6-4-一阶线性微分方程的应用举例

合集下载

一阶微分方程的应用

一阶微分方程的应用

一阶微分方程的应用一阶微分方程的应用一阶微分方程的应用【1】摘要:微分方程在实际中应用广泛。

简单介绍了一阶微分方程的几种应用。

关键词:微分方程;应用;研究微分方程是与微积分一起形成并发展起来的重要的数学分支,它已成为研究自然科学和社会科学的一个强有力的工具.一阶微分方程是我院学生必修的内容,为了激发学生们学习的兴趣,让他们觉得学有所用,下面将介绍一阶微分方程在实际中的几种简单应用.一、在力学中的运用动力学是微分方程最早期的源泉之一.动力学的基本定律是牛顿第二定律F=ma,这也是微分方程来解决动力学的基本关系式.上式的右端含有加速度a,a是位移对时间的二阶导数.列出微分方程的关键在于找到合外力F和位移及其对时间的导数――速度的关系.在求解这些问题时,要特别注意问题中的定解条件,如初始条件等.例1.物体由高空下落,除受重力作用外,还受到空气阻力的作用.在速度不太大的情况下(低于音速的■),空气阻力可看做与速度的平方成正比.试求出在这种情况下,落体存在的极限速度v1.解:设物体质量为m,空气阻力系数为k.又设在时刻t物体的下落速度为v,于是在时刻t物体所受到的合外力为F=mg-kv2由牛顿第二定律列出微分方程m■=mg-kv2因为是自由落体运动,所以有v(0)=0.求解上述微分方程的特解即得:v=■当t→+∞时,有v1=■=■.据测定,k=aρs,其中a为与物体形状有关的常数;ρ为介质的密度;s为物体在地面上的投影面积.人们正是根据上述公式,为跳伞者设计保证安全的降落伞的直径大小,在落地速度v1,m,a,ρ一定时,就可定出s来.二、流体混合问题中学数学中有这样一类问题:某容器中装有浓度为c1的含某种物质A的液体V升.从其中取出V1升后,加入浓度为c2的液体V2升,要求混合后的液体以及物质A的含量.这类问题用初等代数就可以解决.但是在生产中还经常遇到如下的问题:容器内装有含物质A的流体.设时刻t=0时,流体体积为V0,物质A的质量为x0(浓度显然已知).现在以速度v2(单位时间的流量)放出流体,而同时又以速度v1注入浓度为c1的流体.试求时刻t时容器中物质A的质量及流体的浓度.这类问题称为流体混合问题,它是不能用初等数学解决的,必须利用微分方程来计算.我们利用微元法来列方程.设在时刻t,容器内物质A的质量为x=x(t),浓度为c2.经过时间dt后,容器内物质A的质量增加了dx.于是有dx=c1v1dt-c2v2dt=(c1v1-c2v2)dt.因为c2=■,代入上式有dx=(c1v1-■)dt,或■=-■x+c1v1.这是一个线性方程.于是求物质A在时刻t时的质量问题就归结为求上述方程满足初始条件x(0)=x0的特解问题.例2.某厂房容积为45×15×6m3,经测定,空气中含有0.2%的CO2.开动通风设备,以360m3/s的速度输入含有0.05%的CO2的新鲜空气,同时排出同等数量的室内空气.问30分钟后室内所含CO2的百分比.解:设在时刻t,车间内CO2的百分比为x(t)%.经过时间dt后,室内CO2的改变量为45×15×6×dx%=360×0.05%×dt-360×x%×dt.于是有4050dx=360(0.05-x)dt,即dx=■(0.05-x)dt,初始条件为x(0)=0.2.将方程分离变量并积分,初值解满足■■=■■dt,求出x有x=0.05+0.15e-■t.t=30分钟=1800秒代入得x=0.05.即开动通风设备30分钟后,室内CO2的含量接近0.05%,基本上已是新鲜空气了.三、牛顿冷却定律的应用牛顿冷却定律:把温度为T的物体放入处于常温T0的'介质中,T的变化速率正比于物体的瞬时温度与周围介质温度T0之差.设物体的温度为T(t),于是可列微分方程■=-k(T-T0),k>0.例3.某小镇发生凶杀案,法医于下午6点到达现场,测得此时尸体的温度为34度,1小时后又测得尸体的温度为32度.假设室温为常温21度,警方经过反复排查,圈定了两名犯罪嫌疑人张某和李某,但二人均辩称自己无罪,并陈述了各自当日下午的活动情况:张某称,他下午一直在办公室,5点下班后离开;李某称,下午一直上班,4点30分左右接到电话后离开.二人所说均被证实,从二人上班地点到案发现场只需要10分钟,试分析两人能否都排除嫌疑?解:设尸体在t时刻的温度为T(t),由牛顿冷却定律可得定解问题■=-k(T-21)T(0)=34T(1)=32,解得T(t)=21+13e-0.167t.设死者死亡时为正常体温37度,即T=37,由上式求出死亡时间t=■・ln■≈-1.25小时.由此推断出,死者的死亡时间为6:00-1:15=4:45,即下午4:45左右,因此李某有作案时间不能排除嫌疑,张某无作案时间.四、医学中的应用例4.有一种医疗手段,是把示踪染色体注射到胰脏里去检查其功能,正常胰脏每分钟吸收染色的40%.现有一内科医生给某人胰脏注射了0.3克染色,30分钟后还剩下0.1克,试问此人的胰脏是否正常.解:正常情况下,设S(t)表示注射染色体后t分钟时人胰脏中的染色量,则每分钟吸收的染色为■=-0.4S,本题可知S(0)=0.3,故得到定解问题■=-0.4SS(0)=0.3,通过分离变量法,解得S(t)=0.3e-0.4t,则30分钟后剩余的染色量为S(30)=0.3-0.4×30≈0,而实际此人剩余0.1克,由此可知,此人的胰脏不正常,应该接受治疗.参考文献:[1]东北师范大数学系.常微分方程.高等教育出版社,2001,3.[2]姜启源,叶金星.数学模型.高等教育出版社,2004,12.[3]刘增玉.高等数学.天津科学技术出版社,2009,6.一阶高次微分方程的求解【2】【摘要】本文通过讨论一阶二次微分方程和一阶三次微分方程的解法的相关问题,来归纳讨论一阶高次微分方程的求解,并给出相关的例子进行说明。

