人教版 八年级数学上册 13.3 等腰三角形 课时训练(含答案)

合集下载

人教版八年级上册《13.3等腰三角形》同步测试题(含答案解析)

人教版八年级上册《13.3等腰三角形》同步测试题(含答案解析)

等腰三角形测试题时间:90分钟总分:100一、选择题(本大题共10小题,共30.0分)1.如图,在▱ABCD中,,,的平分线交BA的延长线于点E,则AE的长为A. 3B.C. 2D.2.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,于H,连接OH,,则的度数是A. B. C. D.3.已知等腰三角形一腰上的高线与另一腰的夹角为,那么这个等腰三角形的顶角等于A. 或B.C.D. 或4.已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是A. 18cmB. 21cmC. 18cm或21cmD. 无法确定5.如图,是由绕点O顺时针旋转后得到的图形,若点D恰好落在AB上,且的度数为,则的度数是A. B. C. D.6.如果一个等腰三角形的一个角为,则这个三角形的顶角为A. B. C. D. 或7.如图,中,,AC的垂直平分线分别交AB、AC于点D和E,则的周长是A. 6B. 8C. 10D. 无法确定8.已知a、b、c是的三条边,且满足,则是A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形9.如图,下列条件不能推出是等腰三角形的是A.B. ,C. ,D. ,10.如图,四边形ABCD是边长为6的正方形,点E在边AB上,,过点E作,分别交BD,CD于G,F两点若M,N分别是DG,CE的中点,则MN的长为A. 3B.C.D. 4二、填空题(本大题共10小题,共30.0分)11.如图,在中,,,,AD平分,交BC于点D,于E,则______ .12.如图,,OC平分,如果射线OA上的点E满足是等腰三角形,那么的度数为______.13.如图,在中,,,,点P从点B开始以的速度向点C移动,当要以AB为腰的等腰三角形时,则运动的时间为______.14.平行四边形ABCD中,的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.16.如图,等腰中,,AD是底边上的高,若,,则______cm.17.如果等腰三角形的两边长分别为3和7,那么它的周长为______.18.如图,中,点D在边BC上,若,,则______度19.如图,在中,,AB的垂直平分线MN交AC于D点若BD平分,则______20.如图,在中,,,D是AB的中点,过点D作于点E,则DE的长是______.三、计算题(本大题共4小题,共24.0分)21.如图,中,,D,E,F分别为AB,BC,CA上的点,且,求证: ≌ ;若,求的度数.22.如图,在中,,E在CA延长线上,,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在▱ABCD中,AE平分交DC于点E,,,求EC的长.24.在中,,,F为AB延长线上一点,点E在BC上,且.求证: ≌ ;若,求度数.四、解答题(本大题共2小题,共16.0分)25.如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.26.如图,中,,,于点E,于点D,BE与AD相交于F.求证:;若,求AF的长.答案和解析【答案】1. C2. A3. D4. C5. B6. D7. C8. C9. C10. C11. 312. 或或13. 或6s14. 32或3415. 816. 417. 1718. 2019. 3620.21. 证明:,,.,.又,≌ .解: ≌.所以是等腰三角形.又,中,,,已知.22. 解:,理由为:证明:,,,,,,,,,,则EF与BC的位置关系是垂直.23. 解:在平行四边形ABCD中,则,,又AE平分,即,,即,又,,.故EC的长为3cm.24. 证明:,,在和中,,≌ ;,,,,,≌ ,,.25. 解:,,理由是:延长BD交AC于F.,,在和中≌ ,,,,,,,,;不发生变化.理由:,,,在和中≌ ,,,,,,,;能.和是等边三角形,,,,,,,在和中≌ ,,,即BD与AC所成的角的度数为或26. 解:,,,,,,,在和中,,≌ ,;连接CF,≌ ,,是等腰直角三角形.,,,,,BE是AC的垂直平分线.,.【解析】1. 【分析】此题考查了平行四边形的性质以及等腰三角形的判定与性质能证得是等腰三角形是解此题的关键由平行四边形ABCD中,CE平分,可证得是等腰三角形,继而利用,求得答案.【解答】解:四边形ABCD是平行四边形,,,,,,,;故选C.2. 【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质注意证得是等腰三角形是关键由四边形ABCD是菱形,可得,,又由,,可求得的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得是等腰三角形,继而求得的度数,然后求得的度数.【解答】解:四边形ABCD是菱形,,,,,,,,.故选A.3. 解:当为锐角三角形时可以画图,高与右边腰成夹角,由三角形内角和为可得,顶角为;当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为,由图可以看出等腰三角形的顶角的补角为,三角形的顶角为.故选D.首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.本题考查了等腰三角形的性质及三角形内角和定理,解答此题时考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.4. 解:当腰是5cm时,三角形的三边是:5cm,5cm,8cm,能构成三角形,则等腰三角形的周长;当腰是8cm时,三角形的三边是:5cm,8cm,8cm,能构成三角形,则等腰三角形的周长.因此这个等腰三角形的周长为18或21cm.故选:C.题目给出等腰三角形有两条边长为5cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5. 解:是绕点O顺时针旋转后得到的图形,,,,,,由三角形的外角性质得,.故选B.根据旋转的性质可得,,再求出,,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6. 解:当角是顶角时,顶角;当角是底角时,顶角;故选D.题中没有指明这个角是底角还是顶角,故应该分情况进行分析,从而求解.本题主要考查等腰三角形的性质及三角形内角和定理的综合运用.7. 解:是AC的垂直平分线,,的周长故选C.垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.本题主要考查垂直平分线性质和等腰三角形的知识点,熟练掌握等腰三角形的性质.8. 解:已知等式变形得:,即,,,即,则为等腰三角形.故选:C.已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到,即可确定出三角形形状.此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.9. 