三角函数求最值的几种解题策略
三角函数最值的求解策略(解析版)

三角函数最值的求解策略【高考地位】三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。
解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。
求三角函数的最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】方法一 化一法使用情景:函数表达式形如 f (x )a sin 2 xb cos 2 xc sin x cos xd 类型解题模板:第一步 运用倍角公式、三角恒等变换等将所给的函数式化为形如 ya sin xb cos xc 形式;第二步 利用辅助角公式a sin x b cos xa sin(x) 化为只含有一个函数名的形式;第三步 利用正弦函数或余弦函数的有界性来确定三角函数的最值.x4x cos4例1 已知函数 fx 在 x 0 ,2上的最x,则 f大值与最小值之差为 .【答案】3i n 2 2 s i n x2x66 , 76,即为换元思想,把2x6 看作一个整体,利用 ysin x 的单调性即可得出最值,这是解决 y a sin xb sin x 的常用做法.【变式演练1】设当x时,函数 f (x )2sin xcos x 取得最大值,则cos__________.【变式演练2】已知函数 f (x ) 4cos x sin(x )1(0) 的最小正周期是.6(1)求 f (x ) 的单调递增区间;3(2)求 f (x ) 在[ , ]上的最大值和最小值.【答案】58 8【答案】(1) 6 k , 3k k Z ; (2) 最大值2 、最小值 622所以 f x 在8 , 38上的最大值和最小值分别为2 、 6 2 2 .考点:1、三角函数的恒等变换;2、函数 yA sinx 的性质;【变式演练3】已知函数 f (x ) sin xa cos x 图象的一条对称轴是 x,且当 x(2) 当 3,88x时, 72,612 12x2sin 262fx x,4时,函数g(x) sin x f (x) 取得最大值,则cos.【答案】5【解析】考点:1、三角函数的图象与性质;2、三角恒等变换.2 x sin2 x) 2cos2(x ) 1的定义域为[0,]. 【变式演练4】已知 f (x) 3(cos4 2 (1)求 f (x) 的最小值.(2)ABC中, A 45 ,b 32 ,边a的长为函数3 3 f (x) 的最大值,求角 B 大小及ABC的面积.【答案】(1)函数 f (x) 的最小值 3 ;(2) ABC的面积S 9(3 1) .【解析】考点:1、三角恒等变形;2、解三角形.x x) 3cos 2 x 3 .【变式演练5】已知函数 f (x) cos(2(I)求 f (x) 的最小正周期和最大值;2(II)求 f (x) 在[ , ]上的单调递增区间.6 3【答案】(I) f (x) 的最小正周期为,最大值为1;(II)[, 5].6 12【解析】试题分析:(I )利用三角恒等变换的公式,化简 f x sin(2x ) ,即可求解 f (x )35的最小正周期和最大值;(II )由 f (x ) 递增时,求得kx k(kZ ),12125即可得到 f (x ) 在[ , ]上递增.6 12 试题解析: f (x ) (-cos x )()31cos2x 3221sin2x3 cos2x sin(2x)223(I ) f (x ) 的最小正周期为,最大值为1;(II ) 当 f (x ) 递增时,2k2x 2k (k Z ),2 325即kxk(kZ ),12125 所以, f(x ) 在[ ,]上递增 6 12 25即 f (x ) 在[ , ]上的单调递增区间是[ , ]6 3 6 12考点:三角函数的图象与性质.方法二 配方法使用情景:函数表达式可化为只含有一个三角函数的式子 解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步 利用函数单调性求解三角函数的最值. 第三步 得出结论.例2 函数 f (x ) cos 2x2sin x 的最小值为.函数 ycos 2 xa sin xa 22 a5有最大值2,【变式演练6】已知求实数a 的值.【答案】 a【解析】 试题分析: ysin 2 x a sin x a 2 2 a 6 ,令sin x t ,t 1,1,则 yt 2ata 22 a6 ,对称轴为ta ,【答案】考点:三角函数的最值.【点评】解本题的关键是利用换元法转化为关于sin x的二次函数,根据sin x 的取值范围[-1,1],利用对称轴进行分类讨论求出最大值,解出a的值.【变式演练7】函数 f x sin x cos x 2sin x cos x x4, 4 的最小值是__________.