因式分解解析

合集下载

初中数学——因式分解

初中数学——因式分解

因式分解【知识梳理】● 因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式→几个整式的积例:111()333ax bx x a b +=+ 因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘; (3)因式分解的最后结果应当是“积”的形式。

【例题】判断下面哪项是因式分解:因式分解的方法 ● 提公因式法:定义:如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,从而将多项式化成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

---------⎧⎪⎨⎪⎩系数取各项系数的最大公约数字母取各项都含有的字母指数取相同字母的最低次幂(指数) 【例题】333234221286a b c a b c a b c -+的公因式是.【解析】从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分33323422,,a b c a b c a b c 都含有因式32a b c ,故多项式的公因式是232a b c .小结提公因式的步骤:第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

【基础练习】1.ax 、ay 、-ax 的公因式是__________;6mn 2、-2m 2n 3、4mn 的公因式是__________. 2.下列各式变形中,是因式分解的是() A .a 2-2ab +b 2-1=(a -b )2-1 B .)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)3.将多项式-6x 3y 2+3x 2y 2-12x 2y 3分解因式时,应提取的公因式是() A .-3xy B .-3x 2yC .-3x 2y 2D .-3x 3y 34.多项式a n -a 3n +a n+2分解因式的结果是()A .a n (1-a 3+a 2)B .a n (-a 2n +a 2)C .a n (1-a 2n +a 2)D .a n (-a 3+a n )5.把下列各式因式分解: 5x 2y +10xy 2-15xy 3x (m -n )+2(m -n ) 3(x -3)2-6(3-x )y (x -y )2-(y -x )3 -2x 2n -4x n x (a -b )2n +xy (b -a )2n+16.应用简便方法计算:(1)2012-201(2)4.3×199.8+7.6×199.8-1.9×199.8(3)说明3200-4×3199+10×3198能被7整除.【提高练习】1.把下列各式因式分解:(1)-16a 2b -8ab =________________________;(2)x 3(x -y )2-x 2(y -x )2=________________________. 2.在空白处填出适当的式子:(1)x (y -1)-()=(y -1)(x +1); (2)=+c b ab 3294278()(2a +3bc ). 3.如果多项式x 2+mx +n 可因式分解为(x +1)(x -2),则m 、n 的值为()A .m =1,n =2B .m =-1,n =2C .m =1,n =-2D .m =-1,n =-24.(-2)10+(-2)11等于()A .-210B .-211C .210D .-25.已知x ,y 满足⎩⎨⎧=-=+,13,62y x y x 求7y (x -3y )2-2(3y -x )3的值.6.已知x +y =2,,21-=xy 求x (x +y )2(1-y )-x (y +x )2的值7.因式分解:(1)ax +ay +bx +by ;(2)2ax +3am -10bx -15bm .● 运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

八年级因式分解难题

八年级因式分解难题

八年级因式分解难题一、基础概念类。

1. 分解因式:x^2-4y^2解析:这是一个平方差公式的应用,a^2-b^2=(a + b)(a b),在这里a=x,b =2y,所以x^2-4y^2=(x+2y)(x 2y)。

2. 分解因式:9x^2-16解析:同样是平方差公式,9x^2=(3x)^2,16 = 4^2,所以9x^2-16=(3x + 4)(3x-4)。

二、提取公因式与公式结合类。

3. 分解因式:2x^3-8x解析:首先提取公因式2x,得到2x(x^2-4),然后x^2-4可以继续用平方差公式分解为(x + 2)(x-2),所以2x^3-8x=2x(x + 2)(x 2)。

4. 分解因式:3x^2y-6xy + 3y解析:先提取公因式3y,得到3y(x^2-2x + 1),而x^2-2x + 1=(x 1)^2,所以3x^2y-6xy + 3y=3y(x 1)^2。

三、完全平方公式类。

5. 分解因式:x^2+6x + 9解析:这是完全平方公式(a + b)^2=a^2+2ab+b^2的形式,在这里a=x,b = 3,所以x^2+6x + 9=(x + 3)^2。

6. 分解因式:4x^2-20x+25解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 2x,b=5,所以4x^2-20x + 25=(2x 5)^2。

四、较复杂的综合类。

7. 分解因式:x^4-81解析:可以先将x^4-81看作(x^2)^2-9^2,根据平方差公式得到(x^2+9)(x^2-9),而x^2-9还可以继续分解为(x + 3)(x-3),所以x^4-81=(x^2+9)(x + 3)(x 3)。