常微分方程课件--一阶微分方程的应用

常微分方程课件--一阶微分方程的应用

样的曲线族(2.7.2)是已知曲线族(2.7.1)的
等角轨线族(2.7.1)的
正交轨线族。
y kx 0是曲线族 x 2 y 2 C 2 0 例如:曲线族
的正交轨线族。
y Cx 2的正交轨线族。 例2.7.1求抛物线族
解:对方程两边关于x求导得 dy 2Cx dx y Cx 2解出C代入上式得曲线族 y Cx 2 由
2.我国人口的发展预测 设 N (t ) 为t时刻我国人口的总数,且设N (t )是连 续可微函数,在 [t , t t ] 区间内人口的改变有
Nt t Nt bNt t dNt t
上式同除以 t 令 t 0得
r bd
dN rN , N (t0 ) N 0 (2.7.9) dt b为生育率,d为死亡率
(2.7.9)称为人口增长的Malthus模型
求解初始值问题(2.7.9)得
N (t ) N0e
r ( t t0 )
模型的优缺点: 优点:可以做大体预测,经济有效。
r 缺点:作为长期预测不合理, 0 时人口按指数
N 级增长,当 t t0 充分大时, (t ) 就大得令
人难以置信,故需要对模型修改。
在点( x, y )处切线斜率为 dy 2 y dx x
y Cx 2 中的曲线在( x, y ) 由于所求曲线族的曲线与
正交,故满足方程
dy x dx 2y y Cx 2的正交 这是一个变量可分离方程求解得
曲线族为
x 2y k
2 2
2
y
这是一个椭圆,如右图
x
放大此图 图2.16
y
x
图 2.16
§2.7一阶微分方程的应用 1.曲线族的等角轨线

