高三数学一轮复习 对数与对数函数2(教师)导学案 新人教
(新人教)高三数学第一轮复习教案2.8.2对数函数(2)

一.课题:对数函数(2)——对数函数性质的应用二.教学目标:1.复习巩固对数函数的图象和性质;2.会利用对数函数的性质(单调性)比较两个对数值的大小。
三.教学重、难点:对数函数性质的灵活运用。
四.教学过程:(一)复习:1.对数函数的概念;2.根据对数函数的图象,叙述对数函数的性质。
(二)新课讲解:例1.比较下列各组数中两个值的大小:(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . 解:(1)对数函数2log y x =在(0,)+∞上是增函数,于是2log 3.4<2log 8.5;(2)对数函数0.3log y x =在(0,)+∞上是减函数,于是0.3log 1.8>0.3log 2.7;(3)当1a >时,对数函数log a y x =在(0,)+∞上是增函数,于是log 5.1a <log 5.9a ,当1o a <<时,对数函数log a y x =在(0,)+∞上是减函数,于是log 5.1a >log 5.9a .说明:本例是利用对数函数的增减性比较两个对数的大小的,底数与1的大小关系不明确时,要分情况对底数进行讨论来比较两个对数的大小。
例2.比较下列比较下列各组数中两个值的大小:(1)6log 7,7log 6; (2)3log π,2log 0.8;(3)0.91.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3.解:(1)∵66log 7log 61>=,77log 6log 71<=,∴6log 7>7log 6;(2)∵33log log 10π>=,22log 0.8log 10<=,∴3log π>2log 0.8.(3)∵0.901.1 1.11>=,1.1 1.1log 0.9log 10<=,0.70.70.70log 1log 0.8log 0.71=<<=,∴0.91.1>0.7log 0.8> 1.1log 0.9.(4)∵3330log 5log 6log 7<<<, ∴5log 3>6log 3>7log 3.说明:本例是利用对数函数的增减性比较两个数的大小,当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较上述两个对数的大小。
高三数学一轮复习第10课时对数函数学案

高三数学一轮复习 第10课时 对数函数学案【学习目标】1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.理解对数函数的概念;理解对数函数的单调性. 【课本导读】1.对数(1)对数的定义 . (2)对数恒等式①Na a log = (a >0且a ≠1,N >0).②log a a b= (a >0,且a ≠1,b ∈R ). (3)对数运算法则(a >0且a ≠1,M >0,N >0)①log a (M ·N )= ;②log a M N= ;③log a M n= . (4)换底公式log b N =log a Nlog a b(a >0且a ≠1,b >0且b ≠1,N >0).推论:①log a b ·log b a = ; ②log a b ·log b c = ;③n a b n log = ; ④na b m log = .2.对数函数(1)对数函数的概念函数y =log a x (a >0且a ≠1)叫做对数函数. (2)对数函数的图像(3)对数函数的性质①定义域为 ,值域为 .②恒过定点(1,0). ③a >1时,y =log a x 在(0,+∞)上为 ;0<a <1时,y =log a x 在(0,+∞)上为 . ④当a >1,x >1时,log a x 0;当a >1,0<x <1时,log a x 0; 当0<a <1,0<x <1时,log a x 0;当0<a <1,x >1时,log a x 0. 【教材回归】1.(课本习题改编)写出下列各式的值:(1)log 26-log 23=____;(2)lg5+lg20=_____;(3)log 53+log 513=____;(4)log 35-log 315=____.2.(1)化简log 89log 23=____________.(2)已知9432=a (a >0),则log 23a =________.(3)若2a =5b=10,则1a +1b =________. 3.对于a >0且a ≠1,下列结论正确的是 ()①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②④4.已知a =21.2,b =(12)-0.8,c =2log 52,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 5.函数y =log a (x -1)+2(a >0,a ≠1)的图像恒过一定点是________. 【授人以渔】题型一 对数式的计算例1 计算下列各式:(1)lg2+lg5-lg8lg50-lg40;(2)log 34273log 5[2log 3210log 21727)33(4--]; (3)已知log 23=a ,3b=7,求212log 73的值.探究1 在对数运算中,要注意以下几个问题:(1)在化简与运算中,一般先用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并.(2)a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中要注意互化.思考题1 (1)|1+lg0.001|+lg 213-4lg3+4+lg6-lg0.02的值为________.(2)(log 32+log 92)·(lo g 43+log 83)= .题型二 对数函数的图像及应用例2 比较下列各组数的大小:(1)log 23.4,log 28.5; (2)log 67,log 76; (3)m =0.95.1,n =5.10.9,p =log 0.95.1;(4)若0<a <b <1,试确定log a b ,log b a ,log 1ba ,log 1ab 的大小关系.探究2 (1)比较两个指数幂或对数值大小的方法:①分清是底数相同还是指数(真数)相同;②利用指数、对数函数的单调性或图像比较大小; ③当底数、指数(真数)均不相同时,可通过中间量过渡处理.(2)多个指数幂或对数值比较大小时,可对它们先进行0,1分类,然后在每一类中比较大小.思考题2 (1)(2011·天津)已知a =log 23.6,b =log 43.2,c =log 43.6,则 ( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b (2)已知x =ln π,y =log 52,x =21e ,则 ( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x (3)(浙江卷改编)比较m >n 时,log m 4与log n 4.题型三 对数函数的性质例3 (1)作出函数y =log 2|x +1|的图像,由图像指出函数的单调区间,并说明它的图像可由函数y =log 2x 的图像经过怎样的变换而得到.(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是 ( )A .(0,1)B .(1,2)C .(1,2]D .(0,12)探究 3 (1)作一些复杂函数的图像,首先应分析它可以从哪一个基本函数的图像变换过来.一般是先作出基本函数的图像,通过平移、对称、翻折等方法,得出所求函数的图像.(2)对于较复杂的不等式有解或恒成立问题,可借助函数图像解决,具体做法是:对不等式变形,不等号两边对应两函数.在同一坐标系下作出两函数图像,比较当x 在某一范围内取值时图像的上下位置及交点的个数,来确定参数的取值或解的情况.思考题3 (1)已知图中曲线C 1、C 2、C 3、C 4是函数y =log a x 的图像,则曲线C 1、C 2、C 3、C 4对应的a 的值依次为 ( )A .3、2、13、12B .2、3、13、12C .2、3、12、13D .3、2、12、13(2)(2013·衡水调研卷)已知函数f (x )=(13)x-log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1) A .恒为负值 B .等于0 C .恒为正值 D .不大于0 ( )题型四 对数函数的综合应用例4 (1)求f (x )=log 12(3-2x -x 2)的单调区间.(2)已知函数f (x )=log a x (a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f (x )|≥1成立,试求a 的取值范围.探究4 关于形如log a f (x )的函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )[f (x )>0]的单调性,当a >1时相同,当0<a <1时相反.思考题4 是否存在实数a ,使得f (x )=log a (ax 2-x )在区间[2,4]上是增函数?若存在,求出a 的范围;若不存在,说明理由.【本课总结】指数函数、对数函数在高中数学中占有重要位置,搞清这部分基础知识相当重要.(1)搞清指数函数与对数函数的关系:即二者互为反函数,因此,图像关于直线y =x 对称,它们在各自的定义域内增减性是一致的.即a >1时都为增函数,0<a <1时都为减函数.(2)比较指数函数、对数函数类型的数值间的大小关系是高考中常见题型.具体做法是:①底数相同指数不同时,要考虑指数函数的单调性;②底、指数都不同时要借助于中间值(如0或1)再不行可考虑商值(或差值)比较法;③对数函数型数值间的大小关系,底相同者考虑对数函数的单调性,底不同时可考虑中间值(如0或1),或用换底公式化为同底.最后可考虑比较法. 【自助餐】1.已知函数xx f ⎪⎭⎫⎝⎛=21)(的图象与函数)(x g y =的图象关于直线x y =对称,令)1()(x g x h -=,则关于)(x h 有下列命题:①)(x h 的图象关于原点对称;②)(x h 为偶函数;③)(x h 的最小值为0;④)(x h 在上为减函数.其中正确命题的序号为 . 2.已知函数)3(log )(ax x f a -=.(1)当[]2,0∈x 时,函数)(x f 恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数)(x f 在区间[]2,1上为减函数,并且最大值为1?如果存在,试求出a 的值.3.已知集合}321≤≤⎩⎨⎧=x x P ,函数)22(log )(22+-=x ax x f 的定义域为Q . (1)若(]3,2,32,21-=⎪⎭⎫⎢⎣⎡=Q P Q P ,求实数a 的值;(2)若φ=Q P ,求实数a 的取值范围。
高考数学一轮复习 第2章 函数、导数及其应用 2.6 对数与对数函数学案 理-人教版高三全册数学学案

