:介绍变量和常量的定义,讲解它们之间的区别和联系。
3. 实例分析:给出几个实际问题,让学生识别其中的变量和常量,并探讨它们的运用。
4. 小组讨论:让学生分组讨论,总结变量和常量的特点,以及如何运用它们解决实际问题。
5. 总结:对变量和常量的概念进行归纳总结,强调它们在数学和生活中的重要性。
6. 练习:布置一些练习题,让学生巩固所学内容,提高运用变量和常量解决实际问题的能力。
七、教学反思通过本节课的教学,学生应该能够理解变量和常量的概念,掌握它们之间的区别和联系。
在实际问题中,学生应能够识别变量和常量,并运用它们解决实际问题。
同时,学生应感受到数学与生活的紧密联系,提高数学应用意识。
在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生从实际问题中发现变量和常量。
此外,教师还应注重培养学生的合作学习能力,鼓励学生积极参与讨论,提高问题意识。
总之,本节课的教学目标是让学生掌握变量和常量的概念,培养学生运用它们解决实际问题的能力。
变量与常量教案
变量与常量教案【篇一:常量与变量教案doc】5.1 常量和变量〖教学目标〗1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量和变量。
〖教学重点与难点〗教学重点:常量和变量的概念。
教学难点:快递费范例情境比较复杂,是本节教学的难点。
〖教学过程〗一、新课引入乌鸦喝水视频播放。
聪明的乌鸦认识到:1、瓶口的大小不可改变,水的量也不可改变;2、但瓶中水的高度是可以改变的,投的石块越多则水面就越高。
当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。
二、合作交流,探求新知:1、请讨论下面的问题:r=s=r=s=r=s=r=s=cm……在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?(2)假设钟点工的工资标准为20元/时,设工作时数为t,应得工资额为m,则m =20t取一些不同的t的值,求出相应的m的值:t=m=t=m=t=m=t= m=…… 在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?设问:一个量变化,具体地说是它的什么在变?什么不变呢?引导学生观察发现:量的数值变与不变。
21世纪教育网2、变量与常量的概念形成:及时加以巩固,以老师骑车上班为例,在速度,时间和路程中,哪些是变量,哪些是常量?让学生自己总结出判断变量常量的小方法:常量与变量必须存在与一个变化过程中。
判断一个量是常量还是变量,需这两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况。
3、巩固概念:(1)某水果店橘子的单价为 4.5元/千克,记买 k 千克橘子的总价为y 元.请说出其中的变量和常量.(3)声音在空气中传播的速度与温度之间有关系.说出其中的常量与变量. 考考你设a,b两城市间的铁路路程为s,列车行驶的平均速度为v,驶完这段路所st=需的时间为 t(不包括中途停车的时间),则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§19.1 变量与函数(一)
教学目标
1.认识变量、常量.
2.能使用函数概念判断两个量之间的关系是否是函数关系.
教学重点
1.变量、常量.
2.函数的概念.
教学难点
函数的概念.
教学过程
Ⅰ.创设情境,导入新课
假设在这个游戏里,声音强度超过一定分贝时,每增加一分贝,音符跳动上升2厘米。
1.声音的强度越高,跳动的高度越____.
2.说明在这一个变化过程中,随着声音x 的变化,相应的高度y 也随之______.
3.在这个变化中有没有量是不变的?
[活动一]
1.购买单价为每本10元的书籍,付款总金额y 元,购买本数x 本.问:变量是______,常量是____.
2.汽车以60千米/时的速度匀速行驶,在时间t 内行驶的路程是s ,其中的变量是________ ,常量是_____ .
3.一根蜡烛原长a 厘米,点燃后燃烧时间为t (分钟),所剩余蜡烛的长为y (厘米),其中的变量是( )
A.a,y
B.t,y,a
C.t,y
D.a
注意:变量一般用________表示,常数是________.
[活动二]
1. 指出下列关系式中的变量与常量:
(1) y = 5x -6; (2) y= ; (3) y= 4x 2+5x -7; (4) S = πr 2
Ⅱ.探究创新
假设在这个游戏里,声音强度超过30分贝时,每增加1分贝,音符跳动上升2厘米。
若用y 表示音符的高度,用x 表示声音的强弱。
(1)说明在这一个变化过程中,随着声音x 的变化,相应的高度y 也随之______.
(2)当x 取定某一个分贝时,有_____(唯一或不唯一)的高度与之对应。
(3)在这一个变化过程中,x 与y 之间的关系是______.
观察例题和黑板上的式子,式子中变量存在怎样的关系?
[活动三]
讨论:根据函数概念你能判断一种关系是否函数关系吗?如何判断?再根据生活实际举出一个函数关系。
x 6
[活动四]
思考:y=±
式子是y 关于x 的函数吗?
Ⅲ.随堂练习
1.下列各题中,哪些是函数关系?哪些不是函数关系?
(1)匀速走过的路程和时间;
(2)在平静的湖面上投入一粒石头,泛起的波纹的周长与半径;
(3)正方形的面积和梯形的面积;
(4)圆的周长和圆的面积.
2.判断下列各式是否是y 关于x 的函数:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) . 3.判断下列各式是否是n 关于m 的函数:
(1) ; (2) ;
(3) ; (4) ;
Ⅳ.课时小结
1.确定事物变化中的变量与常量.
2.寻求变量间存在的规律.
3.函数的概念
Ⅴ.课后作业
1、 课后相关习题.
x x y =()11≥-±=x x y 2x y =()
02≥=x x y ()331≠-=x x y ()0≥=x x y 13+=n m ()33
6≠-=n n m 2n m =()0≥=n n m。