小学十种常用速算与巧算方法 详
小学数学10种非常有用的乘法巧算

小学数学10种非常有用的“乘法巧算”1. 个位数是1的两位数相乘的巧算【速算口诀】:头乘头放前,头加头放中间,末尾是1,依次排列即可(头加头如果超过10要往前进1)。
例子:(1)41×21①4×2=8②4+2=6③8-6-1④41×21=861(2)51*61①5×6=30②5+6=11(1进位,与前30相加得31)③31-1-1 ④51×61=31112. 个位数都是9的两位数相乘的巧算【速算口诀】:头数各加1 之后相乘再乘10,再减去两头数加1后的和,得数后面再放1。
例子:(1)49×59①4+1=5②5+1=6③5×6×10=300 ④5+6=11⑤300-11=289⑥49×59=2891(2)69×89①6+1=7 ②8+1=9③7×9×10=630 ④7+9=16⑤630-16=614⑥69×89=61413. 十位数都是1的两位数相乘的巧算(即十几乘十几)【速算口诀】:头乘头是高位积,尾加尾是中积,尾乘尾是末尾的积,最后依次排列即可(遇到满10要进位)。
例子:(1)12×14①1×1=1②2+4=6③2×4=8④1-6-8⑤12×14=168(2)15×19①1×1=1 ②5+9=14(1进位,与头1相加头则变为2)③5×9=45(4进位,与前4相加变为8)④2-8-5⑤15×19=2854. 十位数都是9的两位数相乘的巧算【速算口诀】:100先减前数,得数再被后数减的差为前面两个积。
100减大家,结果相互乘得数为后面两个积,结果为一位数的前面补0,依次排列起来即可。
例子:(1)92×95①100-92=8②95-8=87③100-95=5 ④8×5=40⑤92×95=8740(2)96×98①100-96=4②98-4=94③100-98=2④4×2=08⑤96×98=94085. 首数相同,尾数之和为10的两位数乘两位数的巧算【速算口诀】:头乘“头加1”得前面两个积,尾乘尾得后面两个积,两数之积是一位数的前面补0,再把4个数依次排列起来。
常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确.一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2。
计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90—6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+"、“—”号的混合算式中,运算顺序可改变计算:(1)45—18+19(2)45+18-19解:(1)45—18+19=45+19-18=45+(19—18)=45+1=46这样想:把+19带着符号搬家,搬到—18的前面。
(完整版)常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
速算与巧算方法完整版

速算与巧算方法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】速算与巧算一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28解:①式=(36+64)+87②式=(99+101)+136 ③式=(1361+639)+(972+28) =200+136=336 =100+87=187 =2000+1000=30003.拆出补数来先加。
例2 ①198+873 ②548+996 ③9898+203解:①式=(198+2)+(873-2)(熟练之后,此步可略) ③式=(9898+102)+(203-102) =200+871=1071 ②式=(548-4)+(996+4) =10000+101=10101=544+1000=1544二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27 ② -10解:①式= 300-(73+ 27) ②式=1000-(90+80+20+10) =1000-200=800 =300-100=2002.先减去那些与被减数有相同尾数的减数。
小学数学速算巧算

小学数学速算与巧算方法例解一、加法中的巧算速算(一)“凑整”法1、互补数先加法两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10, 2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100, 22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198, 87362→12638,…例:53+36+47 = 53+47+36 = 136巧算下面各题:36+87+64 99+136+101 1361+972+639+282、补数来先加后减法例:96+15 = (96+4) + (15-4) = 100+11 = 111巧算下列各题52+69 63+18+19 28+28+28188+873 548+996 9898+203(二)找基准数法例:23+20+19+22+18+21 =(20+3)+ 20 +(20-1)+(20+2)+ (20-2)+(20+1)= 20+20+20+20+20+20+3-1+2-2+1 = 120 + 3 = 123巧算下列各题37+42+39+40+38+41 102+100+99+101+98 209+213+210+208+212+211(三)等差数列求和法相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5, 1,3,5,7,9 3,6,9,12,15 4,8,12,16,201. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,例: 1+3+5+7+9 = 中间数是5 共有5个数 5×5=25巧算下列各题2+4+6+8+10 3+6+9+12+15 4+8+12+16+201+2+3+4+5+6+7+8+9 102+100+99+101+982. 等差连续数的个数是偶数时,它们的和等于最小数与最大数之和乘以个数的一半,例:1+2+3+4+5+6+7+8+9+10= 共10个数,个数的一半是5,最小数是1,最大数是10.(1+10)×5=11×5=55巧算下列各题23+20+19+22+18+21 3+5+7+9+11+13+15+172+4+6+8+10+12+14+16+18+20 37+42+39+40+38+41二、减法中的巧算(一).把几个互为“补数”的减数先加起来,再从被减数中减去。
速算与巧算——精选推荐