2.6 对数与对数函数[知识梳理]1.对数2.对数函数的概念、图象与性质3.反函数概念:当一个函数的自变量和函数值成一一对应时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.4.对数函数与指数函数的关系指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数. (1)对数函数的自变量x 恰好是指数函数的函数值y ,而对数函数的函数值y 恰好是指数函数的自变量x ,即二者的定义域和值域互换.(2)由两函数的图象关于直线y =x 对称,易知两函数的单调性、奇偶性一致. 特别提示:底数a 对函数y =log a x (a >0且a ≠1)的图象的影响(1)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.(3)作直线y =1与所给图象相交,交点的横坐标为该对数函数的底数,由此可判断多个对数函数底数的大小关系.[诊断自测] 1.概念思辨(1)若log a M 2=log a N 2,则M =N ;若M =N ,则log a M 2=log a N 2.( ) (2)当x >1时,若log a x >log b x ,则a <b .( ) (3)函数f (x )=lgx -2x +2与g (x )=lg (x -2)-lg (x +2)是同一个函数.( ) (4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1.( )答案 (1)× (2)× (3)× (4)√ 2.教材衍化(1)(必修A1P 72例8)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c 答案 D解析 解法一:由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c ,故选D.解法二:由对数运算法则得a =1+log 32,b =1+log 52,c =1+log 72,∵log 27>log 25>log 23>0,∴1log 27<1log 25<1log 23,即log 72<log 52<log 32,故a >b >c .故选D.(2)(必修A1P 75T 11)(lg 5)2+lg 2·lg 50=________. 答案 1解析 原式=(lg 5)2+lg 2·[lg (2×52)] =(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1. 3.小题热身(1)(2017·衡阳八中一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9 答案 C解析 ∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C.(2)(2018·郑州模拟)已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则f (x )=a x与g (x )=-log b x 的图象可能是( )答案 B解析 ∵lg a +lg b =0,∴a =1b ,又g (x )=-log b x =log 1bx =log a x (x >0),∴函数f (x )与g (x )的单调性相同,故选B.题型1 对数的运算典例1 (2017·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b的值为( )A .36B .72C .108 D.172用转化法.答案 C解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k,所以1a +1b =a +b ab=6k2k -23k -3=108.故选C. 典例2(2018·镇江模拟)已知log 189=a,18b=5,求log 3645. 将指数式统一为对数式.解 因为log 189=a,18b=5,所以log 185=b ,于是 log 3645=log 1845log 1836=log 18(9×5)1+log 182=a +b 1+log 18189=a +b 2-a.方法技巧对数运算的一般思路1.对于指数式、对数式混合型条件的化简求值问题,一般可利用指数与对数的关系,将所给条件统一为对数式或指数式,再根据有关运算性质求解.见典例2.2.在对数运算中,可先利用幂的运算性质把底数或真数变形,化成分数指数幂的形式,使幂的底数最简,然后运用对数的运算性质、换底公式,将对数式化为同底数对数的和、差、倍数运算.对于连等式,注意设等式为k ,见典例1.冲关针对训练1.已知3a =4b=12,则1a +1b=( )A.12 B .1 C .2 D. 2 答案 C解析 因为3a=4b=12, 所以a =log 312,b =log 412, 1a=log 123,1b=log 124,所以1a +1b=log 123+log 124=log 1212=2.故选C.2.(log 32+log 92)·(log 43+log 83)=________. 答案 54解析 原式=⎝ ⎛⎭⎪⎫log 32+12log 32·⎝ ⎛⎭⎪⎫12log 23+13log 23=32log 32·56log 23=32×56=54.题型2 对数函数的图象及应用典例 (2018·长春模拟)当0<x ≤12时,4x<log a x ,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2) 用数形结合法,排除法.答案 B解析 解法一:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,a >22,则a 的取值范围为⎝⎛⎭⎪⎫22,1.故选B.解法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除选项C 、D ;取a =12,x =12,则有4 12 =2,log 1212=1,显然4x<log a x 不成立,排除选项A.故选B.[条件探究] 若典例变为:若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,求实数a 的取值范围.解 由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a12,解得a ≥116,所以116≤a <1,即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.方法技巧利用对数函数的图象可求解的两类热点问题1.对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.见典例.冲关针对训练1.(2017·郑州一模)若函数y =a |x |(a >0且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )答案 B解析 由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图象关于y 轴对称. 因此y =log a |x |的图象应大致为选项B.故选B.2.(2017·青岛统考)已知函数g (x )=|x -k |+|x -1|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为________.答案 k ≤34或k ≥54解析 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min ,由的图象(如图)可知,当x =12时,f (x )取最大值,f (x )max =14;因为g (x )=|x -k |+|x -1|≥|x -k -(x -1)|=|k -1|,所以g (x )min =|k -1|,所以|k -1|≥14,解得k ≤34或k ≥54,故答案为k ≤34或k ≥54.题型3 对数函数的性质及应用角度1 比较对数值的大小典例 设a =log 3π,b =log 23,c =log 32,则( ) A .a >b >c B .a >c >b C .b >a >c D .b >c >a借助中间值1比较a ,b 的大小,用作商法比较b ,c大小.答案 A解析 因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a >b ,又b c =12log 2312log 32=(log 23)2>1,b >0,所以b >c ,故a >b >c .故选A.角度2 解对数不等式典例 (2017·江西名校联考)设函数f (x )=log 12 (x 2+1)+83x 2+1,则不等式f (log 2x )+f (log 12 x )≥2的解集为( )A .(0,2]B.⎣⎢⎡⎦⎥⎤12,2C .[2,+∞)D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 利用函数的奇偶性,单调性结合换元法解不等式.答案 B解析 ∵f (x )的定义域为R ,f (-x )=log 12(x 2+1)+83x 2+1=f (x ),∴f (x )为R 上的偶函数.易知其在区间[0,+∞)上单调递减, 令t =log 2x ,则log 12x =-t ,则不等式f (log 2x )+f (log 12x )≥2可化为f (t )+f (-t )≥2,即2f (t )≥2,所以f (t )≥1.又∵f (1)=log 12 2+83+1=1,f (x )在[0,+∞)上单调递减,在R 上为偶函数,∴-1≤t ≤1,即log 2x ∈[-1,1],∴x ∈⎣⎢⎡⎦⎥⎤12,2,故选B. 角度3 对数函数性质的综合应用典例 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.根据复合函数单调性求解.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 方法技巧对数函数的性质及应用问题的常见题型与解题策略1.对数型函数定义域的求解列出对应的不等式(组)求解,注意对数函数的底数和真数的取值范围.2.比较对数式的大小.①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论;②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较;③若底数与真数都不同,则常借助1,0等中间量进行比较.3.解对数不等式,形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.4.对数函数性质的应用多用在复合函数的单调性上,即求形如y =log a f (x )的复合函数的单调区间,其一般步骤为:①求定义域,即满足f (x )>0的x 的取值集合;②将复合函数分解成基本初等函数y =log a u 及u =f (x );③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y =log a f (x )为增函数,若一增一减,则y =log a f (x )为减函数,即“同增异减”.