解:由可得,则为等腰三角形,故A可以;由且,可得 ≌ ,则可得,即为等腰三角形,故B可以;由,,无法求得或,故C不可以;由,,可得AD为线段BC的垂直平分线,可得,故D可以;故选C.根据等腰三角形的判定逐项判断即可.本题主要考查等腰三角形的判定,掌握等角对等边是解题的关键.10. 解:解法一:如图1,过M作于K,过N作于P,过M作于H,则,,四边形MHPK是矩形,,,,N是EC的中点,,,,,同理得:,四边形ABCD为正方形,,是等腰直角三角形,,,,在中,由勾股定理得:;解法二:如图2,连接FM、EM、CM,四边形ABCD为正方形,,,,,,,,是等腰直角三角形,是DG的中点,,,,≌ ,,过M作于H,由勾股定理得:,,,是等腰直角三角形,,,,,,,,是EC的中点,;故选C.方法三:连EM,延长EM于H,使,连DH,CH,可证 ≌HDM,再证 ≌ ,利用中位线可证.故选:C.解法一:作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:,,,利用勾股定理可得MN的长;解法二:作辅助线,构建全等三角形,证明 ≌ ,则,利用勾股定理得:,,可得是等腰直角三角形,分别求的长,利用勾股定理的逆定理可得是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长.本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明是直角三角形.11. 解:延长CE交AB于F,,,平分,,在与中,,≌ ,,,,,,,,,,,,.故答案为:3.延长CE交AB于F,根据垂直的定义得到,根据角平分线的定义得到,推出 ≌ ,根据全等三角形的性质得到,,,求得,由三角形的外角的性质得到,等量代换得到,得到,根据等腰三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,角平分线的定义,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.12.解:,OC平分,,当E在时,,,;当E在点时,,则;当E在时,,则;故答案为:或或.求出,根据等腰得出三种情况,,,,根据等腰三角形性质和三角形内角和定理求出即可.本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.13. 解:当时,点P与点C重合,如图1所示,过点A作于点D,,,,,即运动的时间6s;当时,,,运动的时间故答案为:或6s.由于等腰三角形的另一腰不确定,故应分与两种情况进行讨论.本题考查的是等腰三角形的判定,在解答此题时要进行分类讨论,不要漏解.14. 解:四边形ABCD是平行四边形,,,,,平分,,,,当时,,平行四边形ABCD的周长是;当时,,平行四边形ABCD的周长是;故答案为:32或34.由平行四边形ABCD推出,由已知得到,推出,分两种情况当时,求出AB的长;当时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出用的数学思想是分类讨论思想.15. 解:连接AD交EF与点,连结AM.是等腰三角形,点D是BC边的中点,,,解得,是线段AB的垂直平分线,..当点M位于点处时,有最小值,最小值6.的周长的最小值为.连接AD交EF与点,连结AM,由线段垂直平分线的性质可知,则,故此当A、M、D在一条直线上时,有最小值,然后依据要三角形三线合一的性质可证明AD为底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.16. 【分析】本题考查了等腰三角形的性质和勾股定理关键要熟知等腰三角形的三线合一可得先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:,在直角中,由勾股定理得:,所以,.故答案为4.17. 解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为.故答案为:17.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.18. 解:若,,,又在等腰三角形ADC中,是三角形ADC的外角,,又,,故答案为:20.根据题意可知的度数,然后再利用是三角形ADC的一个外角即可求得答案.本题考查等腰三角形的性质,等腰三角形的两底角相等,以及三角形的内角和为的知识点,此题难度不大.19. 解:,,的垂直平分线MN交AC于D点.,平分,,,设为x,可得:,解得:,故答案为:36根据线段垂直平分线上的点到两端点的距离相等可得,根据等边对等角可得,然后表示出,再根据等腰三角形两底角相等可得,然后根据三角形的内角和定理列出方程求解即可.此题考查了线段垂直平分线的性质以及等腰三角形的性质注意垂直平分线上任意一点,到线段两端点的距离相等.20. 解:过A作于F,连接CD.中,,,.在中,由勾股定理,得,,,,,.故答案为:.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出的面积;连接CD,由于,则、等底同高,它们的面积相等,由此可得到的面积;进而可根据的面积求出DE的长.此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.21. 由已知已知,,,可证 ≌ ;由可得,即是等腰三角形,又由,中,,可求出,即,从而求出的度数.本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22. EF与BC垂直,理由为:由三角形ABC为等腰三角形且AD为底边上的高,利用三线合一得到AD为角平分线,再由,利用等边对等角得到一对角相等,利用外角性质得到一对内错角相等,利用内错角相等两直线平行得到EF与AD平行,进而确定出EF与BC垂直.此题考查了等腰三角形的性质,外角性质,以及平行线的判定与性质,熟练掌握等腰三角形的性质是解本题的关键.23. 本题主要考查了平行四边形的性质及角平分线的性质,应熟练掌握在平行四边形中,由于AE平分,所以不难得出,进而由AD及AB的长代入数据求解即可.24. 根据HL证明 ≌ ;因为是等腰直角三角形,所以,得,由中的全等得:,从而得出结论.本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是,除了熟知三角形一般的全等判定方法外,还要掌握直角三角形的全等判定HL:即有一直角边和斜边对应相等的两直角三角形全等.25. 延长BD交AC于F,求出,证出 ≌ ,推出,,根据推出,求出即可;求出,证出 ≌ ,推出,,根据求出,求出即可;求出,证出 ≌ ,推出,根据三角形内角和定理求出即可本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.26. 根据等腰三角形腰长相等性质可得,即可求证 ≌ ,即可解题;连接CF,根据全等三角形的性质得到,得到是等腰直角三角形推出,BE是AC的垂直平分线于是得到结论.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了等腰三角形底边三线合一的性质,本题中求证 ≌ 是解题的关键.。