【答案】1【解析】f(x)=sinx+cosx+2sinxcosx,x∈ 4 , 4 ,化简f(x)=(sinx+cosx)2+sinx+cosx﹣1设sinx+cosx=t,则t=2sin(x)x+ ,那么函数化简为:g(t)=t2+t﹣1.∵x∈ 4 , 4t 1.∵函数g(t)=t2+t﹣1.∴x+ ∈[0,],所以:04 21开口向上,对称轴t=-,∴0 t 1是单调递增.2当t=0时,g(t)取得最小值为-1.求函数y 74sin x cos x4cos2 x4cos4 x的最大值与最小值.方法三直线斜率法使用情景:函数表达式可化为只含有一个三角函数的式子解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步利用函数单调性求解三角函数的最值.第三步得出结论.【点评】若函数表达式可化为形如 yat t 21(其中t 1,t 2 为含有三角函数的式子), b则通过构造直线的斜率,通过数与形的转化,利用器几何意义来确定三角函数的最值.【高考再现】) f (x )1.【2017全国III 文,6】函数的最大值为(例 3 求函数2 sin2 cosx yx的最值 .【答案】2 sin 2 cosx y x的最大值为4 3,最小值为 4 3.【变式演练 8 】求函数 21sin 1 sinx yx在区间 [0,) 2上的最小值 . 【答案】 1sin(x )cos(x )A. B.1C.D.【答案】A所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y A sin(x )B的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征2.【2016高考新课标1卷】已知函数 f (x )sin(x+)(0,),x 为24418,536单调,则的最大 f (x ) 的零点, x为 y f (x ) 图像的对称轴,且 f (x ) 在值为( )(A )11 (B )9(C )7 (D )5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖, 是一道考查能力的好题.注意本题解法中用到的两个结论:① fx A sin x A 0,0的单调区间长度是半个周期;②若 f xA sinx A0,0的图像关于直线 xx 0 对称,则 fx 0A 或fx 0A .3. 【2016年高考北京理数】将函数 ysin(2x ) 图象上的点P ( ,t ) 向左平移s3 4(s 0 ) 个单位长度得到点P ',若P '位于函数 ysin2x 的图象上,则()A.t1 ,s 的最小值为B.t 3,s 的最小值为2626C.t1,s 的最小值为D.t3,s 的最小值为2 323【答案】A 【解析】试题分析:由题意得,t sin(2) 1,故此时P '所对应的点为(,1) ,此4 3212 2时向左平移 - 个单位,故选A.4 126考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换4.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数 y 3sin(x )k ,据此函数可知,这段时间水深(单位:m )的最大值6为( )A .5B .6C .8D .10【答案】C5.【2015高考安徽,理10】已知函数 f xsinx(,,均为正的常数)的最小正周期为,当 x2时,函数 fx取得最小值,则下列结论正3 确的是( )(A ) f2f2f(B ) f 0 f 2 f2(C ) f2ff2(D ) f 2 f 0 f2【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出,通过最值判断出,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.6.【2015高考湖南,理9】将函数f (x) sin 2x的图像向右平移(0 )个单2位后得到函数g(x) 的图像,若对满足 f(x1) g(x2) 2 的x1,x2,有x1x2 min ,3 则()5 A. B. C. D.12 3 4 6【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以f (x) A sin(x ) 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.7.【2017全国II文,13】函数f (x) 2cos x sin x 的最大值为 .【答案】1 【解析】试题分析:化简三角函数的解析式:f x 1cosx 3cosxcos x 3cos x14 cos x2321,x 0,2可得:cos x0,1,当cos x3时,函数 f x 取得最大值1。
高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。