冲关针对训练1.(2018·河南模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a 答案 B解析 ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B.2.(2017·南昌调研)a >0,a ≠1,函数f (x )=log a |ax 2-x |在[3,4]上是增函数,则a 的取值范围是( )A.16≤a <14或a >1 B .a >1C.18≤a <14D.15≤a ≤14或a >1 答案 A解析 ∵a >0,a ≠1,令g (x )=|ax 2-x |( x ≠0,x ≠1a)作出其图象如右:∵函数f (x )=log a |ax 2-x |在[3,4]上是增函数,若a >1,则⎩⎪⎨⎪⎧ 12a≥4,a >1或⎩⎪⎨⎪⎧1a <3,a >1,解得a >1;若0<a <1,则⎩⎪⎨⎪⎧12a ≤3,1a >4,解得16≤a <14.故选A.题型4 指数函数、对数函数的综合应用典例1 (2018·西安模拟)设方程log 2x -⎝ ⎛⎭⎪⎫12x =0,log 12x -⎝ ⎛⎭⎪⎫12x =0的根分别为x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2≥2用数形结合法.答案 B解析 由方程log 2x -⎝ ⎛⎭⎪⎫12x =0得log 2x =⎝ ⎛⎭⎪⎫12x,log 12 x -⎝ ⎛⎭⎪⎫12x =0得log 12x =⎝ ⎛⎭⎪⎫12x,分别画出左右两边函数的图象,如图所示.由指数与对数函数的图象知:x 1>1>x 2>0,于是有log 2x 1=⎝ ⎛⎭⎪⎫12x 1<⎝ ⎛⎭⎪⎫12x 2<log 12x 2,得x 1<1x 2,所以0<x 1x 2<1.故选B.典例2 设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,log 2x ,x >0,函数y =f [f (x )]-1的零点个数为________.考虑定义域,应用分类讨论法.答案 2 解析方法技巧解指数函数与对数函数综合题的方法1.首先考虑函数的定义域.见典例2. 2.注意联想数形结合思想.见典例1. 冲关针对训练1.(2018·天津模拟)已知f (x )=ln (x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围为( )A.⎝⎛⎦⎥⎤-∞,14 B.⎣⎢⎡⎭⎪⎫14,+∞C.⎣⎢⎡⎭⎪⎫12,+∞D.⎝⎛⎦⎥⎤-∞,-12答案 B解析 ∵f (x )=ln (x 2+1)在[0,3]上单调递增,g (x )=⎝ ⎛⎭⎪⎫12x -m 在[1,2]上单调递减,∴f (x )min =f (0)=0,g (x )min =g (2)=14-m .又∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2), ∴f (x )min ≥g (x )min ,即14-m ≤0,∴m ≥14.故选B.2.设点P 在曲线y =12e x上,点Q 在曲线y =ln (2x )上,则|PQ |的最小值为( )A .1-ln 2 B.2(1-ln 2) C .1+ln 2 D.2(1+ln 2)答案 B解析 根据函数y =12e x和函数y =ln 2x 的图象可知两函数图象关于直线y =x 对称,故要求|PQ |的最小值可转化为求与直线y =x 平行且与两曲线相切的直线间的距离,设曲线y =12e x 上的切点为A (m ,n ),则A 到直线y =x 的距离的2倍即所求最小值.因为y ′=⎝ ⎛⎭⎪⎫12e x ′=12e x ,则12e m=1,所以m =ln 2,切点A 的坐标为(ln 2,1),切点到直线y =x 的距离为d =|ln 2-1|2=1-ln 22,所以2d =2(1-ln 2).故选B.1.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是( )(参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28.又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93, 故与M N最接近的是1093.故选D.2.(2018·山西模拟)函数y =ln sin x (0<x <π)的大致图象是( )答案 C解析 因为0<x <π,所以0<sin x ≤1,所以ln sin x ≤0,故选C.3.(2018·江西九江联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4]C .(-∞,4)∪[2,+∞)D .[-4,4)答案 D解析 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4),故选D.4.(2015·福建高考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.[基础送分 提速狂刷练]一、选择题1.(2018·安阳检测)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝ ⎛⎭⎪⎫1a,b B .(10a,1-b )C.⎝⎛⎭⎪⎫10a ,b +1D .(a 2,2b )答案 D解析 当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上.故选D.2.已知函数f (x )=2+log 2x ,x ∈[1,2],则函数y =f (x )+f (x 2)的值域为( )A .[4,5] B.⎣⎢⎡⎦⎥⎤4,112 C.⎣⎢⎡⎦⎥⎤4,132 D .[4,7]答案 B解析 y =f (x )+f (x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f (x )+f (x 2)有意义,必有1≤x 2≤2,得1≤x ≤2,从而4≤y ≤112.故选B.3.(2018·太原调研)已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)( )A .恒为负值B .等于0C .恒为正值D .不大于0答案 C 解析4.(2017·河南二模)函数y =2xln |x |的图象大致为( )答案 B 解析 函数y =2x ln |x |的定义域为{x |x ≠0且x ≠±1},故排除A ;∵f (-x )=-2xln |x |=-2xln |x |=-f (x ), ∴排除C ;当x =2时,y =4ln 2>0,故排除D.故选B. 5.(2015·湖南高考)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 答案 A解析 解法一:函数f (x )的定义域为(-1,1),任取x ∈(-1,1),f (-x )=ln (1-x )-ln (1+x )=-f (x ),则f (x )是奇函数.当x ∈(0,1)时,f ′(x )=11+x +11-x =21-x 2>0,所以f (x )在(0,1)上是增函数.综上,故选A.解法二:同解法一知f (x )是奇函数. 当x ∈(0,1)时,f (x )=ln1+x 1-x =ln 2-(1-x )1-x =ln ⎝ ⎛⎭⎪⎫21-x -1.∵y =21-x (x ∈(0,1))是增函数,y =ln x 也是增函数,∴f (x )在(0,1)上是增函数.综上,故选A.6.(2018·包头模拟)已知函数f (x )=log 12 (x 2-ax -a )在⎝⎛⎦⎥⎤-∞,-12上是增函数,则实数a 的取值范围是( )A .[-1,+∞)B.⎣⎢⎡⎭⎪⎫-1,12C.⎣⎢⎡⎦⎥⎤-1,12 D .(-∞,-1]答案 B解析 f (x )=log 12 (x 2-ax -a )在⎝⎛⎦⎥⎤-∞,-12上是增函数,说明内层函数μ(x )=x2-ax -a 在⎝⎛⎦⎥⎤-∞,-12上是减函数且μ(x )>0成立,只需对称轴x =a 2≥-12且μ(x )min =μ⎝ ⎛⎭⎪⎫-12>0,∴解得a ∈⎣⎢⎡⎭⎪⎫-1,12,故选B.7.(2017·安徽安庆二模)已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 12 4),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案 B解析 函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)上为增函数,∵b =f (log 12 4)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a ,故选B.8.(2017·广东模拟)已知函数f (x )=(e x-e -x)x ,f (log 5x )+f (log 15 x )≤2f (1),则x的取值范围是( )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5 D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 答案 C解析 ∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x )(x ∈R ),∴函数f (x )是偶函数. ∵f ′(x )=(e x-e -x)+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1),∴|log 5x |≤1,∴15≤x ≤5.故选C.9.(2017·河北五校质监)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52 D.92答案 D解析 由函数y =log a (x +3)-1(a >0,且a ≠1)的解析式知:当x =-2时,y =-1,所以点A 的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,又m >0,n >0,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m=n =23时等号成立,所以2m +1n 的最小值为92,故选D.10.(2017·江西红色七校二模)已知函数f (x )=ln e x e -x ,若f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+…+f ⎝⎛⎭⎪⎫2016e 2017=504(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9 D .12 答案 B解析 ∵f (x )+f (e -x )=lne x e -x +ln e (e -x )x =ln e 2=2,∴504(a +b )=f ⎝ ⎛⎭⎪⎫e 2017+f⎝ ⎛⎭⎪⎫2e 2017+…+f⎝ ⎛⎭⎪⎫2016e 2017=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+f ⎝ ⎛⎭⎪⎫2015e 2017+…+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫e 2017=12×(2×2016)=2016,∴a +b =4,∴a 2+b 2≥(a +b )22=422=8,当且仅当a =b =2时取等号.