人教版八年级数学上册13.3 等腰三角形 课堂测试卷(含答案)

人教版八年级数学上册13.3  等腰三角形 课堂测试卷(含答案)

八年级数学上册等腰三角形课堂测试卷一、选择题:1、下列条件能组成全等三角形的是()A.有一个顶角相等的两个等腰三角形B.有一边相等的两个等边三角形C.有两腰对应相等的两个等腰三角形D.底边相等的两个等腰三角形2、等腰三角形的两边长分别为4和9,这个三角形的周长是().A.17B.22C.17或22D.17和223、如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°4、在△ABC中,AB=AC,BD为△ABC的高,如果∠BAC=40°,则∠CBD的度数是()A.70°B.40°C.20°D.30°5、如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°6、等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是()A.28°B.118°C.62°D.62°或118°7、如图是一副三角板拼成的图形,等腰直角三角形CDE的一个锐角顶点正好在直角三角形ABC斜边上的中点D处,则∠ACE=().A15°B30°C45°D60°8、若为等腰的两边,且满足,则的周长为()A.9B.12C.15或12D.9或12M N K9、如图,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你认为正确的序号是()A.①②③;B.①③④;C.②③④;D.①②③④.△10、如图,在第一个ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则第5个三角形中,以点A5为顶点的底角的度数为()A.5°;B.10°;C.170°;D.175°二、填空题:△11、如图,在ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为12、等腰三角形一个内角的大小为50°,则其顶角的大小为度.△13、如图,已知ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.14、等腰三角形的周长为14,其一边长为4,那么它的底边为△15、如图,在PAB中,∠A=∠B,,,分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=53°,则∠P=______°.△16、如图,在等腰ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.三、解答题:△17、如图,在ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=4△5°,求证:ACD为等腰三角形;(△2)若ACD为直角三角形,求∠BAD的度数.△18、如图,在ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB,AC于点D,E.若ADE的周长为△9,ABC的周长是14,求BC的长.△△19、如图,在ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.20、如图,在△R t ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE度数.21、两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,图中AB=AC,AD=AE,∠BAC=∠EAD=900,B,C,E在同一条直线上,连结DC.(1)图2中的全等三角形是_______________,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC和线段BE的关系,并说明理由.参考答案1、B2、B3、A4、C5、A6、D7、D8、B.9、C.10、A、11、答案为:55°.12、答案为:50°或80°13、答案为:14cm.14、答案为:4或615、答案为:53°16、答案为:5017、(1)∵AB=AC,∠B=30°∴∠C=∠B=30°∠BAC=120°∵∠BAD=45°∴∠DAC=∠BAC-∠BAD=75°∵∠ADC=∠B+∠BAD=75°∴∠DAC=∠ADC∴CA=CD(2)当∠ADC为直角时,如图25(1)∠BAD=60°当∠CDA为直角时,如图25(2)∠BAD=30°∠ACD不可能为直角所以∠BAD=60°或∠BAD=30°18、解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为29,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∴BC=5.19、证明:∵AE是∠BAC的角平分线,CD是AB边上的高∴∠BAE=∠CAE,∠CDA=90°∴∠BAE+∠AFD=90°,∠CAE+∠AEC=90°∴∠AFD=∠AEC∵∠AFD=∠CFE∴∠AEC=∠CFE∴CE=CF;∴△CEF是等腰三角形20、解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC=(180°-∠A)=75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE-∠ACB=75°+60°-90°=45°.21、证明:∵∠BAC=∠EAD=900∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD在△ABE与△ACD中AB=AC,∠BAE=∠CAD,AD=AE,∴△ACD≌△ABE(SAS)(2)线段DC和线段BE的关系是:垂直且相等证明:由(1)知:△ACD≌△ABE∴DC=BE,∠ACD=∠B∵∠BAC=900∴∠B+∠ACB=900∴∠ACD+∠ACB=900即∴∠BCD=900∴BE⊥CD∴线段DC和线段BE的关系是:垂直且相等。