一阶线性微分方程的解法及其应用

一阶线性微分方程的解法及其应用

通解
y Ce P(x)dx
(2)将通解表达式中的任意常数 C 换成未知函数 u(x) ,即:
y u(x)eP(x)dx (*)

y u(x)eP(x)dx 为非齐次线性方程的解,则
y
u(x)e P(x)dx
u
(
x)(
P(
x))e
P
(
x
) dx
(**)
xx工程学院理学院
(3)将(*)(**)代入原方程可得:
把 C 换成 u(x) ,即令
y u (x)(x 1)2,

y u (x 1)2 2u (x 1)
将 y, y代入原非齐次方程得:
两边同时积分得:
u(x)
2
(
x
1)
3 2
C
3
故原方程通解:
xx工程学院理学院
四、一阶线性微分方程的应用 用微分方程解决实际问题的基本步骤:
两边积分:
ln | y | P(x)dx C1
通解为:
y e P(x)dxC1
y Ce P(x)dx
(C 为任意常数)
xx工程学院理学院
2.积分因子法(方程两边同时乘以适当的函数,使得左端 成为某个函数的导数)
dy P(x) y 0 dx
方程两边同时乘以 eP(x)dx(积分因子)
方程变为:
确确定定 PP((xx))
方方程程两两边边同同时时乘乘以以
eePPP(((xxx)))dddxxx
方方程程左左边边一一定定是是 ((yyeePPP(((xxx)))dddxxx))
两两边边同同时时积积分分求求得得通通解解 yy CCeePPP(((xxx)))dddxxx((CC为为任任意意常常数数))

6-4一阶电路的全响应及阶跃响应

6-4一阶电路的全响应及阶跃响应

第6章一阶电路讲授板书1、理解一阶电路的全响应和阶跃响应概念和物理意义。

2、掌握一阶电路的全响和阶跃响应的计算方法一阶电路的全响的计算方法一阶电路的阶跃响的计算方法、求解初始值的方法1. 组织教学 5分钟3. 讲授新课70分钟2. 复习旧课5分钟基尔霍夫定律4.巩固新课5分钟5.布置作业5分钟一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:§6.4一阶电路的全响应一阶电路的全响应是指换路后电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。

1.全响应以图 6.19 所示的 RC 串联电路为例:图 6.19 图 6.20电路微分方程为:方程的解为:u C(t)=u C'+ u C"令微分方程的导数为零得稳态解:u C"=U S暂态解,其中τ= RC因此由初始值定常数A,设电容原本充有电压:u C(0-)= u C(0+)=U0代入上述方程得:u C(0+)= A + U S = U0解得:A = U0 - U S所以电路的全响应为:2. 全响应的两种分解方式(1)上式的第一项是电路的稳态解,第二项是电路的暂态解,因此一阶电路的全响应可以看成是稳态解加暂态解,即:全响应 = 强制分量 ( 稳态解 )+ 自由分量 ( 暂态解 )(2)把上式改写成:显然第一项是电路的零状态解,第二项是电路的零输入解,因此一阶电路的全响应也可以看成是零状态解加零输入解,即:全响应 = 零状态响应 + 零输入响应此种分解方式便于叠加计算,如图 6.21 所示。

图 6.213. 三要素法分析一阶电路一阶电路的数学模型是一阶微分方程:其解答为稳态分量加暂态分量,即解的一般形式为:t= 0+时有:则积分常数:代入方程得:注意直流激励时:以上式子表明分析一阶电路问题可以转为求解电路的初值f(0+),稳态值f (¥)及时间常数τ的三个要素的问题。