∴a 2+b 2的最小值为8.故选B. 二、填空题11.(2018·禅城区月考)已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是________.答案 [22,+∞)解析 画出y =|lg x |的图象如图:∵0<a <b ,且f (a )=f (b ),∴|lg a |=|lg b |且0<a <1,b >1,∴-lg a =lg b ,∴ab =1,∴2a +b ≥22ab =2 2.当2a =b 时等号成立, ∴2a +b ≥2 2.12.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 显然x >0,∴f (x )=log 2x ·log 2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当x =22时,取“=”,故f (x )min =-14. 13.(2017·山西质检)已知函数f (x )=⎩⎪⎨⎪⎧ |2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.14.(2017·辽宁沈阳一模)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=________.答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴m <1<n ,-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13,从而n =3,此时log 3n =1,符合题意,则n m =3÷13=9. 若log 3n =2,则n =9,从而m =19,此时-log 3m 2=4,不符合题意.三、解答题15.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解16.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0且a ≠1)的最大值是1,最小值是-18,求a 的值. 解。
高三数学一轮复习 对数与对数函数2(教师)导学案 新人教版

高三数学一轮复习 对数与对数函数2(教师)导学案 新人教版一、学习目标:(1)对数函数性质及其应用。
(2)与对数函数有关的复合函数的性质二、自主学习:1. 函数()lg()(10)x x f x a b a b =->>>,则()0f x >的解集为{|1}x x >的充要条件是( C )A .1a b >+B .1a b <+C .1a b =+D .1b a =+2. 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a=( D ) A .2 B .2 C .22 D .43. 已知0log log ,10<<<<n m a a a ,则( A )A.1<n <mB. 1<m <nC.m <n <1D. n <m <14.已知213()log [3(1)]f x x =--单调减区间为:(13,1]-,值域为:[-1,+∞)5.函数y =log 21(x 2-ax +3a )在[2,+∞)上是减函数,则a 的取值范围是( B )A .(-∞,4)B .(-4,4]C .(-∞,-4)∪[2,+∞]D .[-4,4]三、合作探究:例1.见《优化设计》P26例2变式训练:比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5小结与拓展:比较对数式的大小常用的有三种:(1)当底数相同时可直接利用对数函数的单调性比较;(2)当底数不同,真数相同时,可转化为同底或利用对数函数图像比较;(3)当底数不同,真数也不相同时,则可利用中间量比较例2.已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0.所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数,∴对于任意x ∈[3,+∞),有f(x)≥log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立.只要log a 3≥1=log a a 即可,∴1<a ≤3.当0<a <1时,对于x ∈[3,+∞),有f(x)<0,∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∞)上为减函数,∴-f (x )在[3,+∞)上为增函数.∴对于任意x ∈[3,+∞)都有|f(x)|=-f(x)≥-log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立,只要-log a 3≥1成立即可,∴log a 3≤-1=log a a 1,即a 1≤3,∴31≤a <1.综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1).变式训练:见《优化设计》例3例3:《优化设计》P26例5四、课堂总结:1.对数函数的定义:一般地,把函数)1,0(log ≠>=a a xy a 叫做对数函数. 函数对数函数:log a y x = 底数范围1a > 01a <<图象性质 定义域:定义域: 值 域: 值 域: 过点 ,即 .当1x >时,当01x <<时,当1x >时, 当01x <<时, 是 的增函数 是 的减函数 3.同底的指数函数x y a =与对数函数log a y x =互为反函数;五、检测巩固:同学们自行完成P25“真题在线”与P29“随堂练习”试题、上交《课时训练3.5》。
人教版高中数学数学导学案 对数式与对数函数2

对数式与对数函数(2)编写 赵继森 审查 董猛学习目标1. 理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,2.了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用.学习重难点①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数模型;④了解指数函数x y a =与对数函数log a y x =互为反函数(),1a o a ≠热身训练1、若0.70.7 1.1log 0.8,log 0.8, 1.1,a b c ===则,,a b c 的大小关系是2、若函数22()log f x x =的值域是[]0,1,则x 的取值范围是3、设0,1,a a >≠函数2lg(23)()x x f x a-+=有最大值,则不等式2log (57)0a x x -+>的解集为 _________ 4. 设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 5. 已知7log 18a <,则a 的取值范围是 6.在函数()121f x x =;()22f x x =;()32x f x =;()412log f x x =四个函数中,当121x x >>时,能使()()1212122x x f x f x f +⎛⎫+<⎡⎤ ⎪⎣⎦⎝⎭成立的函数是 范例分析:例题1.函数()()()⎩⎨⎧≥<+-=1log 13822x x x ax x x f a 在R x ∈内单调递减,则a 的范围是_________.变式训练1:已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是__________变式训练2.:已知函数)且10)(3(log )(2≠>+-=a a ax x x f a 满足:对任意实数21,x x ,当221a x x ≤<时,总有()()21x f x f >,那么实数a 的取值范围是例题2.已知函数)12lg()(2++=x ax x f 。
高考数学一轮复习 2.8 对数与对数函数教案

2.8 对数与对数函数●知识梳理 1.对数(1)对数的定义:如果a b=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b=N ⇔log a N =b (a >0,a ≠1,N >0). 两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aN M=log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. ●点击双基1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是 解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25.答案:[2,25] 4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z=7y ⇒x 7z=y ,即y =x 7z.答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c B.a <c <b C.b <a <c D.c <a <b 解析:∵1<m <n ,∴0<log n m <1.∴log n (log n m )<0. 答案:D ●典例剖析【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241.答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).评述:研究函数的性质时,利用图象更直观.深化拓展已知y =log 21[a 2x+2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的取值范围?提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x>0. ∵b 2x>0,∴(b a )2x +2(b a )x-1>0. ∴(b a )x >2-1或(b a )x<-2-1(舍去).再分b a >1,b a =1,ba<1三种情况进行讨论.答案:a >b >0时,x >log ba (2-1);a =b >0时,x ∈R ;0<a <b 时,x <log ba (2-1).【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.特别提示讨论复合函数的单调性要注意定义域.