人教版八年级上册数学习题13.3答案

人教版八年级上册数学习题13.3答案

人教版八年级上册数学习题13.3 答案1.(1) 35 度, 35°;(2)解:当 80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为 80°,根据三角形的内角和定理可以求出顶角为 180°-80 °-80 °=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2〔 180°-80 °〕=50°.综上,等腰三角形的另外两个角是20°,80°或 50°,50°.2.3.解:∵五角星的五个角都是顶角为36°的等腰三角形,∴每个底角的度数是1/2 ×〔180°- 36 〕°=72°.∴∠ AMB=180° -72 °108°.4.5.证明: CE//DA, ∴∠ A=∠ CEB.6.7.8.:如图 13 -3-29 所示,点 P 是直线 AB 上一点,求作直线CD ,使 CD ⊥AB 于点 P.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.。

八年级初二上册数学人教版课时练《 等腰三角形》03(含答案)

八年级初二上册数学人教版课时练《 等腰三角形》03(含答案)

《13.3.1 等腰三角形》课时练一、选择题1.已知下列各组数据,可以构成等腰三角形的是( )A . 1,2,1B . 2,2,1C . 1,3,1D . 2,2,52.如图,在下列三角形中,若AB AC =,则能被一条直线分成两个小等腰三角形的是( )A .(1)(2)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(3)(4)3.下列能判定ABC 为等腰三角形的是( )A .40,50AB ∠=︒∠=︒B .270A B ∠=∠=︒C .40,70A B ∠=︒∠=︒D .3,6,AB BC ==周长为144.如图,在ABC 中,,AB AC D =是BC 的中点,下列结论不正确的是( )A .2AB BD = B .AD BC ⊥ C .AD 平分BAC ∠ D .B C ∠=∠5.如图,在ABC 中,,105AC DC DB ACB ==∠=︒,则B ∠的大小为( )A .15°B .20°C .25°D .40°6.下列能断定△ABC 为等腰三角形的是( )A . ∠A=30°,∠B=60°B . ∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为137.下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()A.1个B.2个C.3个D.4个8.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③二、填空题9.如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠A BC,∠ACB,DE经过点M,且DE∥BC,则图中有_______个等腰三角形.10.在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度数是_________.11.在△ABC中,∠A=100°,当∠B=_________°时,△ABC是等腰三角形.12.如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=_________度,图中有_________个等腰三角形.13.如图,,36,AB AC C AC =∠=︒的垂直平分线MN 交BC 于点D ,则DAB ∠=___________.14.如图,在ABC 中,,AB AC AD =为BAC ∠的平分线.若4cm,AD ABC =的周长为16cm ,则ABD 的周长是______________cm .三、简答题15.已知:如图,OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.16.如图,△ABC 中,∠A=36°,AB=AC ,CD 平分∠ACB ,试说明△BCD 是等腰三角形.参考答案9.510.80°或50°或20°11.40度12.72,3;13.72°14.1215.解答:证明:作OE ⊥AB 于E ,OF ⊥AC 于F , ∵AO 平分∠BAC , ∴OE=OF (角平分线上的点到角两边的距离相等). ∵∠1=∠2,∴OB=OC .∴Rt △OBE ≌Rt △OCF (HL ).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB .∴AB=AC .∴△ABC 是等腰三角形.16.解:△ABC 中∵AB=AC ,∠A=36°∴∠B=∠ACB=(180°﹣∠A )=72° ∵CD 平分∠ACB∴∠DCB=∠ACB=36° 在△DBC 中∠BDC=180°﹣∠B ﹣∠DCB=72°=∠B ∴CD=CB即△BCD 是等腰三角形.2121。

人教版数学八年级上册13.3 等腰三角形同步练习(解析版)

人教版数学八年级上册13.3 等腰三角形同步练习(解析版)