求解方法为:f(0+):用t → ¥的稳态电路求解;f(¥):用 0+等效电路求解;时间常数τ:求出等效电阻,则电容电路有τ=RC ,电感电路有:τ= L/R。

一阶微分方程及其应用

一阶微分方程及其应用

单元1:一阶微分方程及其应用
特定目标:
1. 学习解某些特定一阶微分方程技巧。

2. 在实际的情况下应用有关建立及解一阶微分方程的技巧。

3. 能够理解一阶微分方程的解。

学生亦应能识别函数内任意常数的数目。

例如,函数两个任意常数,但事x x e ce =,其中 可由一个任意常数取代,所以最终只有一个任意常数。

对于能力较佳的学生,教们讨论方程的奇解。

例21c c e 1+ 中,1c y cx =+ 是一般解而 本节的重点在于怎样由实际情况建立微分方程,立的方程则可留待以后的章节。

教师可提供学生一些例子,指。

一阶微分方程应用举例

一阶微分方程应用举例

t i1
?
(日接触率) tm
病人可以治愈!
模型3
增加假设
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型 3)病人每天治愈的比例为
~日治愈率
建模 N [ i ( t t ) i ( t )] Ns ( t ) i ( t ) t Ni ( t ) t
研究解的性质
模型4
di si i dt ds si dt i ( 0 ) i0 , s ( 0 ) s 0
SIR模型
消去dt
/
1 di 1 s ds i i0 ss
0
相轨线
i ( s ) ( s 0 i0 ) s
1 s s0
P2
im
s 1 / , i im
P1 P3
s 满足 s 0 i 0 s

ln
0
0
s
S0 1 /
s0
1s
P1: s0>1/ i(t)先升后降至0 P2: s0<1/ i(t)单调降至0
传染病蔓延 传染病不蔓延
1/~ 阈值
一阶微分方程的应用
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
例1混合溶液问题
问题 设有一容器,内有100升盐水,其中含盐50 克。要将浓度为2克/升的盐水以流速3升/分 钟注入容器内,同时将搅拌均匀的混合物 以流速2 升/分从容器内流出。试求30分钟 后容器内所含的盐量。
di i (1 i ) i dt i (0 ) i 0

一阶微分方程的应用

一阶微分方程的应用

正交,故满足方程 dy x dx 2 y
这是一个变量可分离方程求解得 y C x 2的正交
曲线族为
x2 2y2 k2
y
这是一个椭圆,如右图
放大此图
•第一章一阶微分方程的应用
x
图2.16
y
x
•第一章一阶微分方程的应用
应用二: 雨滴的下落
考虑雨滴在高空形成后下落的过程中速 度的变化
三种不同的假设 (1) 自由落体运动 (2) 小阻力的情况 (3) 大阻力的情况
Solution: exponential growth):
•第一章一阶微分方程的应用
Model 3: Population dynamics Logistic Growth
• An exponential model y' = ry, with solution y = e^{rt}, predicts unlimited growth, with rate r > 0 independent of population.
•第一章一阶微分方程的应用
Qualitative analysis of the logistic equation
• To better understand the nature of solutions to autonomous equations y’= f(y), we start by graphing f (y) vs. y. • In the case of logistic growth, that means graphing the following function and analyzing its graph using calculus.