●闯关训练 夯实基础1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22 C.41 D.21 解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a 1=-2得a =-21.答案:B评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1.∵a ≠0,∴a =-21.3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b=8,∴a +b =3.答案:C4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:25.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0.综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.培养能力7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 探究创新9.(2004年苏州市模拟题)已知函数f (x )=3x+k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点,∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3.∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x m+2m )min ≥3. 又x +x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +xm+2m )min =4m ,即4m ≥3.∴m ≥169.●思悟小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.●教师下载中心 教学点睛1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.拓展题例【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。
(新课标)2021版高考数学一轮总复习第二章函数第10讲对数与对数函数导学案新人教A版
第10讲 对数与对数函数【课程要求】1.理解对数的概念,掌握指数与对数的相互转化,会运用指数、对数运算法则进行有关运算.2.掌握对数函数的定义、图象和性质及其应用. 3.掌握以对数函数为载体的复合函数的有关性质.4.了解指数函数y =a x与对数函数y =log a x 互为反函数的关系(a>0且a ≠1).对应学生用书p 25【基础检测】概念辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN>0,则log a (MN)=log a M +log a N.( )(2)对数函数y =log a x(a>0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =ln 1+x1-x与y =ln (1+x)-ln (1-x)的定义域相同.( )(4)对数函数y =log a x(a>0且a ≠1)的图象过定点(1,0)且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.( )[答案] (1)× (2)× (3)√ (4)√教材改编2.[必修1p 68T 4]log 29·log 34·log 45·log 52=____________. [解析]原式=2log 23·log 34·log 45·log 52=2·lg 3lg 2·lg 4lg 3·lg 5lg 4·lg 2lg 5=2. [答案]23.[必修1p 82A 组T 6]已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为____________.[解析]∵0<a<1,b<0,c =log 1213=log 23>1,∴c>a>b.[答案]c>a>b4.[必修1p 74A 组T 7]函数y =log 23(2x -1)的定义域是__________.[解析]由log 23(2x -1)≥0,得0<2x -1≤1.∴12<x ≤1. ∴函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1. [答案]⎝ ⎛⎦⎥⎤12,1 易错提醒5.已知b>0,log 5b =a ,lg b =c ,5d=10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c[解析]由log 5b =a 知b =5a,由lg b =c 知c =lg 5a=a lg 5,由5d=10知d =log 510=lg 10lg 5=1lg 5,∴cd =a lg 5·1lg 5=a ,故选B . [答案]B6.已知a>0,a ≠1,函数y =a x与y =log a (-x)的图象可能是( )[解析]函数y =log a (-x)的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B . [答案]B 【知识要点】 1.对数概念如果a x=N(a>0,且a ≠1),那么数x 叫做以a 为底N 的__对数__,记作x =log a N ,其中a叫做对数的底数,N叫做真数,loga N叫做对数式性质对数式与指数式的互化:a x=N⇔__x=log a N__log a1=0,log a a=1,a log a N=__N__运算法则log a(M·N)=__log a M+log a N__log aMN=__log a M-log a N__log a M n=__n log a M__(n∈R)a>0,且a≠1,M>0,N>0换底公式换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)函数y=log a x(a>0,且a≠1)图象a>1 0<a<1图象特征在y轴__右侧__,过定点(1,0)当x逐渐增大时,图象是__上升__的当x逐渐增大时,图象是__下降__的性质定义域(0,+∞)值域R单调性 在(0,+∞)上是__增函数__ 在(0,+∞)上是__减函数__函数值 变化 规律当x =1时,__y =0__当x >1时,__y >0____;当0<x <1时,__y <0__ 当x >1时,__y <0__;当0<x <1时,__y >0__指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x__对称. 【知识拓展】1.换底公式的两个重要结论 (1)log a b =1log b a;(2)log am b n=n mlog a b.其中a>0且a ≠1,b>0且b ≠1,m ,n ∈R . 2.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.对应学生用书p 26对数的运算1 (1)计算:log 89×log 2732=________. [解析]根据换底公式,log 89=lg 9lg 8=2lg 33lg 2,所以log 2732=lg 32lg 27=5lg 23lg 3, 所以log 89×log 2732=2lg 33lg 2×5lg 23lg 3=109.[答案]109(2)计算:()1-log 632+log 62·log 618log 64=________.[解析]原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.[答案]1(3)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)( )A .1033B .1053C .1073D .1093[解析]由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93, 故与M N 最接近的是1093.故选D . [答案]D[小结]对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100[解析]由已知,得a =log 2m ,b =log 5m ,则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10. [答案]A2.已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值是__________.[解析]因为f(1)=log 21=0,所以f(f(1))=f(0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312+1=3log 32+1=2+1=3. 所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.[答案]53.求值:2log 323-log 3427-31+log 32=________.[解析]2log 323-log 3427-31+log 32=2(log 32-1)-(log 34-3)-3log 36 =2log 32-2-2log 32+3-6 =-5. [答案]-5对数函数的图象及应用例2 (1)函数f(x)=log a |x|+1(0<a <1)的图象大致为( )[解析]由函数f(x)的解析式可确定该函数为偶函数,图象关于y 轴对称.设g(x)=log a |x|,先画出x>0时,g(x)的图象,然后根据g(x)的图象关于y 轴对称画出x<0时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选A .[答案]A(2)已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,3x ,x ≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是________.[解析]如图,在同一坐标系中分别作出y =f(x)与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a>1时,直线y =-x +a 与y =log 2x 只有一个交点.[答案] (1,+∞)[小结](1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.4.已知函数y =⎝ ⎛⎭⎪⎫12x的图象与函数y =log a x(a>0,a ≠1)的图象交于点P(x 0,y 0),如果x 0≥2,那么a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .[8,+∞)D .[16,+∞)[解析]由已知中两函数的图象交于点P(x 0,y 0),由指数函数的性质可知,若x 0≥2,则0<y 0≤14,即0<log a x 0≤14,由于x 0≥2,所以a>1且4a ≥x 0≥2,解得a ≥16.