其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。
两倍角的正弦、余弦、正切。
、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。
要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。
了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。
由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。
2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。
每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。
总的分值为 15 分左右,占全卷总分的约 10 左右。
( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。
根据图象求函数的表达式,以及三角函数图象的对称性。
如 2000 年第( 5 )题、( 17 )题的第二问。
( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。
如 2002 年( 15 )题。
( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。
一般要先对已知的函数式变形,化为一角一函数处理。
如 2001 年( 7 )题。
( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。
( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。
概述初中数学三角函数值的计算方法

概述初中数学三角函数值的计算方法1三角函数求值的计算方法1.1利用三角函数的定义1.2 三角函数具有六种基本函数:正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y1.3 一些特殊的三角函数值:Sin=1/2; sin=;sin=Cos=;cos=;cos=1/2tan=;tan=1;tan=1.4 三角函数的基本展开公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos (A+B) = cosAcosB-sinAsinBcos (A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2 三角函数求最值最近几年,高考三角函数的题型由原来的恒等式证明改为求值,常见题型有三种:给出一个比较简单的三角函数式的值,求一个比较复杂的三角函数式的值;考察三角变换问题;三角形中的求值问题。
解上述三种类型题应注重四点:要严格讨论角的范围;选择的公式与解题方向必须吻合;要熟悉变换方向;要掌握变换技巧。
三角函数的最值有以下几种求法:利用二次函数求最值,利用三角函数的有界性求最值,换元法求最值。
3 如何学好三角函数数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等五类。
相应地,数学学法指导的实施亦需分别落实到这五类教学之中。
这里仅就例题教学中如何实施数学学法指导谈几点认识。
3.1根据学习目标和任务精选例题例题的作用是多方面的,最基本的莫过于理解知识、应用知识、巩固知识,莫过于训练数学技能、培养数学能力、发展数学观念。
三角函数求值问题的解题思维策略

1
一
tn tn 0一 ) ‘‘ a0a( 一
1 . ∈ ( , ,a 声< .. . 0 ) tn
、 “ ”、 ’ ’
0 . ∈( , )又 o 0 丌)tn <10 ’. . - 丌 . , , 0 , y E( a E
:
0
= 3.tn( 0 一 声)= a 2
‘ “ “ 一
差 、倍 角关 系 ,或 者 题 目中 的 角存 在 着 和 、 差关 系 ,或 者题 目中的各角 的和 或差是 特殊 角 ,或者 已知条 件 中角轮换 后地 位平 等不影 响结果 等 等 .解 题时要 善 于观察 、把握 和捕
20 0 9年 第 4期
河 北理科教 学研 究
问题 讨论
l
三 角 函数 求值 问题 的解题 思维 策 略
广 东省佛 山市顺德 区容桂 职业技 术 学校 陈华安 5 8 0 2 33
\ /
—
+ _ y 0
三 角 函数 求值 问题是 三角 函数 中的基 本
问题 ,也是各 种考 试 中的常见 问题 .一般 来 说 ,解 决这些 问题 可 以从 角 的关 系 、函数 特 征 、差 异分析 、退 到特殊 化等 方面 思考解 题 策 略 ,找 出解 题 的切 入 点 .
