有理数的乘法_
有理数的乘法知识点总结

有理数乘法法那么:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇
数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
〔ab〕c=a〔bc〕
一个数同两个数的'和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a〔b+c〕=ab+ac
数字与字母相乘的书写标准:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或—1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母某表示任意一个有理数,2与某的乘积记为2某,3与某的乘积记为3某,那么式子2某+3某是2某与3某的和,2某与3某叫做这个式子的项,2和
3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
a某+b某=〔a+b〕某
上式中某是字母因数,a与b分别是a某与b某这两项的系数。
去括号法那么:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“—”,把括号和括号前的“—”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
有理数乘除法则

有理数乘除法则有理数乘除法是初中数学中的重要内容,它是对有理数进行乘法和除法运算的规则和方法。
有理数乘除法规则的掌握对于学习代数和解决实际问题都具有重要意义。
下面我们就来详细介绍一下有理数乘除法的规则和性质。
一、有理数乘法的规则1. 两个有理数相乘,符号相同则结果为正,符号不同则结果为负。
例如:(-3)×(-2) = 6, (-3)×2 = -6, 3×(-2) = -6, 3×2 = 6。
2. 两个有理数的绝对值相乘,所得积的绝对值等于两个有理数的绝对值的乘积。
例如:|-3|×|-2| = 3×2 = 6。
3. 0与任何有理数相乘,结果都是0。
例如:0×(-2) = 0, 0×3 = 0。
4. 一个有理数与0相乘,结果为0。
例如:(-3)×0 = 0, 3×0 = 0。
二、有理数除法的规则1. 两个有理数相除,除数不为0,则结果的符号与被除数和除数的符号相同;除数为0,则结果无意义。
例如:(-6) ÷ (-2) = 3, (-6) ÷ 2 = -3, 6 ÷ (-2) = -3, 6 ÷ 2 = 3。
2. 一个非零有理数除以0,结果无意义。
例如:3 ÷ 0 = 无意义。
3. 0除以任何非零有理数,结果都是0。
例如:0 ÷ (-2) = 0, 0 ÷ 3 = 0。
三、乘除法和加减法的关系1. 有理数的乘除法可以转化为加减法来计算。
例如:(-6)×(-2) = 6, 可以转化为 (-6) + (-6) = -12;(-6)÷(-2) = 3,可以转化为 (-6) + (-6) + (-6) = -18。
2. 有理数的乘法分配律:a×(b+c) = a×b + a×c。
例如:3×(2+4) = 3×2 + 3×4 = 6 + 12 = 18。
有理数的乘法

有理数的乘法有理数的乘法规则对于两个有理数a和b,它们的乘法运算可以表示为a × b。
有理数的乘法遵循以下规则:1. 两个正数相乘得到正数:正数乘以正数的结果仍为正数,如2 ×3 = 6。
2. 两个负数相乘得到正数:负数乘以负数的结果为正数,如-2 × -3 = 6。
3. 正数乘以负数得到负数:正数乘以负数的结果为负数,如2× -3 = -6。
4. 零乘以任何数都等于零:无论乘以任何数,零的乘积都为零,如0 × 5 = 0。
5. 分数的乘法:对于两个分数a/b和c/d相乘,可以先将它们的分子相乘得到新的分子,再将它们的分母相乘得到新的分母,最后求得新的分数,如(2/3) × (4/5) = (8/15)。
有理数乘法的计算方法有理数的乘法运算可以通过多种方法进行计算,包括手算和使用计算器等工具。
以下是一种简单的手算方法:1. 将两个有理数的数值相乘:将它们的数值相乘得到一个新的数值,符号保持不变。
2. 将两个有理数的符号确定:根据规则1~3确定两个有理数的符号。
3. 若其中一个有理数是分数,可以先化简分数,再进行乘法计算。
化简分数是将分子和分母同时除以它们的最大公因数,得到最简形式的分数。
4. 如果需要,可以将最简形式的分数转化为带分数或小数形式。
有理数的乘法运算也可以通过计算器进行快速计算,但仍需了解乘法规则和转换方法。
通过研究有理数的乘法规则和计算方法,我们可以更好地理解有理数的乘法运算,提高数学计算能力并应用于实际问题中。
总结有理数的乘法是对两个有理数进行乘法运算,根据规则可以得到新的有理数作为结果。
有理数的乘法规则简单明确,计算方法也有多种选择。
通过学习和掌握有理数的乘法规则和计算方法,我们能够更好地应用数学知识解决问题,并提高数学水平。
有理数的乘除及乘方运算

授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。