[答案]D5.当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,22B .⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)[解析]由题意得,当0<a<1时,要使得4x <log a x ⎝ ⎛⎭⎪⎫0<x ≤12,即当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x的图象在函数y =log a x 图象的下方,则需22<a<1(如图所示). 当a>1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1. [答案]B对数函数的性质及其应用3 (1)设a =log 412,b =log 515,c =log 618,则( )A .a>b>cB .b>c>aC .a>c>bD .c>b>a[解析]a =1+log 43,b =1+log 53,c =1+log 63, ∵log 43>log 53>log 63,∴a>b>c. [答案]A(2)若函数f(x)=log 2(x 2-ax -3a)在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4]C .(-∞,-4)∪[-2,+∞)D .[-4,4)[解析]由题意得x 2-ax -3a>0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上单调递减,则a 2≥-2且(-2)2-(-2)a -3a>0,解得实数a 的取值范围是[-4,4),故选D .[答案]D(3)若函数f(x)=log a ⎝ ⎛⎭⎪⎫x 2+32x (a>0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f(x)>0,则f(x)的单调递增区间为( )A .(0,+∞)B .(2,+∞)C .(1,+∞)D .⎝ ⎛⎭⎪⎫12,+∞[解析]令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f(x)>0,所以a>1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞. 又x 2+32x>0,所以x>0或x<-32,所以函数f(x)的单调递增区间为(0,+∞). [答案]A[小结](1)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(2)对数函数性质的应用多用在复合函数的单调性上,即求形如y =log a f(x)的复合函数的单调区间,其一般步骤为:①求定义域,即满足f(x)>0的x 的取值集合;②将复合函数分解成基本初等函数y =log a u 及u =f(x);③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y =log a f(x)为增函数,若一增一减,则y =log a f(x)为减函数,即“同增异减”.4 已知函数f(x)=3-2log 2x ,g(x)=log 2x. (1)当x ∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x ∈[1,4],不等式f(x 2)·f(x)>k ·g(x)恒成立,求实数k 的取值范围.[解析] (1)h(x)=(4-2log 2x)·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h(x)的值域为[0,2].(2)由f(x 2)·f(x)>k ·g(x),得(3-4log 2x)(3-log 2x)>k ·log 2x , 令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t)(3-t)>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t-15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值范围是(-∞,-3).[小结]1.无论题型如何变化,都是围绕对数函数的单调性,变换不同的角度来应用.例3(1)是对数函数单调性的直接应用,利用单调性来比较大小、解不等式;例3(2),(3)是对数函数单调性的迁移应用,根据单调性来求参数的范围,所以弄清对数函数的单调性是解题的关键,并注意有时需对底数字母参数进行讨论.2.与对数型函数有关的恒成立问题多与其定义域和值域有关.对于函数y =log a f (x )(a >0,且a ≠1),若定义域为R ,则f (x )>0在R 上恒成立;若值域为R ,则f (x )能取遍所有正实数.6.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a<b<cB .b<a<cC .c<b<aD .a<c<b[解析]由log a 2<log b 2<log c 2的大小关系,可知a ,b ,c 有如下四种可能:①1<c<b<a ;②0<a<1<c<b ;③0<b<a<1<c ;④0<c<b<a<1.对照选项可知A 中关系不可能成立.[答案]A7.已知不等式log x (2x 2+1)<log x (3x)<0成立,则实数x 的取值范围是__________.[解析]原不等式⇔⎩⎪⎨⎪⎧0<x<1,2x 2+1>3x>1①或⎩⎪⎨⎪⎧x>1,2x 2+1<3x<1②,解不等式组①得13<x<12,不等式组②无解,所以实数x 的取值范围是⎝ ⎛⎭⎪⎫13,12.[答案]⎝ ⎛⎭⎪⎫13,12 8.已知函数f(x)=log a x +b(a>0,a ≠1)的定义域、值域都是[1,2],则a +b =________. [解析]当0<a<1时,易知函数f(x)为减函数,由题意有⎩⎪⎨⎪⎧f (1)=b =2,f (2)=log a 2+b =1,解得a =12,b =2,符合题意,此时a +b =52;当a>1时,易知函数f(x)为增函数,由题意有⎩⎪⎨⎪⎧f (1)=b =1,f (2)=log a 2+b =2,解得a =2,b =1,符合题意,此时a +b =3.综上可得:a +b 的值为52或3.[答案]52或3对应学生用书p27(2019·全国卷Ⅱ理)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|[解析]取a=2,b=1,满足a>b,但ln(a-b)=0,则A错,排除A;由9=32>31=3,知B错,排除B;取a=1,b=-2,满足a>b,但|1|<|-2|,则D错,排除D;因为幂函数y=x3是增函数,a>b,所以a3>b3,即a3-b3>0,C正确.故选C.[答案]C11。
一轮对数及对数函数复习导学案
对数及对数函数复习导学案【高考要求】对数函数(B )【教学目标】1. 理解对数的概念及其运算性质;了解对数换底公式,知道一般对数可以转化成自然对数或常用对数.2.了解对数函数模型的实际案例;了解对数函数的概念;理解对数函数的性质,会画对数函数的图象.3.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a > 0,a ≠1)(不要求一般地讨论反函数的定义,不要求求已知函数的反函数).【教学重难点】对数函数的性质及其应用【知识梳理】1.对数(1)对数的定义:(2)指数式与对数式的等价关系为: .两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )= ②log aNM = ③log a M n = (M >0,N >0,a >0,a ≠1)④对数换底公式:log b N = (a >0,a ≠1,b >0,b ≠1,N >0).(4)特别的 a a log = 1log a =2.对数函数(1)对数函数的定义(2)对数函数的图象※底数互为倒数的两个对数函数的图象关于 轴对称.(3)对数函数的性质:①定义域:②值域:③过点 ,即当x = 时,y = .④当a >1时,在 上是增函数;当0<a <1时,在 上是减函数.【自学质疑】1. 已知35,a b m ==且112,a b+=则m =2. 已知()log (1)(0,1),a f x x a a =->≠那么()f x 的定义域为 ,当(0,1)a ∈时,()f x 为 (填增、减函数);当(0,1)a ∈,且x ∈ 时,()0f x <3. 已知[]732log log (log )0,x =则1x -=4. 设函数2log (1),2()1()1,22x x x f x x -≥⎧⎪=⎨-<⎪⎩,若0()1f x >,则0x ∈ 【交流展示与互动探究】例1、(1)求值11lg 9lg 24021;2361lg 27lg 35+-+-+(2)已知23log 3,log 7,m n ==求42log 56变式:计算:15log 25= ;1lg9lg 22100-= 例2、当(1,2)x ∈时,不等式2(1)log a x x -≤恒成立,则a ∈【迁移应用】1、若0.70.7 1.1log 0.8,log 0.8, 1.1,a b c ===则,,a b c 的大小关系是2、若函数22()log f x x =的值域是[]0,1,则()f x 的定义域是3、设0,1,a a >≠函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为4、若函数2()lg(21)f x ax x =++的定义域是R ,则实数a 的取值范围 ;若函数2()lg(21)f x ax x =++的值域是R ,则实数a 的取值范围 ;5、(20XX 年陕西数学文3)若a 、b 、c 均为不等于0的实数,则下列等式恒成立的是( )A .b a log b c log =a c log B. b a log a c log =b c logC .)(log bc a =b a log c a log D. )(log c b a +=b a log +c a log。
高考数学一轮复习 专题09 对数与对数函数教学案 文-人教版高三全册数学教学案