( j) 0 声 一 ,) 2 一 = 0 , 一 ∈( 丌0, 0 声 , 2 故
3丌
4 ’
用适 当的推理运 算 ,优化 解题思 路 ,使 问题
迎 刃而解 . 1 1 找 结论 式 与 条件 式 中角 的 和 、 、 角 . 差 倍
浅谈解三角形中的最值与取值范围的解题方法

浅谈解三角形中的最值与取值范围的解题方法摘要:解三角形是高考重点考查内容,其中涉及到最值与取值范围问题,对基础一般的学生来说难度相对大点,学生比较害怕,所以本文整理了解三角形中最值与取值范围的基本解题思路,即一般情况下除了求面积最大值是用基本不等式之外,其他求最值与取值范围,化简成角的的范围去控制,转化为某一变量的函数求解基本能把问题解决.关键词:基本不等式;最值;取值范围一、化成角,转化为某一变量的函数求解(一)用正弦定理化边为角,用正弦和差角公式求解.例1.角A,B,C所对的边分别为a,b,c,且△ABC的面积 ,a=2,且A [ ],则边c的取值范围为:______________.解:由正弦定理整理得:c=A+B+C= , B= , 又a=2,∴C=﹣A,故c=== +1,又,∴1≤tan A≤,∴ 1≤≤∴c∈[2, +1].,由题得,求边的范围,化成角的范围去控制,用正弦定理,正弦的和差角公式化简,结合三角函数的图像与性质即有界性可求得结果.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若A=2B,求的取值范围.解:由正弦定理,A=2B, A+B+C= ,得:=====,A∈(0,π),∴2B∈(0,π),且A+B=3B∈(0,π),所以B∈(0,),令t=cos B,则,则f(t)=,求导得:在恒成立,故f(t)在上单调递减,所以f(1)<f(t)<f(),即,故的取值范围为.求边的范围,还是先考虑用角去控制,用正弦定理把边化为角之后,用正弦的和差角公式化简,用换元法整理后,求导化简,判断函数单调性从而求得取值范围.(二)用三角关系及正弦和差角公式求解.例3.角A,B,C所对的边分别为a,b,c且△ABC为锐角三角形,B=,则cos A+cos B+cos C的取值范围为________.解:B=,A+B+C= ,∴C=﹣A,∴cos A+cos B+cos C=cos A+cos(﹣A)+cos=cos A﹣ cos A+sin A+= cos A+ sin A+=sin(A+)+,△ABC为锐角三角形,∴<A<,∴<A+<,∴<sin(A+)≤1,∴ +<sin(A+)+≤,故所求的取值范围为(, ].例4.(2019•新课标Ⅲ)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解:(1)略;(2)∴△ABC面积S=a•1sinB=a,由正弦定理:,因为△ABC为锐角三角形,所以,∴,,所以<a<2.故△ABC面积S=a的取值范围为(,).本道题求面积的取值范围,通过整理转化求边的取值范围,然后转化为角的范围来控制.(三)用三角形的三角关系及二倍角,辅助角公式化简.例5.已知△ABC中,内角A,B,C的对边分别为a,b,c,满足,,求△ABC周长l的取值范围.解:由正弦定理得,因为所以,,, .又,所以,.所以所求△ABC周长l=a+b+c的取值范围为.求三角形周长取值范围,已知一组对边对角,用正弦定理求出2R,结合正弦的和差角公式,辅助角公式,利用三角函数的有界性控制范围,这道题可以变为求周长的最值,思路一样,此处略.二、用基本不等式求解例6.在△ABC中,A=,△ABC的面积为2,则的最小值为()A. B. C. D.==bc=2,∴bc=8,解:由题得S△ABC∴=,令t=则t>0,上式==≥2﹣=,当且仅当2t+1=2,即t=,可得b=2c,又bc=8,解得c=4,b=2时,等号成立;∴的最小值为:.故选:C.求与角有关的范围,直接用角来控制,换元后用基本不等式求解,难在需要配凑能约去的分母部分.本题也可以把角化为边,用边求解,同样用换元方法也可以,此处略.例7.△ABC的内角A,B,C的对边分别为a,b,c,已知且B为锐角,b=1,则△ABC面积的最大值为_______.,解: A+B+C= , ,,, 0 故B= .又b=1,由余弦定理b2=a2+c2﹣2ac•cos B得,当且仅当a=c时,等号成立.最值与取值范围的解题方法有多种,但是对于基础比较比较差的学生来说,方法多不一定就是好的,特别对于普通历史班中,学生基础较弱,方法多了学生还难以选择,我们可以总结最适合学生解题的一种(或者两种)方法,让学生多练习一类方法,提高解题速度,所以解三角形中很多都是化成角,变为某一变量的函数去求解,需要注意定义域范围,求面积最大值就用基本不等式即可.参考文献:1.高磊.运用一题多变探究三角形中的最值与范围问题[J].数学通讯,2020年(12);49-52.2.罗礼明.解三角形中的最值与范围问题求解策略[J].数学通讯,2020年(7);50-56.第4页(共4页)。
专题1-1 三角函数 重难点、易错点突破(含答案)