8. 分解因式:x^3+2x^2-9x-18解析:分组分解,将式子分为(x^3+2x^2)-(9x + 18),分别提取公因式得到x^2(x + 2)-9(x + 2),再提取公因式(x + 2)得到(x + 2)(x^2-9),最后x^2-9=(x + 3)(x-3),所以x^3+2x^2-9x-18=(x + 2)(x + 3)(x 3)。

因式分解讲解

因式分解讲解

因式分解讲解一、辅导内容提取公因式法、公式法、分组分解法、十字相乘法四种基本方法的掌握。

二、学习指导因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。

重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。

难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

三、考点阐述考点1 提公因式法和公式法 常用公式:(1)))((22b a b a b a +-=- (2)222)(2b a b ab a ±=+± (3)))((2233b ab a b a b a +-+=+ (4)))((2233b ab a b a b a ++-=- 补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。

提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。

②当某项完全提出后,该项应为“1”③注意()()n na b b a 22-=-,()()1212++--=-n n a b b a④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。

答案:(1)()()y x y x xy -+; (2)()233-x x ;(3)()()21--x x ; (4)()()y x y x -+-222考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。

初中数学因式分解技巧实例解析

初中数学因式分解技巧实例解析

初中数学因式分解技巧实例解析因式分解是整数因式分解的简称,是指将一个整数写成几个因数的乘积的形式。

因式分解是数学中的一种基本运算方法和基本思维方式。

下面我们通过一些实例来解析初中数学因式分解的技巧。

1.因式分解法首先,我们来看一个简单的例子:将整数12分解为两个因数的乘积。

解法:由于12可以被2整除,所以可以将12分解为2和6的乘积。

然后,分解6为2和3的乘积。

所以,12可以分解为2×2×3的乘积。

这种方法叫做因式分解法。

2.最大公因数法最大公因数法是寻找最大公因数的方法。

例如,将整数20分解为两个因数的乘积。

解法:首先,找出20的所有因数,即1、2、4、5、10和20。

然后,寻找这些因数中和20的最大公因数,即可将20分解为两个因数的乘积。

所以,20可以分解为4×5的乘积。

这种方法叫做最大公因数法。

3.提取公因式法提取公因式法常用于多项式的因式分解中。

例如,将多项式4x+8分解为两个因式的乘积。

解法:首先,将多项式中各项的系数4提取出来,得到4(x+2)。

所以,4x+8可以分解为4(x+2)的乘积。

这种方法叫做提取公因式法。

4.平方差公式平方差公式常用于两个平方数之间的因式分解。

例如,将差的平方:9x^2-16分解为两个因式的乘积。

解法:首先,根据平方差公式9x^2-16=(3x-4)(3x+4)。

所以,9x^2-16可以分解为(3x-4)(3x+4)的乘积。

这种方法叫做平方差公式。

5.完全平方公式完全平方公式常用于一个二次多项式的因式分解。

例如,将二次多项式:x^2+6x+9分解为两个因式的乘积。

解法:首先,根据完全平方公式x^2+6x+9=(x+3)^2所以,x^2+6x+9可以分解为(x+3)^2的乘积。

这种方法叫做完全平方公式。

以上是一些初中数学因式分解的技巧实例解析。

通过这些例子,我们可以发现因式分解在解决数学问题中起到了重要的作用。

掌握这些技巧,可以帮助我们更好地理解数学问题,从而提高解题能力。

专题04 因式分解篇(解析版)

专题04 因式分解篇(解析版)

专题04 因式分解考点一:因式分解1. 因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。

2. 因式分解的方法:①提公因式法:()cbamcmbmam++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。

若多项式首项是负的,则公因式为负。

用各项除以公因式得到另一个式子。

②公式法:平方差公式:()()bababa-+=-22。

完全平方公式:()2222bababa±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。

对于一个二次三项式cbxax++2,若满足21aaa⋅=,21ccc⋅=,且bcaca=+1221,那么二次三项式cbxax++2可以分解为:()()22112cxacxacbxax++=++。