专题09 对数与对数函数1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.1.对数的概念一般地,对于指数式a b=N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图 象性质(1)定义域:(0,+∞) (2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0当0<x <1时,y <0(5)当x >1时,y <0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.高频考点一 对数式的运算例1、(1)设2a =5b=m ,且1a +1b=2,则m 等于( )A.10 B .10 C .20 D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.【答案】 (1)A (2)-20【方法规律】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.(3)a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【变式探究】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2) lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.【解析】 (1)因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24.(2)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1. 【答案】 (1)A (2)-1高频考点二 对数函数的图象及应用例2、(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值X 围是________.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点. 【答案】 (1)B (2)a >1【方法规律】(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【变式探究】 (1)函数y =2log 4(1-x )的图象大致是( )(2)当0<x ≤12时,4x<log a x ,则a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)当a >1时,不符合题意,舍去. 所以实数a 的取值X 围是⎝ ⎛⎭⎪⎫22,1. 【答案】 (1)C (2)B高频考点三 对数函数的性质及应用例3、(2016·全国Ⅰ卷)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<bcD .c a >c b【解析】 由y =x c与y =c x的单调性知,C 、D 不正确. ∵y =log c x 是减函数,得log c a <log c b ,B 正确.log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定. 【答案】 B【方法规律】(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. (2)如果需将函数【解析】式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【变式探究】已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,某某数a 的取值X 围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧3-2a >0,log a(3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 高频考点四 和对数函数有关的复合函数 例4、已知函数f(x)=loga(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,某某数a 的取值X 围;(2)是否存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.(2)t(x)=3-ax ,∵a>0,∴函数t(x)为减函数. ∵f(x)在区间[1,2]上为减函数,∴y=logat 为增函数,∴a>1,x∈[1,2]时,t(x)最小值为3-2a ,f(x)最大值为f(1)=loga(3-a),∴⎩⎪⎨⎪⎧3-2a>0,loga 3-a =1,即⎩⎪⎨⎪⎧a<32,a =32.故不存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1. 【感悟提升】在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【变式探究】(1)设a =log32,b =log52,c =log23,则( ) A .a>c>b B .b>c>a C .c>b>aD .c>a>b(2)若f(x)=lg(x2-2ax +1+a)在区间(-∞,1]上递减,则a 的取值X 围为( ) A .[1,2) B .[1,2] C .[1,+∞) D .[2,+∞) (3)设函数f(x)=⎩⎪⎨⎪⎧log2x ,x>0,log 12-x ,x<0,若f(a)>f(-a),则实数a 的取值X 围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 【答案】 (1)D (2)A (3)C⎩⎪⎨⎪⎧g 1>0,a≥1,即⎩⎪⎨⎪⎧2-a>0,a≥1,解得1≤a<2,即a∈[1,2),故选A. (3)由题意可得⎩⎪⎨⎪⎧a>0,log2a>log 12a 或⎩⎪⎨⎪⎧a<0,log 12-a >log2-a ,解得a>1或-1<a<0.高频考点五、比较指数式、对数式的大小例5、(1)设a =,b =0.30.5,c =log0.30.2,则a ,b ,c 的大小关系是( ) A .c<b<a B .a<b<c C .b<a<cD .a<c<b(2)设a =log2π,b =log 12π,c =π-2,则( ) A .a>b>c B .b>a>c C .a>c>bD .c>b>a(3)已知324log 0.3log 3.4log 3.6155()5a b c =,=,=,则( )A .a>b>cB .b>a>cC .a>c>bD .c>a>b由图象知:log23.4>log3103>log43.6.方法二 ∵log3103>log33=1,且103<3.4,∴log3103<log33.4<log23.4.∵log43.6<log44=1,log3103>1,∴log43.6<log3103.∴log23.4>log3103>log43.6.由于y =5x 为增函数,∴52log 3.4>310log 35>54log 3.6.即52log 3.4>3log 0.31()5>54log 3.6,故a>c>b.【答案】 (1)C (2)C (3)C【感悟提升】(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.【2016·某某卷】已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.【答案】 4 2【2015高考某某,理7】已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b << (C )c a b << (D )c b a << 【答案】C【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-=所以c a b <<,故选C.【2015高考某某,理12】若4log 3a =,则22aa-+=.【答案】334. 【解析】∵3log 4=a ,∴3234=⇒=aa,∴33431322=+=+-aa . (2014·某某卷)已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3【答案】D(2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2014·某某卷)若函数y =log a x (a >0,且a ≠1)的图像如图11所示,则下列函数图像正确的是( )图11A BC D 【答案】B【解析】由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.(2014·某某卷)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 【答案】50(2014·某某卷)已知a =2-13,b =log 213,c =log 1213,则()A .a >b >cB .a >c >bC .c >a >bD .c >b >a 【答案】C【解析】因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .(2014·某某卷)函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 【答案】D【解析】要使f (x )单调递增,需有⎩⎪⎨⎪⎧x 2-4>0,x <0,解得x <-2.(2014·某某卷)在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D 【答案】D(2014·某某卷)函数f (x )=log 2x ·log 2(2x )的最小值为________.【答案】-14【解析】f (x )=log 2x ·log2(2x )=12log 2x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14. (2013·某某卷)已知一元二次不等式f(x)<0的解集为x⎪⎪⎪ )x<-1或x>12,则f(10x)>0的解集为( )A .{x|x<-1或x>-lg 2}B .{x|-1<x<-lg 2}C .{x|x>-lg 2}D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg 2.(2013·某某卷)定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ; ②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝ ⎛⎭⎪⎫a b ≥ln +a -ln +b ;④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号) 【答案】①③④④中,若0<a +b<1,左边=ln +()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b≥1,ln+()a +b -ln 2=ln ()a +b -ln 2=lna +b2, 又∵a +b 2≤a 或a +b 2≤b,a ,b 至少有1个大于1,∴ln a +b 2≤ln a 或ln a +b 2≤ln b,即有ln+()a +b -ln 2=ln ()a +b -ln 2=lna +b 2≤ln +a +ln +b ,∴④正确. (2013·新课标全国卷Ⅱ] 设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c 【答案】D【解析】a -b =log 36-log 510=(1+log 32)-(1+log 52)=log 32-log 52>0, b -c =log 510-log 714=(1+log 52)-(1+log 72)=log 52-log 72>0, 所以a>b>c ,选D.