有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)七年级数学有理数的乘法教案及教学设计篇一一、教材分析有理数的乘法是继有理数的加减法之后的又一种基本运算。
它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。
对后续知识的学习也是至关重要的。
二、学情分析对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点重点:有理数的乘法法则。
难点:有理数乘法的符号法则五、教学策略我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)(一)复习导入创设情境我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。
进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知要求学生自主学习课本内容,完成课文中的填空。
我给与学生充足的时间和空间。
通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。
七年级数学有理数的乘除和乘方

____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
有理数除法法则: 1、两数相除,同号得正,异号得负,并把绝对值相除。零与任何不等 于0的数相除都得零。 2、除以一个数等于乘以这个数的倒数(0不能作除数) 倒数与倒数的性质: 1除以一个不为0的数得这个数的倒数(0没有倒数)。 倒数的性质有:(1)互为倒数两数的积为1; (2)有理数a(a≠0)的倒数为
用科学记数法写出下列各数:
10000, 800000, 56000000, 7400000
下列用科学记数法表示的、 由四舍五入法得到的近似数, 各精确到哪一位?各有几个 有效数字? 4 ① 3.79×10 ;
2 ②5.040×10 ;
用四舍五入法,按括号内 要求取近似值。
(2) -7.56×104 (保留2个有效数字);
64,
64,
3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
1 a;
有理数运算法则口诀
有理数运算法则口诀
有理数运算法则是我们学习数学时必须掌握的重要知识点,它为我们解决实际问题提供了有力的工具。
下面我将为大家总结一些有理数运算的口诀,希望能够帮助大家更好地理解和记忆。
一、有理数的加法和减法:
1. 同号相加,异号相减,取绝对值,按大的符号来。
2. 加法交换律,减法无交换。
3. 加法结合律,减法无结合。
二、有理数的乘法和除法:
1. 同号相乘,异号相除,结果为负,记住。
2. 乘法交换律,除法无交换。
3. 乘法结合律,除法无结合。
三、有理数的混合运算:
1. 先乘除后加减,按照顺序来。
2. 括号内的先算,得到结果再算。
四、有理数的乘方运算:
1. 同底数相乘,指数相加。
2. 同底数相除,指数相减。
3. 一个数的0次方,结果是1。
4. 一个数的负整数次方,结果是倒数。
五、有理数的大小比较:
1. 同号比大小,绝对值大的更大。
2. 异号比大小,负数更小。
以上就是有理数运算法则的口诀总结,希望大家能够通过这些口诀更好地掌握有理数的运算规律。
记住这些口诀,我们在解决数学问题时将更加得心应手。
数学是一门需要不断练习的学科,希望大家能够多多练习,提高自己的数学水平。
有理数乘除法法则
有理数乘除法法则有理数乘除法法则是数学中的基本概念和规则,用于解决有理数的乘法和除法运算。
掌握了有理数乘除法法则,可以更加灵活地进行数学运算,解决实际问题。
一、有理数的乘法法则有理数的乘法法则是指在进行有理数的乘法运算时,要遵守以下规则:1. 正数乘以正数等于正数,负数乘以负数等于正数;2. 正数乘以负数等于负数,负数乘以正数等于负数;3. 任何数乘以0等于0。
例如,2乘以3等于6,-2乘以-3等于6,2乘以-3等于-6,-2乘以3等于-6,任何数乘以0都等于0。
二、有理数的除法法则有理数的除法法则是指在进行有理数的除法运算时,要遵守以下规则:1. 两个正数相除,商为正数;两个负数相除,商为正数;一个正数除以一个负数,商为负数;一个负数除以一个正数,商为负数;2. 任何数除以0是无意义的,即不存在结果;3. 一个数除以1等于它本身。
例如,8除以2等于4,-8除以-2等于4,8除以-2等于-4,-8除以2等于-4,任何数除以1都等于它本身。
三、应用举例1. 乘法法则的应用假设小明有3个苹果,小红有4个苹果,那么他们手中共有多少个苹果呢?根据乘法法则,3乘以4等于12,所以小明和小红手中共有12个苹果。
2. 除法法则的应用假设一个车队需要用20升汽油,已经装满了4个汽油罐,每个罐子装有相同的汽油量,那么每个罐子里装有多少升汽油呢?根据除法法则,20除以4等于5,所以每个罐子里装有5升汽油。
四、乘除法法则的综合应用乘除法法则在实际问题中常常需要综合应用。
例如:小明和小红一起做数学作业,他们共用了一本书,小明用了这本书的1/3时间,小红用了这本书的1/4时间,那么小明和小红一共用了这本书的几分之几时间呢?根据除法法则,1除以3等于1/3,1除以4等于1/4。