人教版数学八年级上册13.3:等腰三角形同步练习一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.33.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.126.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=度.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为.(2)等腰三角形的一个角为50°,则底角是.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.人教版数学八年级上册13.3:等腰三角形同步练习参考答案一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm【解答】解:∵∠C=90°,∠B=30°,∴AB=2AC,∵AB=2cm,∴AC=AB=1cm,故选:C.2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.3【解答】解:由于任意一个三角形都有三条角平分线、三条高线、三条中线,而等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,所以一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共7条.故选:B.3.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°∵AB∥CD,∴∠ACD=∠CAB=60°,∵AD⊥CD,∴∠DAB=90°,∵AE⊥BC,∴∠BAE=∠CAE=30°,∴∠DAE=60°∴图中60°的角有5个,故选:C.4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形【解答】解:A、等腰三角形的两底角相等,正确,故本选项错误;B、等腰三角形的两腰相等,正确,故本选项错误;C、等边三角形的三个内角都是60°,正确,故本选项错误;D、两个内角分别为120°、40°的三角形的第三个内角为20°,不是等腰三角形,故本选项正确.故选:D.5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.12【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD=∠B=30°,∵AC=6,∴AD=AC=×6=3,AB=2AC=2×6=12,∴BD=AB﹣AD=12﹣3=9.故选:C.6.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条【解答】解:等腰三角形为等边三角形时对称轴最多,可以有3条.故选:B.7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选:B.8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°【解答】解:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC,AD是∠BAC的角平分线,又∵AD=AE,∠BAC=40°,∴∠ADE=80°∴∠EDC=∠ADC﹣∠ADE=90°﹣80°=10°.故选:A.9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm【解答】解:当第三边是5cm时,则5+5=10,不能构成三角形,当另一边长是10cm时,能构成三角形.故选:B.10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对【解答】解:∵△ABC是等腰三角形,AD是底边BC上的高线,∴BD=CD,∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠DFC=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF,∵AB=AC,∴AE=AF.故图中除AB=AC外,相等的线段共有4对.故选:D.11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a【解答】解:如图,AB=AC,BD是腰AC的高,则∠DBC=α∴∠C=90°﹣α∴∠A=180°﹣2(90°﹣α)=2α故选:D.12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°【解答】解:∵等腰三角形的底角为a,且三角形的内角和等于180°,∴0°<2a<180°,∴0°<a<90°.故选:B.13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换【解答】解:∵△BOF与△COD是关于OE的轴对称图形,∴从△BOF到△COD需要经过轴对称变换.故选A14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm【解答】解:此等腰三角形的底为4cm,则有2x>4,解得x>2,故选:B.15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定【解答】解:当该边是腰时,底边是32﹣20=12cm,则另外两边是10cm,12cm;当该边是底时,则腰的长为:(32﹣10)÷2=11cm,则另外两边是11cm,11cm;经检验,两种情况都符合三角形的三边关系.故选:C.二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为40°或140°.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为100°.【解答】解:(1)①当为锐角三角形时可以画图,高与右边腰成50°夹角,由三角形内角和为180°可得,顶角为40°;②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为40°,三角形的顶角为140°.(2)如图,①顶角是钝角时,∠B=90°﹣50°=40°,则顶角=180°﹣2×40°=100°,是钝角,符合;②顶角是锐角时,∠B=90°﹣50°=40°,∠A=180°﹣2×40°=100°,是钝角,不符合.故答案为:40°或140°;100°.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是0<底边<6cm.【解答】解:∵3﹣3=0,3+3=6cm,∴底边的取值范围是0<底边<6cm.故答案为:0<底边<6cm.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=40度.【解答】解:∵AB=AC∴∠B=∠ACB=(180﹣∠A)=40°∵AB∥CD∴∠BCD=∠B=40°.故填40.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为120°,30°,30°.【解答】解:设等腰三角形的各角为4x,x,x∵4x+x+x=180°∴x=30°∴三个内角分别是120°,30°,30°.故填120°,30°,30°.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=5.【解答】解:由∠A:∠B:∠C=1:2:3,可设∠A=x°,则∠B=2x°,∠C=3x°.∵∠A+∠B+∠C=180°,∴x+2x+3x=180,∴x=30,∴∠A=30°,∠B=60°,∠C=90°,∴BC=AB=×10=5.故答案为5.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为40°,40°.(2)等腰三角形的一个角为50°,则底角是50°,65°.【解答】解:(1)∵等腰三角形的一个角为100°∴两底角的和=180°﹣100°=80°又∵等腰三角形的两底角相等∴两底角都为40°.(2)当50°的角是底角,则底角就为50°;当50°的角是顶角,则两底角的和等于130°,所以底角等于65°.故填40°,40°;50°,65°.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.【解答】解:设等腰三角形的一边长为xcm,则另一边长为xcm,则等腰三角形的三边有两种情况:xcm,xcm,xcm或xcm,xcm,xcm,则有:①x+x+x=28,得x=8cm,所以三边为:8cm、8cm、12cm;②x+x+x=28,得x=7cm,所以三边为7cm、10.5cm、10.5cm.因此等腰三角形的三边的长为:8cm,8cm,12cm或7cm,10.5cm,10.5cm.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.【解答】解:AD⊥BC.理由如下:∵AB=AC,D为BC边中点,∴AD⊥BC.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.【解答】解:如图,过点A作AD⊥BC于点D,在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL)∴BD=CD,即AD也是中线,∴∠BAD=∠CAD,即AD又是高线,所以等腰三角形底边上的中线、高以及顶角的角平分线重合.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.【解答】解:△ABD、△BCD.理由:∵在△ABC中,AB=AC,∠C=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得:∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠BDC=∠C=72°,∴△ABD与△BCD是等腰三角形.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.【解答】解:当D是BC中点时DE=DF,理由:∵AB=AC,∴∠B=∠C;∵∠BED=∠CFD=90°,BD=CD;∴△BDE≌△CDF;∴DE=DF.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?【解答】解:AD∥BC.∵△ABC是等腰三角形,∴∠B=∠C,又∵∠EAC是△ABC的一个外角,∴∠EAC=∠B+∠C=2∠B,∵AD是等腰△ABC顶角的外角的平分线,∴2∠DAC=∠EAC,∴∠C=∠DAC,∴AD∥BC(内错角相等,两直线平行).28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.【解答】解:△AGF是等腰三角形;理由:∵GE∥AD,∴∠G=∠CAD,∠BAD=∠GF A,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠G=∠GF A,∴AG=AF,∴△AGF是等腰三角形.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.【解答】解:(1)∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C.又∵AB=AC,∴∠B=∠C,∴∠AEF=∠AFE,∴AE=AF,即△AEF是等腰三角形;(2)DE=DF.理由如下:∵AD是等腰三角形ABC的底边上的高,∴AD也是∠BAC的平分线.又∵△AEF是等腰三角形,∴AG是底边EF上的高和中线,∴AD⊥EF,GE=GF,∴AD是线段EF的垂直平分线,∴DE=DF.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.【解答】证明:∵AB=AC,∴∠B=∠ACB,∵AB∥ED,∴∠B=∠D,∴∠ACB=∠D,又∵∠ACB=∠ECD,∴∠ECD=∠D,∴ED=EC.。