(2013·某某卷)已知x ,y 为正实数,则( ) A .2lg x +lg y=2lg x+2lg yB .2lg(x +y)=2lg x·2lg yC .2lg x·lg y =2lg x +2lg y D .2lg(xy)=2lg x·2lg y【答案】D【解析】∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y=2lgx 2lgy,故选择D.1.设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】 A2.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >cC .a <b <cD .a >b >c【解析】 因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c=log 32<log 33=1. 【答案】 B3.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )【解析】 由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x=⎝ ⎛⎭⎪⎫13x,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B. 【答案】 B4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72【解析】 由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝⎛⎭⎪⎫log 312=3-log 312+1=3log 32+1=2+1=3,所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5. 【答案】 A5.知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0【答案】 D7.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【解析】 函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数, ∴f (x )在[0,+∞)为增函数,∵b =f (log 124)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a . 【答案】 B8.已知函数f (x )=ln x1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值X 围是________.【解析】 由题意可知ln a 1-a +ln b1-b =0,即ln ⎝⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.【答案】 ⎝ ⎛⎭⎪⎫0,149.设f (x )=log ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值X 围是________.【答案】 (-1,0)10.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 【解析】 由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·l og 2x ,故f (2)=1+12·log 22=32. 【答案】 3211.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1), ∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 12.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).13.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12⎝ ⎛⎭⎪⎫log a x +322-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1). ∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得. 若12⎝ ⎛⎭⎪⎫log a 2+322-18=1,则a =2-13,此时f (x )取得最小值时,x =(2-13)-32=2∉[2,8],舍去.若12⎝ ⎛⎭⎪⎫log a 8+322-18=1,则a =12,此时f (x )取得最小值时,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。
高中数学 2.2.1 对数与对数运算导学案(2) 新人教A版必修1
高中数学 2.2.1 对数与对数运算导学案(2)新人教A版必修1∴log aMN =p +q ,即得log aMN =log aM + log aN 根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则 (1)log ()log log aaaMN M N =+; (2)log log log a a aM M N N=-; (3) log log ()n aaM n M n R =∈. 反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)※ 典型例题例1用log ax , log ay , log az 表示下列各式:(1)2log a xy z ; (2) 35log ax y z. 例2计算:(1)5log 25; (2)0.4log 1; (3)852log (42)⨯; (4)lg 9100.探究:根据对数的定义推导换底公式log log logcacbb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2019年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?※ 动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、lg12. lg 3.练2. 运用换底公式推导下列结论.(1)loglog mn a anb b m=;(2)1log log abb a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9. 三、总结提升 ※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log babNN a=; ② 对数的倒数公式1log log abb a =.③ 对数恒等式:log log nnaa N N =, 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ). A .x =a +3b -c B .35ab x c= C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x =C .3y x =D .4y x = 4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+= . 5. 计算:315lglg 523+= .课后作业 1. 计算:(1lg 27lg83lg 10+-; (2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346ab c==,求证:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.5对数与对数函数
一、学习目标:(1)对数函数性质及其应用。
(2)与对数函数有关的复合函数的性质
二、自主学习:
1. 函数()lg()(10)x x f x a b a b =->>>,则()0f x >的解集为{|1}x x >的充要条件是
( C ) A .1a b >+ B .1a b <+ C .1a b =+ D .1b a =+
2. 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为
12
,则a=( D )
A B .2 C . D .4
3. 已知0log log ,10<<<<n m a a a ,则( A )
A.1<n <m
B. 1<m <n
C.m <n <1
D. n <m <1
4.已知213()log [3(1)]f x x =--单调减区间为:(1,值域为:[-1,+∞)
5.函数y =log 21(x 2
-ax +3a )在[2,+∞)上是减函数,则a 的取值范围是( B )
A .(-∞,4)
B .(-4,4]
C .(-∞,-4)∪[2,+∞]
D .[-4,4]
三、合作探究:
例1.见《优化设计》P26例2
变式训练:比较下列各组数的大小:
(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5
小结与拓展:比较对数式的大小常用的有三种:(1)当底数相同时可直接利用对数函数的单调性比较;(2)当底数不同,真数相同时,可转化为同底或利用对数函数图像比较;(3)当底数不同,真数也不相同时,则可利用中间量比较
例2.已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.
解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0.
所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数,
∴对于任意x ∈[3,+∞),有f(x)≥log a 3.
因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立.
只要log a 3≥1=log a a 即可,∴1<a ≤3.
当0<a <1时,对于x ∈[3,+∞),有f(x)<0,
∴|f(x)|=-f(x).
∵f (x )=log a x 在[3,+∞)上为减函数,
∴-f (x )在[3,+∞)上为增函数.
∴对于任意x ∈[3,+∞)都有
|f(x)|=-f(x)≥-log a 3.
因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立,
只要-log a 3≥1成立即可,
∴log a 3≤-1=log a a 1,即a 1≤3,∴3
1≤a <1. 综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[3
1,1). 变式训练:见《优化设计》例3
例3:《优化设计》P26例5
四、课堂总结:
1.对数函数的定义:一般地,把函数)1,0(log ≠>=a a x
y a 叫做对数函数.
3.同底的指数函数x y a =与对数函数log a y x =互为反函数;
五、检测巩固:
同学们自行完成P25“真题在线”与P29“随堂练习”试题、上交《课时训练3.5》。