速算与巧算速算与巧算(⼀)加减法中的巧算⽅法:1、运⽤运算律和运算性质;2、凑整;3、拆⼩补⼤;4、找准基数;5、数列求和等等。
练习:1、147+369+353+631 32+81+157+19+682、852-39-153-161 5613-(613+261)-2393、656-289+144-111 745+(672-525)-5724、537-(543-163)-57 756-576+376+2445、659+427-727-159 1256+125+875-2566、9998+3+99+998+3+9 9+99+999+9999+999997、75+86+83+72+78+80+81+79+878、1+2+3+…+9+10+9+…+3+2+1速算与巧算⼆乘除法的巧算主要靠乘法的运算律和除法的运算性质,并进⾏适当的扩展,使计算更灵活、合理;做到算得快、准。
练习:1、125×25×8×4 125×16×52、36×98 56×2013、4400÷25÷4÷11 236+1800÷(9×25)4、720-198×25÷99×4 12000÷125+325÷255、56×165÷7÷11 123×456÷789÷456×789÷1237、9999×2222+3333×3334 54+99×99+458、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)和差问题1、和差问题基本模式:已知两个数的和与差,求两个数。
2、和差问题的基本关系式:(和+差)÷2=较⼤数(和-差)÷2=较⼩数3、解题的关键要找准两个数的和与差。
小学数学速算巧算

小学数学速算巧算速算是指利用数与数之间的特殊关系进行较快的加减乘除运算。
速算是数学学习中的一项重要技能,能够帮助学生更快速、准确地完成计算,提高数学成绩。
在小学数学学习中,掌握速算技巧对于学生的数学能力提升非常重要。
一、乘法速算乘法速算是指利用乘法口诀和数字规律进行快速计算。
以下是几个常用的乘法速算技巧:1、头同尾合十法:这种方法适用于头数相同,尾数相加等于10的两个数相乘。
例如:27×23=621(7×9=63),38×32=1216(4×8=32)。
2、头差尾补法:这种方法适用于头数相差为1,尾数相乘后再加上一个数能够凑成10的两个数相乘。
例如:46×44=2024(4×6=24),27×23=621(3×7=21)。
3、头同尾补法:这种方法适用于头数相同,尾数相差为1的两个数相乘。
例如:67×63=4221(6×7=42),48×42=2016(5×8=40)。
4、头尾互补法:这种方法适用于头数和尾数互补的两个数相乘。
例如:73×37=2711(7×3=21),88×82=7136(9×8=72)。
二、加法速算加法速算是指利用特殊的加法规律进行快速计算。
以下是几个常用的加法速算技巧:1、补数加法:这种方法适用于两个加数的补数相加。
例如:98+89=187(9+8=17),76+64=140(7+6=13)。
2、分组凑整法:这种方法适用于两个加数的尾数相加为整十或整百的情况。
例如:34+66=100(3+6=9),45+55=100(5+5=10)。
3、基准数法:这种方法适用于一组数相加,其中有几个相同的数或者相邻的数。
例如:50+55+58+59+62+65=(50+65)×6÷2=240。
三、减法速算减法速算是指利用特殊的减法规律进行快速计算。
小学生注意:10种最常见的速算与巧算方法!请收藏