一阶线性微分方程的解与应用

一阶线性微分方程的解与应用

一阶线性微分方程的解与应用一阶线性微分方程是微积分学中的重要内容,广泛应用于各个科学领域,特别是物理学和工程学。

它们的解法相对简单,且具有丰富的实际应用价值。

本文将介绍一阶线性微分方程的解法以及其在实际问题中的应用。

一、一阶线性微分方程的解法一阶线性微分方程的一般形式为:dy/dx + P(x)y = Q(x),其中P(x)和Q(x)都是已知函数。

我们的目标是找到其解y(x)。

首先,我们可以将这个方程变形为dy/dx = -P(x)y + Q(x)。

接下来,我们使用一个重要的积分技巧——乘积法则。

将方程两边同时乘以一个称为积分因子的函数μ(x),得到μ(x)dy/dx + μ(x)P(x)y = μ(x)Q(x)。

为了使得左边能够变成一个恰当微分,我们需要选择一个适当的积分因子μ(x)。

一种常见的选择是μ(x) = exp[∫P(x)dx],即取积分因子为P(x)的指数函数形式。

这样,原方程变为d[μ(x)y]/dx = μ(x)Q(x)。

对上述方程两边同时积分,我们得到μ(x)y = ∫μ(x)Q(x)dx + C,其中C是常量。

最后,我们将μ(x)代回方程中,得到y(x) = exp[-∫P(x)dx] [∫μ(x)Q(x)dx + C]。

至此,我们已经得到了一阶线性微分方程的解的通解形式。

通过选取不同的积分因子和积分常数C,我们可以得到不同的特解,满足具体条件的问题。

二、一阶线性微分方程的应用一阶线性微分方程在各个领域都有广泛的应用。

以下是一些具体的应用实例:1.增长与衰减问题:对于一些与时间有关的增长或衰减过程,可以建立一阶线性微分方程描述其变化规律。

比如,放射性元素的衰变过程、细胞的增殖过程等。

2.电路问题:电路中的电流、电压的变化可以用一阶线性微分方程来描述。

对电路中的各个元件进行建模时,可以利用该方程求解电流或电压的变化。

3.人口动态问题:人口学中的人口增长与迁移等问题,可以通过建立一阶线性微分方程来研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由(4)式可以看出,随着时间 t 的增大,速度 v 逐
渐接近于常数 mg , 且不会超过mg ,也就是说,跳伞后开
k
k
始阶段是加速度运动,但以后逐渐接近于匀速运动.
例 3 一曲线过点(3,4),在该曲线上任意点处的 切线在 y 轴上的截距恰等于原点(0,0)到该点的距离.
解 i)列方程并确定初始条件
R=kv
相反,从而降落伞所受外力为
P=mg
F=mg-kv
图 6-5
根据牛顿第二定律
F ma
(其中 a 为加速度),得3)
dt
按题意,处始条件为
ii)求通解
v 0 t0
方程(3)是可分离变量后,得
dv dt mg kv m
两端积分
dv mg
第四节 一阶微分方程的应用举例
学习的目的在于应用,在本节我们将通过举例着重介 绍一阶微分方程的一些简单应用和利用一阶微分方程解决 实际问题的一般步骤.
利用微分方程解决几何、物理等实际问题的一般步骤 如下:
(1)根据题设条件,利用已知的公式或定理,建立相应 的微分方程及确定初始条件;
(2)分辨所建立的微分方程的类型,运用相应解法求出 其通解;
内容小结
解微分方程应用题的方法和步骤
(1) 找出事物的共性及可贯穿于全过程的规律列方程. (2) 利用反映事物个性的特殊状态确定定解条件. (3) 求通解, 并根据定解条件确定特解.
作业
P231 1, 3
Qdp
已知该商品的最大需求量为1200,故得初始条件Q p0 1200.
(ii) 求通解.
dQ Q
ln
3
dp,
ln Q p ln 3 C1
即所求通解为
Q Ce pln3 C3 p.
(iii) 确定任意常数以求得特解.
将初始条件代入通解,得C=1200,故所求需求量Q对价格
p的函数关系为Q=1200 3 p.
(1)
由于曲线通过点(2,3),故得初始条件
ii)求通解.
y x2 3
(2)
将方程(1)分离变量,得 ydy=2xdx=0,两端积分,

y2 2
x2
C1,, 即通解为
y2+2x2=C,
iii)确定任意常数以求得特解.
将初始条件(2)代入通解,解得 C=17,则所求曲
线方程为
y2 2x2 17
例 2 设降落伞从跳伞塔下落后,所受空气阻力与速
度成正比,并设降落伞离开跳伞塔时(t=0)速度为零,求降
落伞下落速度与时间的函数关系.
解 i)列方程并确定初始条件.
设降落伞下落速度为 v(t),降落伞
在空中下落时,同时受到重力 P
与阻力 R 的作用(图 6-5).重力
大小为 mg 方向与 v 一致,阻力大 小为 kv(k 为比例系数),方向与 v
kv
dt m
考虑到mg kv 0,得