然后,根据乘法法则,1/3乘以1/4等于1/12。
所以,小明和小红一共用了这本书的1/12时间。
五、结语有理数乘除法法则是数学中的基本概念和规则,通过掌握乘除法法则,可以更加灵活地进行数学运算,解决实际问题。
有理数的乘法数学教案(优秀8篇)
有理数的乘法数学教案(优秀8篇)有理数的乘法数学教案篇一教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2.通过观察、归纳,提高学生的理性认识。
3.培养学生学会表达、学会倾听的良好品质。
教学目标1.知识技能:(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2.数学思考:通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3.问题解决:通过自主探索和合作交流,发展学生逆向思维及化归思想。
4.情感态度价值观:通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点教学重点是:有理数的乘法法则的理解和运用。
教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
七年级数学有理数的乘法教案及教学设计篇二一、内容和内容解析1.内容有理数乘法法则2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。
本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。
与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。
由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。
有理数的乘除及乘方
有理数的乘除及乘方一、有理数的乘法1.有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 .(2)任何数同零相乘,都得 .例题:①(-3) ×(+8)=__________;②173()()64-⨯+=________;③8( 2.3)()5-⨯-=__________; ④123()()54+⨯+=__________;⑤2()05-⨯=__________. (3)几个不等于0的数相乘,积的符号是由负因数的个数绝定的,当负因数有奇数个时,积得 ,当负因数有偶数个时,积得 .例题:①(-5)×(-6)×3×(-2)=__________;②(-2)×3×4×(-1)×(-3) =__________;③(-3)×(-1)×2×(-6)×0×(-2)=__________.2.有理数的乘法的运算律:交换律:a ×b=________; 结合律:(ab)c=__________=________;分配律: a(b+c)=___________. 例题:计算①118(0.36)()()411-⨯+⨯- ②-13×23-0.34×27+13×(-13)-57×0.34 ③231()243412--⨯ ④-3.14×35.2+6.28×(-23.3)-1.57×36.4 二、有理数的除法1.有理数除法法则:(1)两数相除,同号得 ,异号得 ,并把绝对值________.(2)0不能做除数,零除以任何一个__________零的数,都得零. (3)除以一个不为零的数等于乘以这个数的_________.注意:除法没有分配律,有括号时要先作括号内的.例题1:①(+28)÷(-7)=___________; ②515()()124+÷-=_______________; ③4(0.24)()5-÷-=_____________; ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题2:化简下列各式:①246-=________; ②279--=___________;③213-=__________;④07-=________. ④23110()÷-=___________; ⑤5( 2.4)()3-÷+=___________; ⑥18()(0.72)5-÷-=____________.例题3:计算①(-120)÷(-5)÷(-8) ②(-49)÷1(2)3-÷73÷(3)- ③18÷11()63- ④2(4)3-÷127-三、有理数的乘方1.求几个_________因数的积的运算,叫乘方.乘方的结果叫做_______.乘方是特殊的乘法运算.如果有n 个a 相乘,可以写为n a .nn a a a a = 个其中,n a 叫做a 的n 次方.也叫做a 的n 次幂. a 叫做幂的_________,a 可以取任何有理数;n 叫做幂的_________,可取任何正整数. 例题1:把下列各式写成乘方运算的形式,并指出底数和指数各是什么?①(-1.5)·(-1.5)·(-1.5)·(-1.5)=____________________底数是__________指数是____________.