小学生注意:10种最常见的速算与巧算方法!请收藏
数学速算法指利用数与数之间的特殊关系进行较快的加减乘除运算,这种运算方法称为速算法、心算法。
巧算或简算包括乘法,除法的分配律,结合律,交换律,加法交换、结合等,这需要在某个算式中找出,找到了可以应用的定律,及每个数的分解数,就可以巧妙地算出答案了。
让孩子学会速算和巧算,不仅可以提高孩子做题的准确度,更能让孩子的大脑反应明锐!今天,我特意整理了十种孩子们在学习过程中最常见的速算和巧算方法,希望各位家长抽空让孩子学习学习!
一、顺逆相加:用“顺逆相加”算式可求出若干个连续数的和。
二、凑整巧算:用“凑整方法”,常常能使计算变得比较简便、快速。
三、恒等变形:是一种重要的思想和方法,也是一种重要的解题技巧。
四、拆数加减:在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往
往可大大地简化运算。
(1)拆成两个分数相减。
例如:
(2)拆成两个分数相加。
例如:
五、先借后还:“先借后还”是一条重要的数学解题思想和解题技巧。
六、由小推大:一种数学思维方法,也是一种速算、巧算技巧。
七、巧妙试商:除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。
八、同分子分数加减
九、个数折半:下面的几种情况下,可以运用“个数折半”的方
法, 巧妙地计算出题目的得数
十、两分数相除:有些分数相除,可以采用以下的巧算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丁继葳
六、由小推大:一种数学思维方法,也是一种速算、巧算技巧。
遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。
例如:
(1)计算下面方阵中所有的数的和。
这是个“100×100”的大方阵,数目很多,关系较为复杂。
不妨先化大为小,再由小推大。
先观察“5×5”的方阵,如下图(图4.1)所示。
容易看到,对角线上五个“5”之和为25。
这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现,这五个斜行,每行数之和都是25。
所以,“5×5”方阵的所有数之和为25×5=125,即53=125。
很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。
七、巧妙试商:除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。
(1)用“商五法”试商。
当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。
如70÷14=5,125÷25=5。
当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。
“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。
例如:1248÷24=52,2385÷45=53
(2)同头无除商八、九。
“同头”指被除数和除数最高位上的数字相同。
“无除”仍指被除数前两位不够除。
这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。
例如:5742÷58=99,4176÷48=87。
(3)用“商九法”试商。
当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10 倍时,可以一次定商为“9”。
一般地说,假如被除数为m,除数为n,只有当9n≤m<10n 时,n 除m 的商才是9。
同样地,10n≤m+n<11n。
这就是我们上述做法的根据。
例如:4508÷49=92,6480÷72=90。
(4)用差数试商。
当除数是11、12、13…………18 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。
若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或
6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为5。
若不准确,只要调小1 就行了。
例如:1476÷18=82(18 与14 差4,初商为8,经试除,商8正确);1278÷17=75(17 与12 的差为5,初商为7,经试除,商7 正确)。
为了便于记忆,我们可将它编成下面的口诀:
差一差二商个九,差三差四八当头;
差五差六初商七,差七差八先商六;
差数是九五上阵,试商快速无忧愁。
八、同分子分数加减
同分子分数的加减法,有以下的计算规律:
分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如:
(注意:分数减法要用减数的原分母减去被减数的原分母。
)
九、个数折半:下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方
(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折
半法”求得数。
比方
十、两分数相除:有些分数相除,可以采用以下的巧算方法。
(1)分子、分母分别相除。
在个别情况下,分数除法可沿用整数除法的做法:用分子相除的商作分子,用分母相除的商作分母。
不过,这只有在被除数的分子、分母,分别是除数的分子、分母的整数倍数的情况下,计算才比较简便。
例如:
(2)分母相除,一次得商。
在两个带分数相除的算式中,当被除数和除数的整数与分母调换了位置,而它们的分子又相同时,根据分数除法法则,只要用原除数的分母除以被除数的分母,所得的数就是它们的商。
例如:。