当1=a时,二次三项式是cbxx++2,此时只需21ccc⋅=,且bcc=+21,则cbxx++2可分解为:()()212cxcxcbxx++=++。

④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。

(分组分解法一般针对四项及以上的多项式)3. 因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。

(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。

四项及以上则考虑分组分解。

(3)检查因式分解是否分解完全。

必须分解到不能分解位置。

再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。

1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•永州)下列因式分解正确的是( )A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)【分析】根据因式分解的定义和因式分解常用的两种方法:提公因式法和公式法判断即可.【解答】解:A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意;故选:B.3.(2022•湘西州)因式分解:m2+3m= .【分析】直接利用提取公因式法分解因式即可.【解答】解:原式=m(m+3).故答案为:m(m+3).4.(2022•广州)分解因式:3a2﹣21ab= .【分析】直接提取公因式3a,进而分解因式得出答案.【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).5.(2022•常州)分解因式:x2y+xy2= .【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).6.(2022•柳州)把多项式a2+2a分解因式得( )A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故选:A.7.(2022•菏泽)分解因式:x2﹣9y2= .【分析】直接利用平方差公式分解因式得出答案.【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).8.(2022•烟台)把x2﹣4因式分解为 .【分析】利用平方差公式,进行分解即可解答.【解答】解:x2﹣4=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2= .【分析】直接利用平方差公式将原式变形,代入得出答案.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.11.(2022•衡阳)因式分解:x2+2x+1= .【分析】本题运用完全平方公式进行因式分解即可.【解答】解:x2+2x+1=(x+1)2,故答案为:(x+1)2.12.(2022•济南)因式分解:a2+4a+4= .【分析】利用完全平方公式进行分解即可.【解答】解:原式=(a+2)2,故答案为:(a+2)2.13.(2022•宁波)分解因式:x2﹣2x+1= .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣2)2.故选:D.15.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.16.(2022•绵阳)因式分解:3x3﹣12xy2= .【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).17.(2022•丹东)因式分解:2a2+4a+2= .【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.18.(2022•辽宁)分解因式:3x2y﹣3y= .【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:3x2y﹣3y=3y(x2﹣1)=3y(x+1)(x﹣1),故答案为:3y(x+1)(x﹣1).19.(2022•恩施州)因式分解:a3﹣6a2+9a= .【分析】先提公因式a,再利用完全平方公式进行因式分解即可.【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022= .【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.21.(2022•常德)分解因式:x3﹣9xy2= .【分析】利用提公因式法和平方差公式进行分解,即可得出答案.【解答】解:x3﹣9xy2=x(x2﹣9y2)=x(x+3y)(x﹣3y),故答案为:x(x+3y)(x﹣3y).22.(2022•怀化)因式分解:x2﹣x4= .【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?( )A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.24.(2022•内江)分解因式:a4﹣3a2﹣4= .【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是 .【分析】将a2b+ab2因式分解,然后代入已知条件即可求值.【解答】解:a2b+ab2=ab(a+b),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.。

因式分解的高级方法(解析版)

因式分解的高级方法(解析版)

因式分解的高级方法一.双十字相乘法1.双十字相乘法原理计算()()22235316731385x y x y x xy y x y -++-=--++-.从计算过程可以发现,乘积中的二次项22673x xy y --只和乘式中的一次项有关,而与常数项无关;乘积中的一次项138x y +,只和乘式中的一次项及常数项有关系;乘积中的常数项,只和乘式中的常数项有关系。

2.所以运用双十字乘法对22Ax Bxy Cy Dx Ey F +++++型的多项式分解因式的步骤: (1)用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数在第二个十字中交叉之积之和,等于原式中含y 的一次项的系数E ,同是还必须与第一个十字中左列的两个因数交叉相乘,使其交叉之积之和等于原式中含x 的一次项的系数D . 二.对称式与轮换对称式【定义1】一个n 元代数式12()n f x x x g g g ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =g g g g g g g g g g g g g g g g g g ,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