②111111555555⨯⨯⨯⨯⨯=____________________ 底数是__________指数是____________.例题2:① (-3)4=_________; ②0.53=_______; ③-44=________; ④-(-2)6=________⑤32()3=_______.2.幂运算性质:(1)正数的任何次幂都是________(正,负)数,负数的______(奇,偶)次幂是负数,负数的偶次幂是______数. (2)任何一个不为_______的数的零次幂都等于_______.例题1: ①(-5)4=_______; ②-54=________;③(-1)101=_______; ④-1100=_______;⑤302()3-=________.例题2:计算①2221(6)()72(3)3-÷--+⨯- ②232100(2)(2)()(2)3÷---÷-+- ③23118(3)5()(15)52-÷-+⨯---÷ ④0322004111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦3.有理数的混合运算的顺序;先算乘方,再算乘除,最后算加减.同级运算从左到右.如果有括号先算括号里面的,按小括号,中括号,大括号依次进行.例题:计算①()3111(2)30.4122⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ (注意运算顺序) ②753()18 1.456 3.9569618-+⨯-⨯+⨯ (应用分配律)③()()()21034454512242⎡⎤-⨯---÷--+⎣⎦(化繁为简) 四、有效数字和科学记数法1.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数位数只有_______的数, 即110a ≤<,n 是比原数的整数部分的位数少1的正整数.像这种记数法叫____________.例.8900000=8.9×106 286000=2.86×105 1003400=1.0034×106 例题1:用科学记数法表示下列各数. ①135000;②329.506;③1000000000.例题2:下列各数是用科学记数法表示的,请写出这个数. ①5.7×105;②3.72×107;③2.0×109.2.近似数就是与实际很接近的数.精确度是近似数的精确程度,一般有两种形式(1)一个近似数四舍五入到哪一位,就称这个近似数精确到哪一位.例.π≈3 (精确到个位) π≈3.1 (精确到0.1, 或叫做精确到十分位)π≈3.14(精确到0.01, 或叫做精确到百分位)π≈3.141(精确到 , 或叫做精确到 .)π≈3.1416(精确到 , 或叫做精确到 .)(2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字.一个近似数有几个有效数字就称这个近似数保留几个有效数字.例题:用四舍五入法对下列各数取近似数. ①0.056846(保留4个有效数字) ②4672164(保留5个有效数字) ③2.5(保留3个有效数字) ④0.005876(保留3个有效数字)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28. 已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求 29. 计算:(-24 19 )×2.5×(-8). |a| |b| |c| + + 的值.
a
b
c
20
30. 如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示 的有理数是5的相反数,按要求完成下列各小题. (1)请在数轴上标出点B和点C; (2)求点B所表示的有理数与点C所表示的有理数的乘积; (3)若将该数轴进行折叠,使得点A和点B重合,则点C和数 31. 阅读理解: 计算(1+ 1 + 1 + 1 ) ×( 1 + 1 + 1 + 1 ) -(1+ 1 + 1 + 1 + 1 ) ×( 1 + 1 + 1 ) 时,若把( 1 + 1 + 1 + 1 ) 与( 1 + 1 + 1 ) 分别各看着一个整体,再利 所表示的点重合.
7
7
7
34. 非零有理数a,b,如果a>b,ab<0,且|a|<|b|,则你能比较a,b,-a,-b这四个数的大小吗? 35. 设有理数a<b<c,且a+b+c=0,试判断a+b和b+c的符号.(可以先试上几次,得到猜想后再说明理由)
36. 如图是一个3×3的方格,请你把-1,2,-3,4,-5,6,-7,8,-9分别填在这些方格中,使每行、每列、对 角线上的三个数的乘积都是负数.
32. 观察: 等式(1)2=1×2 等式(2)2+4=2×3=6 等式(3)2+4+6=3×4=12 等式(4)2+4+6+8=4×5=20 (1)仿此:请写出等式(5) (2)按此规律计算: ①2+4+6+…+34= ②求28+30+…+50的值. 33. 计算:(-5)×(-36 )+(-7)×(-3 6 )-(-12)×(-36 ) ; ;…,等式(n) .