人教版八年级数学上册 13.3 等腰三角形 课后训练(含答案)

人教版八年级数学上册 13.3 等腰三角形 课后训练(含答案)

课后训练基础巩固1.若等腰三角形底角为72°,则顶角为().A.108°B.72°C.54°D.36°2.如图,在△ABC中,AB=AC,AD=BD=BC,则∠C=().A.72°B.60°C.75°D.45°3.若等腰三角形的周长为26 cm,一边为11 cm,则腰长为().A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对4.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有().A.①②③B.①②④C.①③D.①②③④5.如图所示,已知∠1=∠2,要使BD=CD,还应增加的条件是().①AB=AC②∠B=∠C③AD⊥BC④AB=BCA.①B.①②C.①②③D.①②③④6.如图所示,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2,则AB=__________.能力提升7.如图,在△ABC中,AB=AC,BD和CD分别是∠ABC和∠ACB的平分线,EF过D点,且EF∥BC,图中等腰三角形共有().A.2个B.3个C.4个D.5个8.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是().A.6 B.7 C.8 D.99.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是().A.∠1=2∠2 B.∠1+∠2=90°C.180°-∠1=3∠2 D.180°+∠2=3∠110.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2 cm,则AD=__________.11.如图,若B、D、F在AN上,C、E在AM上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠FED=__________.12.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.13.(综合应用)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.14.如图所示,在△ABC中,AB=AC,点E在CA的延长线上,且∠AEF=∠AFE.求证:EF⊥BC.(第14题图) (第15题图)15.如图,在△ABC中,∠ACB=45°,∠A=90°,BD是∠ABC的角平分线,CH⊥BD,交B D的延长线于H,求证:BD=2CH.16.(实际应用题)如图,某船上午11时30分在A处观测岛B在东偏北30°,该船以10海里/时的速度向东航行到C处,再观测海岛在东偏北60°,且船距海岛40海里.(1)求船到达C点的时间;(2)若该船从C点继续向东航行,何时到达B岛正南的D处?参考答案1.D点拨:等腰三角形两底角相等,所以顶角为36°,故选D.2.A点拨:设∠A=x,由已知可知,∠BDC=∠C=∠ABC=2∠A=2x,因为∠A+∠ABC+∠C=180°,所以x+2x+2x=180°.解得x=36°,所以∠C=72°,故选A.3.C点拨:边长为11 cm的边长可能是腰,也可能是底,所以要分两种情况讨论.一种情况腰长为11 cm;另一种情况底边为11 cm,此时腰长为7.5 cm,两种情况都成立,故选C.4.D点拨:①②为判定定理,③每个外角都相等,则都是120°,所以每个内角都是60°,④一腰上的中线也是这条腰上的高,说明这条线段所在的直线是这条腰的垂直平分线,所以腰等于底,也是等边三角形,四个都成立,故选D.5.C点拨:①②说明△ABC为等腰三角形,由“三线合一”可知BD=CD,由③能得到△ABD≌△ACD,所以BD=CD,④不能得到BD=CD,故选C.6.8点拨:由题意可知,在Rt△ACD和Rt△ABC中,∠ACD=∠B=30°,所以AC=2AD,AB=2AC.所以AB=4AD=4×2=8.7.D点拨:由题意知,AB=AC,AE=AF,BE=DE,CF=DF,BD=CD,所以所有的三角形都是等腰三角形,共有5个,故选D.8.C点拨:如图,共有8个格点.注意3和8也是,故选C.9.D点拨:因为AB=BD,所以∠B=180°-2∠1,∠C=∠1-∠2.因为AB=AC,所以∠B=∠C.所以180°-2∠1=∠1-∠2,整理得180°+∠2=3∠1,故选D.10.1.4 cm点拨:由已知可以推出∠B=∠CAD=∠C=30°,AD=DC,∠C=30°,DA⊥BA于A,所以BD=2AD.所以BC=3DC=3AD=4.2(cm).所以AD=1.4 cm.11.20°点拨:运用一个外角等于和它不相邻的内角,及等腰三角形两底角相等可求出∠FED=20°.12.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS).∴AB=DC.(2)解:△OEF为等腰三角形,理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.13.解:如图,过P作PE⊥OB,垂足为E.∵∠AOP =∠BOP =15°,PD ⊥OA ,∴PD =PE .∵PC ∥OA ,∴∠CPO =∠AOP =15°.∴∠BCP =∠BOP +∠CPO =30°,在Rt △CPE 中,∠BCP =30°,∴PE =114 2.22PC =⨯=. ∴PD =PE =2.14.证明:如图,过A 作AD ⊥BC ,垂足为D ,∵AB =AC ,∴∠BAD =12BAC ∠. ∵∠AEF =∠AFE , ∠BAC =∠AEF +∠AFE , ∴∠EF A =12BAC ∠. ∴∠EF A =∠BAD .∴EF ∥AD ,∴EF ⊥BC .15.证明:如图,延长CH 、BA 交于点E .∵CH ⊥BD ,BD 是∠ABC 的角平分线, ∴∠CHB =∠EHB =90°,∠CBH =∠EBH . 又∵BH =BH ,∴△CBH ≌△EBH .∴CH =EH .∴CE =2CH .∵∠ACB =45°,∠CAB =90°,∴∠ABC =45°,∴∠ACB =∠ABC .∴AC =AB .∵∠CAB =∠CAE =90°,∴∠E +∠ECA =90°.∵CH ⊥BD ,∴∠E +∠EBH =90°.∴∠ECA =∠EBH .∴△ECA ≌△DBA .∴CE =BD .∴BD =2CH .16.解:(1)∵∠A =30°,∠BCD =60°, ∴∠ABC =30°.∴∠A =∠ABC .∴AC =BC =40(海里),40÷10=4(小时). 答:船到达C 点的时间是15时30分.(2)在Rt△BCD中,∠CBD=30°,∴CD=1122BC ×40=20(海里),20÷10=2(小时).答:该船在17时30分到达D处.。