专题复习:因式分解

专题复习:因式分解

专题因式分解☞解读考点☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( ) A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x - C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( )A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 5.(2015临沂)多项式2mxm -与多项式221x x -+的公因式是()A .1x -B .1x +C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A 0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用. 11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式. 12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用. 16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除? 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A 、x2+2x+1=x (x+2)+1,不是因式分解,故错误;B 、(x2﹣4)x=x3﹣4x ,不是因式分解,故错误;C 、ax+bx=(a+b )x ,是因式分解,故正确;D 、m2﹣2mn+n2=(m ﹣n )2,故错误.故选C . 考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 2.(2014年海南中考)下列式子从左到右变形是因式分解的是( ) A .()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+C .()()2a 3a 7a 4a 21-+=+-D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= . 【答案】()()x x 2x 2+-. 【解析】 试题分析:()()()32x 4x x x 4x x 2x 2-=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x (x ﹣3)﹣9= 【答案】(x ﹣3)(4x+3). 【解析】试题分析: x2+3x (x ﹣3)﹣9=x2﹣9+3x (x ﹣3)=(x ﹣3)(x+3)+3x (x ﹣3)=(x ﹣3)(x+3+3x ) =(x ﹣3)(4x+3). 考点:因式分解.5.(2014年徐州中考)若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2. 【解析】试题分析:∵ab=2,a ﹣b=﹣1,∴a2b ﹣ab2=ab (a ﹣b )=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x -=__________________.【答案】x (y+5)(y ﹣5). 【解析】试题分析:原式=x (y2﹣25)=x (y+5)(y ﹣5). 考点:提公因式法与公式法的综合运用. 7.(2014年绍兴中考)分解因式:2aa - = .【答案】()a a 1-.【解析】 试题分析:()2a a a a 1-=-.考点:提公因式法因式分解. 8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解. 9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念. 归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂. 提取公因式法:ma +mb -mc=m (a+b-c ) 注意问题归纳: 提公因式要注意系数; 要注意查找相同字母,要提净.【例2】若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a 3ab += .【答案】()a a 3+.【解析】()2a 3ab a a 3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50 【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数. 4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= . 【答案】2(x ﹣8)(x+2). 【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2). 考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ). 【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用. 6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+. 【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+.考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a = .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2. 【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2.考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= . 【答案】ab (a-b )2. 【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2.考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a(x+y)(x-y).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a (x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a (2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

因式分解实例解析

因式分解实例解析

因式分解实例解析
因式分解是数学中常见的一个概念,用于将一个多项式拆解成为更简单的几个因子相乘的形式。

在本文中,我们将通过一些实例来解析因式分解的过程和方法。

例1:因式分解二次多项式
给定一个二次多项式:x^2 + 5x + 6,我们希望将其因式分解。

解析:
首先,我们需要寻找两个乘积为6且加和为5的数,我们可以很容易地找到这两个数是2和3。

因此,我们可以将二次多项式分解为 (x + 2)(x + 3)。

例2:因式分解差平方多项式
给定一个差平方多项式:a^2 - b^2,我们希望将其因式分解。

解析:
根据差平方公式,我们知道 a^2 - b^2 可以分解为 (a + b)(a - b)。

因此,我们可以将差平方多项式分解为 (a + b)(a - b)。

例3:因式分解含有公因式的多项式
给定一个多项式:2x^2 + 6x,我们希望将其因式分解。

解析:
首先,我们可以看到这个多项式可以因式分解为公因式 2x,因此,我们可以将其分解为 2x(x + 3)。

总结:
通过以上实例的解析,我们可以看到,因式分解是将多项式拆
解为更简单的因子相乘的过程。

在因式分解时,我们需要寻找适合
的方法和技巧,例如找出乘积为给定常数且加和为给定系数的两个数,或者利用差平方公式等。

同时,我们还可以利用公因式进行因
式分解。

因式分解在数学中有着广泛的应用,在解题和简化计算过程中起到了重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=2x(x2-2x)-3x2+4x-2017,
=6x-3x2-2017,
=-3(x2-2x)-2017
=-3-2017
=-2020
故选D.
【点睛】
本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.
11.不论 , 为任何实数, 的值总是()
A.正数B.负数C.非负数D.非正数
A.2xB.-2xC.2x-1D.-2x-l
【答案】C
【解析】
【分析】
根据题意,提取公因式-3xy,进行因式分解即可.
【详解】
解:原式=-3xy×(4y-2x
本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.
16.下列分解因式错误的是().
A. B.
C. D.
【答案】B
【解析】
【分析】
利用因式分解的定义判断即可.
【详解】
解:A. ,正确;
B. ,所以此选项符合题意;
C. ,正确;
D. ,正确
故选:B.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.
17.下列各式从左到右的变形中,是因式分解的为( )
因式分解解析
一、选择题
1.下列变形,属于因式分解的有( )
①x2﹣16=(x+4)(x﹣4);②x2+3x﹣16=x(x+3)﹣16;③(x+4)(x﹣4)=x2﹣16;④x2+x=x(x+1)
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
【详解】
解:①x2-16=(x+4)(x-4),是因式分解;
解:

∴x=2019
故选:B.
【点睛】
本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.
5.下列各式分解因式正确的是()
A. B.
C. D.
【答案】D
【解析】
【分析】
利用提公因式法、十字相乘法法分别进行分解即可.
【详解】
A. ,故此选项因式分解错误,不符合题意;
【详解】
A. 只有两项,不符合完全平方公式;
B. 其中 、-1不能写成平方和的形式,不符合完全平方公式;
C. ,其中 与 不能写成平方和的形式,不符合完全平方公式;
D. 符合完全平方公式定义,
故选:D.
【点睛】
此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.
10.若实数 满足 ,则 的值为( )
B. ,故此选项因式分解错误,不符合题意;
C. ,故此选项因式分解错误,不符合题意;
D. ,故此选项因式分解正确,符合题意.
故选:D
【点睛】
本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.
【答案】D
【解析】
【分析】
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.
【详解】
①是单项式的变形,不是因式分解;
②是多项式乘以多项式的形式,不是因式分解;
③左侧是多项式加减,右侧也是多项式加减,不是因式分解;
④符合因式分解的定义,结果是整式的积,因此D正确;
故选D.
【点睛】
本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.
19.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2B.﹣1C.1D.2
【答案】C
【解析】
【分析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
【详解】
解:A、是整式的乘法运算,故选项错误;
B、右边不是积的形式,故选项错误;
C、x2-1=(x+1)(x-1),正确;
D、等式不成立,故选项错误.
故选:C.
【点睛】
熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.
3.多项式x2y(a-b)-xy(b-a)+y(a-b)提公因式后,另一个因式为( )
A. B. C. D.
【答案】B
【解析】
解:x2y(a-b)-xy(b-a)+y(a-b)=y(a-b)(x2+x+1).故选B.
4.已知 ,那么 的值为()
A.2018B.2019C.2020D.2021.
【答案】B
【解析】
【分析】
将 进行因式分解为 ,因为左右两边相等,故可以求出x得值.
【详解】
B.x2+2x﹣1无法因式分解,故B错误;
C.4x2﹣4x+1=(2x﹣1)2,故C正确;
D、x3﹣4x= x(x﹣2)(x+2),故D错误.
故选:C.
【点睛】
此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.
13.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )
14.若 为 三边,且满足 ,则 的形状是()
A.直角三角形B.等腰三角形C.等腰直角三角形D.以上均有可能
【答案】D
【解析】
【分析】
把已知等式左边分解得到 , =0或 =0,即a=b或 ,然后根据等腰三角形和直角三角形的判定方法判断.
【详解】
因为 为 三边,
所以
所以 =0或 =0,即a=b或
所以 的形状是等腰三角形、等腰三角形、等腰直角三角形
12.下列各因式分解正确的是( )
A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)
【答案】C
【解析】
【分析】
分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.
【详解】
A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.
【详解】
A.属于整式的乘法运算,不合题意;
B.符合因式分解的定义,符合题意;
C.右边不是乘积的形式,不合题意;
D.右边不是几个整式的积的形式,不合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.
②x2+3x-16=x(x+3)-16,不是因式分解;
③(x+4)(x-4)=x2-16,是整式乘法;
④x2+x=x(x+1)),是因式分解.
故选B.
2.下列各式从左到右的变形中,是因式分解的为().
A. B.
C. D.
【答案】C
【解析】
【分析】
根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
7.若 ,则 的值为()
A.-2B.2C.8D.-8
【答案】B
【解析】
【分析】
利用十字相乘法化简 ,即可求出 的值.
【详解】


解得
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
8.已知 , , 满足 , ,则 ().
A.0B.3C.6D.9
【答案】D
【解析】
【分析】
将等式变形可得 , , ,然后代入分式中,利用平方差公式和整体代入法求值即可.
6.将 进行因式分解,正确的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
多项式 有公因式 ,首先用提公因式法提公因式 ,提公因式后,得到多项式 ,再利用平方差公式进行分解.
【详解】

故选:C.
【点睛】
此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;
C、等式左边是单项式,不是因式分解,故本选项错误;
D、符合因式分解的定义,故本选项正确.
故选D.
【点睛】
本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
18.下列从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
【答案】B
【解析】
C. ,正确;
D. ,故此选项错误.
故选:C
【点睛】
此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.
【答案】A
【解析】
x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,
不论x,y为任何实数,x²+y²-4x-2y+8的值总是大于等于3,
相关文档
最新文档