专题1-1 三角函数重难点、易错点突破(建议用时:180分钟)1 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系的巧应用.一、知一求二例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、“1”的妙用例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.2 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y =cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求: (1)函数f (x )的单调减区间;(2)函数f (x )在[-π,0]上的单调减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的对称轴方程是________.五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ=________.1 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列两个数的大小tan(-13π4)与tan(-17π5).2 三角恒等变形的几个技巧三角函数是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 3-sin 70°2-cos 210°=________. 二、化平方式例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)).三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为________.二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )________.(将正确说法的序号填上) ①在区间⎣⎡⎦⎤2π3,4π3上是单调增函数 ②在区间⎣⎡⎦⎤3π4,13π12上是单调增函数 ③在区间⎣⎡⎦⎤-π8,π4上是单调减函数 ④在区间⎣⎡⎦⎤π3,5π6上是单调减函数 五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________. 六、研究方程的实根例6 已知方程2sin ⎝⎛⎭⎫x +π4=k 在[0,π]上有两个实数根x 1,x 2,求实数k 的取值范围,并求x 1+x 2的值.2 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x 2-sin 2x的最值.例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合.二、利用正弦、余弦函数的有界性求解例3 求函数y =2sin x +12sin x -1的值域.例4 求函数y =sin x +3cos x -4的值域.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x的最值.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.易错问题盘点一、求角时选择三角函数类型不当而致错例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x的奇偶性.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.专题1-1 三角函数重难点、易错点突破参考答案1 同角三角函数关系巧应用例1 解析 由sin α=255,且sin 2α+cos 2α=1得cos α=±55, 因为π2≤α≤π,可得cos α=-55,所以tan α=sin αcos α=-2. 答案 -2点评 已知某角的弦函数值求其他三角函数值时,先利用平方关系求另一弦函数值,再求切函数值,需要注意的是利用平方关系时,若没有角度的限制,要注意分类讨论.例2 证明 因为sin 2x +cos 2x =1,所以1=(sin 2x +cos 2x )3,1=(sin 2x +cos 2x )2,所以1-sin 6x -cos 6x 1-sin 4x -cos 4x =(sin 2x +cos 2x )3-sin 6x -cos 6x (sin 2x +cos 2x )2-sin 4x -cos 4x=3sin 4x cos 2x +3cos 4x sin 2x 2sin 2x cos 2x =3(sin 2x +cos 2x )2=32. 即原命题得证.点评 本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.例3 解析 (1)因为cos α≠0,分子分母同除以cos α,得2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)2sin 2α-3cos 2α=2sin 2α-3cos 2αsin 2α+cos 2α, 因为cos 2 α≠0,分子分母同除以cos 2α,得2sin 2α-3cos 2αsin 2α+cos 2α=2tan 2α-3tan 2α+1=2×22-322+1=1. 答案 (1)-1 (2)1点评 这是一组在已知tan α=m 的条件下,求关于sin α、cos α的齐次式值的问题.解这类问题需注意以下几点:(1)一定是关于sin α、cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以分子、分母可同时除以cos n α(n ∈N +).这样可以将所求式化为关于tan α的表达式,整体代入tan α=m 的值求解.2 三角函数的性质总盘点例1解析 由题意得cos x ≥12,所以2k π-π3≤x ≤2k π+π3,k ∈Z . 即函数的定义域是[2k π-π3,2k π+π3],k ∈Z . 答案 [2k π-π3,2k π+π3],k ∈Z 点评 解本题的关键是先列出保证函数式有意义的三角不等式,然后利用三角函数的图象或者单位圆中三角函数线求解.