人教版 八年级数学 13.3 等腰三角形 针对训练 (含答案)

人教版 八年级数学 13.3 等腰三角形 针对训练 (含答案)

人教版八年级数学13.3 等腰三角形针对训练一、选择题1. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2 B.5.2 C.7.8 D.82. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°3. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC4. 下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 107. 如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE ∥BC交AB于点E.若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.128. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.309. 如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E,D.若AC=3,AB=4,则DE的长为()A.6 B.7 C.8 D.910. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 如图,在△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠BFD=________°.13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.15. 如图,在△ABC中,∠B=20°,∠A=105°,点P在△ABC的三边上运动,当△P AC为等腰三角形时,顶角的度数是__________.三、解答题16. 如图所示,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1,求AD的长.17. 如图所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC 于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.18. 如图①,在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F.探究一:猜想图①中线段EF 与BE ,CF 间的数量关系,并证明. 探究二:设AB =8,AC =6,求△AEF 的周长.探究三:如图②,在△ABC 中,∠ABC 的平分线BO 与△ABC 的外角平分线CO 交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F.猜想这时EF 与BE ,CF 间又是什么数量关系,并证明.19. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.20. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.人教版八年级数学13.3 等腰三角形针对训练-答案一、选择题1. 【答案】B[解析] 根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于 6.2. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】C4. 【答案】D[解析] 有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.5. 【答案】D[解析] 由∠BAD+∠B=∠CAD+∠C可得∠ADB=∠ADC,又∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,又BD=DC,由垂直平分线的性质可得AB=AC.由等式的性质,根据AB-BD=AC-CD,AB+BD=AC+CD,又BD=CD,均可得AB=AC.选项D不能得到AB=AC.6. 【答案】C【解析】∵AB=AC,AD平分∠BAC,∴根据等腰三角形三线合一性质可知AD⊥BC,BD=CD,在Rt△ABD中,AB=5,AD=3,由勾股定理得BD=4,∴BC=2BD=8.7. 【答案】C[解析] ∵BD平分∠ABC,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.∵△AED的周长为16,∴AE+DE+AD=AE+BE+AD=AB+AD=16.∵AD=6,∴AB=10.8. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.9. 【答案】B[解析] 由题意得∠EBC=∠ABE,∠ACD=∠DCB.根据平行线的性质得∠DCB=∠ADC,∠EBC=∠AEB,所以∠ADC=∠ACD,∠ABE=∠AEB.所以AD=AC,AB=AE.所以DE=AD+AE=AC+AB=3+4=7.10. 【答案】D二、填空题11. 【答案】36[解析] 过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=12AB=12×12=6.∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】7013. 【答案】30[解析] ∵MN ∥BC ,∴∠MOB =∠OBC.∵∠OBM =∠OBC , ∴∠MOB =∠OBM. ∴MO =MB.同理NO =NC.∴△AMN 的周长=AM +MO +AN +NO =AM +MB +AN +NC =AB +AC =30.14. 【答案】85或14 [解析] ①当∠A 为顶角时,等腰三角形两底角的度数为180°-80°2=50°, ∴特征值k =80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.15. 【答案】105°或55°或70° [解析] (1)如图①,点P 在AB 上时,AP =AC ,顶角∠A =105°.(2)∵∠B =20°,∠BAC =105°, ∴∠ACB =180°-20°-105°=55°.点P 在BC 上时,如图②,若AC =PC ,则顶角∠C =55°.如图③,若AC =AP ,则顶角∠CAP =180°-2∠C =180°-2×55°=70°. 综上所述,顶角为105°或55°或70°.三、解答题16. 