3. 对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是( ) A. a<0,b<0 B. a>0,b<0且|b|<a C. a<0,b>0且|a|<b D. a>0,b<0且|b|>a
4. 给出以下几个判断,其中正确的是( ) ①两个有理数之和大于其中任意一个加数;②减去一个负数,差一定大于被减数; ③一个数的绝对值一定是正数; ④若m<0<n,则mn<n-m. A. ①③ B. ②④ C. ①② D. ②③④
13. 古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为 . . . 14. 已知a,b都不是零,写出x= a + b + ab 的所有可能的值 |a| |b| |ab| 15. 按如图程序计算,如果输入的数是-2,那么输出的数是
5. 正整数x、y满足(2x-5)(2y-5)=25,则x+y等于( ) A. 18或10 B. 18 C. 10 D. 26
6. 已知abc>0,a>c,ac<0,下列结论正确的是( ) A. a<0,b<0,c>0 B. a>0,b>0,c<0 C. a>0,b<0,c<0 D. a<0,b>0,c>0
.
21. 若a,b,c,d四个数的积为正数,则这四个数中正数有 22. 有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=
23. 若x=123456789×123456786,y=123456788×123456787,则x 24. 几个不等于零的数相乘,积的符号由 负,并把绝对值相乘. 决定,当
7. 四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=( ) A. 0 B. 1 C. 2 D. 3
8. 一个有理数和它的相反数之积( ) A. 一定为正数 B. 一定为负数 C. 一定为非负数 D. 一定为非正数
9. 五个有理数中有三个是负数,则这五个数的积为( ) A. 负数 B. 正数 C. 非负数 D. 非正数
时,积为
解答题
25. 用简便算法计算下列各题. (1)(- 1 + 1 - 1 + 1 )×(-24)
4 6 8 12 (2)99 8 ×(-13) . 9
26. 用简便方法计算
(1)-3923 ×(-12)
24 (2)( 2 - 1 - 1 )×(-60) 3 12 15
27. 设[x]表示不大于的所有整数中最大的整数,例如:[1.7]=1,[-1.7]=-2,根据此规定,完成下列运算: (1)[2.3]-[6.3] (2)[4]-[-2.5] (3)[-3.8]×[6.1] (4)[0]×[-4.5].
有理数的乘法
选择题
1. 现有四种说法: ①几个有理数相乘,当负因数有奇数个时,积为负; ②几个有理数相乘,积为负时,负因数有奇数个; ③当x<0时,|x|=-x; ④当|x|=-x时,x<0. 其中正确的说法是( ) A. ②③ B. ③④ C. ②③④ D. ①②③④
2. 如图,要使输出值y大于100,则输入的最小正整数x是( ) A. 19 B. 20 C. 21 D. 22
10. 下列说法: |a| (1)若 =-1,则a<0
a
(2)若a,b互为相反数,则an与bn也互为相反数 (3)a2+3的值中最小的值为3 (4)若x<0,y>0,则|xy-y|=-(xy-y) 其中正确的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个
上,若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前 一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前200位的所有数字之和是 ( ) A. 994 B. 995 C. 998 D. 999来自填空题2 3 4
2 3 4 5
2 3 4 5
2 3 4
2 3 4 5
2 3 4
用分配律进行运算,可以大大简化难度.过程如下: 解:设( 1 + 1 + 1 ) 为A,( 1 + 1 + 1 + 1 ) 为B,
2 3 4
2 3 4 5
则原式=B(1+A)-A(1+B)=B+AB-A-AB=B-A= 1 .请用上面方法计算:
16. 如果4个不等的偶数m,n,p,q满足(3-m)(3-n)(3-p)(3-q)=9,那么m+n+p+q等于 17. 如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是 18. 绝对值不大于3的所有整数的积是 19. 若ab>0,bc<0,则ac 20. 若mn<0,m+n<0,n>0,则|m| 0. |n| 个. . y (填>,<或=) 时,积为正,当 . .
5 ①(1+ 1 + 1 + 1 + 1 + 1 )( 1 + 1 + 1 + 1 + 1 + 1 ) -(1+ 1 + 1 + 1 + 1 + 1 + 1 )( 1 + 1 + 1 + 1 + 1 ) 2 3 4 5 6 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 ②(1+ 1 + 1 …+ 1 )( 1 + 1 …+ 1 )-(1+ 1 + 1 …+ 1 ) ( 1 + 1 …+ 1 ) . 2 3 n 2 3 n+1 2 3 n+1 2 3 n
11. 若x+y<0,xy<0,x>y,则有( ) A. x>0,y<0,|x|>|y| B. x>0,y<0,|y|>|x| C. x<0,y>0,|x|>|y| D. x<0,y>0,|y|>|x|
12. 下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位