例2 解析 因为0<x ≤π3,所以π3<x +π3≤23π,f (x )=cos x 的图象如图所示: 可知cos 23π≤cos(x +π3)<cos π3,即-12≤y <12.故函数的值域是[-12,12). 答案 [-12,12) 点评 解本题的关键是从x 的范围入手,先求得ωx +φ的范围,再结合余弦函数的图象对应得出cos(ωx +φ)的范围,从而可得函数的值域或者最值.例3 解 由f (x )=sin(π3-2x )可化为f (x )=-sin(2x -π3). 所以原函数的单调减区间即为函数y =sin(2x -π3)的单调增区间. (1)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z . 所以f (x )=sin(π3-2x )的单调减区间为[k π-π12,k π+5π12],k ∈Z . (2)在减区间[k π-π12,k π+5π12],k ∈Z 中, 令k =-1、0时,可以得到当x ∈[-π,0]时,f (x )=sin(π3-2x )的单调减区间为[-π,-7π12],[-π12,0]. 点评 解本题的关键是先把函数化为标准形式y =sin(ωx +φ),ω>0,然后把ωx +φ看做一个整体,根据y =sin x 的单调性列出不等式,求得递减区间的通解;如果要求某一个区间上的单调区间,再对通解中的k 进行取值,便可求得函数在这个区间上的单调区间.例4 解析 由T =π=2π2ω得ω=1, 所以f (x )=sin(2x -π3), 由2x -π3=π2+k π,k ∈Z ,解得f (x )的对称轴为x =5π12+k π2,k ∈Z . 答案 x =5π12+k π2,k ∈Z 点评 解本题的关键是先由周期公式求得ω的值,再解决对称轴问题,求解对称轴有两种方法:一种是直接求得函数的对称轴;另一种是根据对称轴的特征——对应的函数值为函数的最值解决.同样地,求解对称中心也有两种方法.例5 解析 函数是偶函数,所以函数关于x =0对称.由x +φ3=π2+k π,k ∈Z ,可得函数的对称轴方程是x =x 3π2+3k π-φ,k ∈Z .令3π2+3k π-φ=0,k ∈Z , 解得φ=3π2+3k π,k ∈Z ,又φ∈[0,2π),故φ=3π2. 答案 3π2点评 解本题的关键是把奇偶性转化为对称性解决:偶函数⇔函数图象关于y 轴对称;奇函数⇔函数图象关于原点对称.1 善用数学思想——巧解题例1 解析 在同一坐标系中画出y =sin x ,y =cos x ,x ∈(0,2π)的图象如图: 由图知,x ∈(π4,5π4).答案 (π4,5π4)点评 求解三角函数的方程、不等式时,通常利用函数的图象使问题变得更简单. 例2 解 角α的终边在直线3x +4y =0上, 在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t , r =x 2+y 2=(4t )2+(-3t )2=5|t |.当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34,综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34.点评 (1)若角的终边位置象限不确定,应分类讨论.(2)若三角函数值含有变量,因变量取不同的值会导致不同的结果,需要讨论.例3 解析 f (x )=3cos x -sin 2x =cos 2x +3cos x -1=(cos x +32)2-74, 设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,又函数f (t )=(t +32)2-74在[12,32]上是单调增函数,故f (t )max =f (32)=54,所以f (x )的最大值为54. 答案 54点评 遇平方关系,可想到构造二次函数,再利用二次函数求解最大值. 例4 解 tan(-13π4)=-tan π4,tan(-17π5)=-tan 2π5.因为0<π4<2π5<π2,且y =tan x 在(0,π2)上是单调增函数,所以tan π4<tan 2π5.所以-tan π4>-tan 2π5,即tan(-13π4)>tan(-17π5).点评 三角函数值比较大小问题一般将其转化到某一三角函数的一个单调区间内,然后利用三角函数的单调性比较大小.另外诱导公式的使用也充分体现了将未知化为已知的化归与转化思想.2 三角恒等变形的几个技巧例1 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.例2 解 因为α∈(3π2,2π),所以α2∈(3π4,π), 所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2.点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2.例3 解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.例4 解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3.答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比.例5 解 原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题例1 解析 根据题设中的新定义,得f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,作出函数f (x )在一个周期内的图象,如图可知函数f (x )的值域为⎣⎡⎦⎤-1,22. 