1 k
ln(m g
kv)
t m
C1
mg
kv
e
k m
t
kc1

v
mg
kt
Ce m (C
e kc1
)
k
k
这就是方程(3)的通解.
iii)确定任意常数以求得特解.
将初始条件v t0 0代入通解,得
C mg
k
于是所求的特解为
v
mg
(1
kt
em
)
(4)
k
iv)实际问题的物理意义.
(3)利用初始条件,定出通解中的任意常数,求得满足 初始条件的特解;
(4)根据某些实际问题的需要,利用所求得的特解来解 释问题的实际意义或求得题设所需的其他结果.
以上四个步骤中列方程、解方程是重点.
例 1 一曲线通过点(2,3),在该曲线上任一点 P(x,y)处的法线与 x 轴的交点为 Q,且线段 PQ 恰被 y 轴 平分,求此曲线方程.
方程为
y x2 y2 9.
*例 4 容器内有 100L 的盐水,含 10kg 的盐,先以 3L/min 的均匀速率,往容器内注入(定净水与盐水立刻混合),
又以 2L/min 的均匀速率从容器中抽出盐水,问 60min 后 容器内盐水中盐的含量是多少?
解 ⅰ)列方程并确定初始条件. 本题用用微元法来建立微分方程.设在时刻 t,盐的含 量为 x(t),依题意,注入容器的净水为 3tL,抽出容器的盐 水为 2tL,因此这时溶液的总量为
其浓度为
100+(3-2)t=100+t x(t) ;
100 t
在时间间隔t,t t内,抽出容器的盐水为 2dt,即
容器中盐的改变量是
x x(t) (2d t) 2x d t,
100 t
100 t
由此得微分方程
d x 2x dt 100 t
根据题设条件又知,初始条件为 x |t0 10. ⅱ)求通解.
方程(5)是齐次方程,令 y u(x)x,则 d y u x d u ,
dx
dx
于是
u x du u 1u2 dx

du 1dx
1u2 x
两端积分,得 ln(u 1 u2 ) ln x C1
即通解为
y x2 y2 C
ⅲ)确定任意常数以求得特解 将初始条件(6)带入通解,解得 C=9,则所求曲线
解 i)列方程并确定初始条件. 设所求曲线方程为 y=y(x),则它在 P(x,y)处的法线方程 为
Y y 1 (X x) y
如图 6-4 所示,令 Y=0,得法 线在 x 轴上的截距为
X yy x,
y
P(x,y)
QO
x
图6-4
由题设条件得
x yy x 0
2
即得曲线 y=y(x)应满足微分方程 yy 2x 0
设所求曲线方程为 y=y(x)则它在任一点(x,y)处的切线方程

Y y y' ( X x),
(5)
令 X=0,得切线在 y 轴上的截距为
Y y y'x
由题设条件得
y xy' x2 y2

y' y x2 y2
x
由于曲线过点(3,4),故得初始条件
y 4
(6)
x3
ii)求通解.
含量为
x
105 1602
3.9

此时含盐量约为 3.9kg.
*例5 某商品的需求量 Q 对价格 p 的弹性为pln3. 已知该 商品的最大需求量为1200(即当 p=0时,Q=1200),求需
求量 Q 对价格 p 的函数关系.
解 (i) 列方程并确定初始条件. 由需求价格的弹性定义及题设条件得
pdQ p ln 3
这是一个可分离变量的方程,分离变量后积分,得
ln x 2ln(100 t) ln C,
即所求通解为
C x (100 t)2
ⅲ)确定任意常数以求得通解.
将初条件(8)代入通解,得
所求特解为
10
C 1002
即C
105 ,
x
105 (100
t)2
.
ⅳ)所求实际问题的结果.
利用特解当 t=60 时,可以算得 60min 后,容器内盐
相关文档
最新文档