答案 ⎣⎡⎦⎤-1,22点评 有关三角函数的值域的确定,常常作出函数的图象,借助于图象直观、准确地求解. 例2 解析 在同一直角坐标系内,画出y =⎝⎛⎭⎫12x及y =sin x 的图象,由图象可观察出交点个数为2. 答案 2点评 有关三角函数的交点个数的确定,常常作出函数的图象,借助于图象直观、准确求解.例3 解析 ∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3, 又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,画出函数大致图象,如图所示, ∴f (x )在π6+π32=π4处取得最小值.∴π4ω+π3=2k π-π2(k ∈Z ).∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间⎝⎛⎭⎫π6,π3内已存在最大值.故ω=143. 答案143点评 本小题考查对y =A sin(ωx +φ)的图象及性质的理解与应用,求解本题应注意两点:一是f (x )在π4处取得最小值;二是在区间⎝⎛⎭⎫π6,π3内只有最小值而无最大值,求解时作出其草图可以帮助解题.例4 解析 作出函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3的图象如图所示.由图象可知②正确. 答案 ②点评 形如f (x )=|A sin(ωx +φ)+k |(A ≠0,ω≠0)的函数性质,可作出其图象,利用数形结合思想求解. 例5 解析 作出函数y =sinπx2,y =kx 的函数图象,如图所示.当k ≤0时,显然成立;当0<k ≤1时,由图象可知: sinπx2≥kx 在[0,1]上成立.综上所述,k ≤1. 答案 (-∞,1]点评 数形结合时,函数图象要根据题目需要作得精确可信,必要时应结合计算判断.本题讨论y =kx 与y =sinπx2的图象关系时,不要忘记k ≤0的情况. 例6 解 在同一坐标系内作出函数y 1=2sin ⎝⎛⎭⎫x +π4(0≤x ≤π)与y 2=k 的图象,如图所示.当x =0时,y 1=2sin ⎝⎛⎭⎫0+π4=1. 所以当k ∈[1,2)时,两曲线在[0,π]上有两个交点,即方程有两个实数根x 1、x 2,且x 1、x 2关于x =π4对称,x 1+x 2=π2.故实数k 的取值范围是[1,2),且x 1+x 2=π2.点评 本题通过函数图象的交点个数判断方程实数根的个数,应重视这种方法.2 聚焦三角函数最值的求解策略例1 解 原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x=⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14.例2 解 原函数化简得:y =sin 2x +cos 2x +2=2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值.例3 解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.即函数的值域为⎝⎛⎦⎤-∞,13∪[3,+∞). 例4解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3, ∴sin(x +φ)=-4y -31+y 2.∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 即值域为⎣⎢⎡⎦⎥⎤-12-2615,-12+2615.点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.例5 解y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-a22-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2,2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cosx =12(1-t 2). 例7 解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0; 当t =3即sin x =1时,y max =83.例8 解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-x a sin θ, ∴x =a sin θ1+sin θcos θ, ∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t 4在区间(0,1]上是减少的, 所以当sin 2θ=1时,⎝⎛⎭⎫P Q min =94. 点评 一些复杂的三角函数最值问题,可以通过适当换元转化为简单的代数函数后,利用函数单调性巧妙解决.易错问题盘点例1 [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4. [剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π), 所以α+β=π4.温馨点评 根据条件求角,主要有两步:(1)求角的某种三角函数值;(2)确定角的范围,从而确定所求角的值.完成第一步一般要选择相对角的范围区分度比较大的三角函数,且确定范围要尽量缩小.例2 [错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系得:⎩⎪⎨⎪⎧tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π), ∴π2<α<π,π2<β<π.∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.例3 [错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,∴B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.例4 [错解] f (x )=1+sin x -cos x 1+sin x +cos x=1+2sin x 2cos x 2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x 2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x 2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错.[正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1, 即2sin ⎝⎛⎭⎫x +π4≠-1,从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π,且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 所以函数f (x )为非奇非偶函数.例5 [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数, ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z . 即θ=k π+π4,k ∈Z .[剖析] 因为x +θ与x -θ是不同的角,所以函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理.[正解] 因为f (x )=sin(x +θ)+cos(x -θ)是偶函数,所以f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0, ∴θ+π4=k π,即θ=k π-π4,k ∈Z .。
三角函数的最值问题(高三复习)课例评析

三角函数的最值问题(高三复习)课例评析江苏省南菁高级中学祁平南京师范大学谭顶良一、教学目的1.使学生能熟练运用三角函数的单调性及有界性,研究三角函数的最值问题。
2.能运用化归思想、数形结合等思想将一些较复杂的三角函数的最值问题转化为熟悉的易于解决的问题。
3.培养学生在“变化中创新”,在“比较中创新”,在“批判中创新”的能力,努力拓展学生的思维空间。
二、教学过程1.导言从近几年来的高考试卷中可以-看到,三角函数的最值问题是高考中一个重要内容(如2000年的高考第17题),在以后的复习中,我们还将看到:一些较为复杂的综合问题化归为三角函数的最值问题较为简便,下面我们一起来研究“三角函数的最值问题”(揭示课题)。
[点评] “研究”一词,摆脱了传统教育中教师是知识的“传授者”这一角色,而将教师自己置于与学生平等的地位,为学生主体性、创造性的发挥创设了良好的师生关系;同时,“研究”一词的运用,还暗含着教学不是简单的“传”与“授”过程,而是不断探索、不断创新的过程这一“创造性基本思想”。
2.例题选讲例1 ,求函数的最值。
教师审题,请学生谈思路。
学生甲:运用和差化积公式,(以下略)。
教师:有其他解法吗?学生乙:运用公式,将函数变形为(以下略)。
学生丙:观察发现函数中角与角的差恰好为,故将看成基本量,将函数化归为同一角的函数式,即为:(以下略)。
教师肯定了学生能从不同角度出发,积极探索。
[点评] 首先引导学生从多角度思考问题,寻找不同的解题思路,在此基础上启发学生比较不同的解题思路,找出最佳答案。
这种做法,既训练了学生的思维创新,又训练了学生高效的解题策略。
教师:把例1稍加改变一下,情况如何?问题1 :,求函数的最值。
学生:把看成一角,变形为(以下略)。
(说明:例1中最好的方法“解法一”在这里失效了,指出要辩证对待“巧法”。
)[点评] 通过“解法一”在例1变式问题1中的失效,使学生深刻理解并掌握“一把钥匙开一把锁,具体问题具体分析”的思维方法。
高中数学三角函数知识点解题技巧总结

高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
三角函数求最值的几种解题策略
作者:林东东
来源:《文理导航》2017年第23期
【摘要】三角函数的最值问题是高考的热点之一。
通过研讨三角最值问题的解题思路,一方面可以对与其相关的知识链起到复习巩固作用,另一方面又可以在用数学思想方法解题过程中培养自己的数学解题能力、数学思维能力。
并且这类问题综合性强,灵活性大,它往往与二次函数、三角函数图像、函数的单调性等知识联系在一起,有一定的综合性.这类问题的解决涉及到化归、转换等重要的数学思想,掌握这类问题的求解策略,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。
【关键词】三角函数;最值
一、化为的形式
例1.求函数的最大值。
∴函数f(x)的最大值为,最小值为
反思总结:利用辅助角公式,容易求得函数的最值。
二、转化为基本初等函数
1.转化为二次函数
例2.求函数的值域。
解:原式化为
令,则,由二次函数图象可知,当t=- 时,y = ,当t=1时,y =5
反思总结:将函数表达式化为二次函数时一定要注意不能忽略函数的定义域的变化。
2.转化为双勾函数
例3.求函数y= 在区间(0,π)上的最大值。
解。