【答案】[解析] 由已知条件易知△ABE ≌△CAD ,从而BE =AD ,只需求PB 的长即可,由BQ ⊥AD 知,若在Rt △BPQ 中有∠PBQ =30°就可以求出BP 的长,于是求证∠BPQ =60°是解决问题的突破口. 解:∵△ABC 为等边三角形, ∴∠BAC =∠C =60°,AB =CA. 又AE =CD ,∴△ABE ≌△CAD. ∴∠ABE =∠CAD ,BE =AD.∴∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°. 又BQ ⊥AD ,∴∠PBQ =30°. ∴PB =2PQ =6.∴BE =PB +PE =7.∴AD =BE =7.17. 【答案】证明:如图所示,过点D 作DG ∥AC 交BC 于点G ,则∠GDF =∠E ,∠DGB =∠ACB. 在△DFG 和△EFC 中,⎩⎨⎧∠DFG =∠EFC ,DF =EF ,∠GDF =∠E ,∴△DFG ≌△EFC(ASA).∴GD =CE.∵BD =CE ,∴BD =GD.∴∠B =∠DGB.∴∠B =∠ACB.∴AB =AC ,即△ABC 是等腰三角形.18. 【答案】解:探究一:猜想:EF =BE +CF.证明如下: ∵BO 平分∠ABC ,∴∠ABO =∠CBO. ∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14. 探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC , ∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠EBO =∠EOB.∴BE =OE. 同理:OF =CF ,∴EF =OE -OF =BE -CF.19. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.20. 【答案】解:(1)证明:∵AB =AC , ∴点A 在BC 的垂直平分线上.∵DB =DC ,∴点D 在BC 的垂直平分线上. ∴直线AD 是BC 的垂直平分线.∴AD ⊥BC. (2)证明:∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD.∵DE ∥AC ,∴∠EDA =∠CAD. ∴∠BAD =∠EDA.∴DE =AE. (3)DE =AC +BE.理由:同(2)得∠BAD =∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.。

_ 13.3 等腰三角形 同步课时训练(含答案)2021-2022学年人教版 八年级数学上册

_ 13.3 等腰三角形 同步课时训练(含答案)2021-2022学年人教版 八年级数学上册

人教版八年级数学上册13.3 等腰三角形同步课时训练一、选择题1. 如图,在等边三角形ABC中,AD⊥BC于点D,则∠BAD的度数为()A.60°B.50°C.40°D.30°2. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°3. 已知:如图,直线PO与AB交于点O,P A=PB,则下列结论中正确的是()A.AO=BOB.PO⊥ABC.PO是线段AB的垂直平分线D.点P在线段AB的垂直平分线上4. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. (2020·宜宾)如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=13 BE,AN=13AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形6. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°7. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.8. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题9. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD10. 如图,在等边三角形ABC中,D是AB的中点,DE⊥AC于点E,EF⊥BC于点F,已知AB=8,则BF的长为________.11. 如图,在△ABC中,AB=AC,E为BC的中点,BD⊥AC,垂足为D.若∠EAD =20°,则∠ABD=________°.12. (2020·宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米,则AC= 米.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、作图题15. 尺规作图:已知线段a(如图),画一个底边长度为a,底边上的高也为a的等腰三角形.(保留作图痕迹,不写作法)16. 如图,在△ABC中,∠A=90°,∠B=67.5°.请画一条直线,把这个三角形分割成两个等腰三角形.(请你把所有不同的分割方法都画出来,只需画图,不必说明理由,但要在图中标出相等两角的度数)四、解答题17. 如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于点D,AD=4 cm,求BC的长.18. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD 交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.人教版八年级数学上册13.3 等腰三角形同步课时训练-答案一、选择题1. 【答案】D[解析] ∵△ABC是等边三角形,∴∠BAC=60°.∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°.2. 【答案】D[解析] 由题意得,∠A=70°,当∠B=∠A=70°时,△ABC为等腰三角形;当∠B=55°时,可得∠C=55°,∠B=∠C,△ABC为等腰三角形;当∠B=40°时,可得∠C=70°=∠A,△ABC为等腰三角形.3. 【答案】D4. 【答案】C[解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=12×(180°-130°)=25°.故选C.5. 【答案】C【解析】由△ABC和△ECD都是等边三角形,可得△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=13BE,AN=13AD,∴BM=AN,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN=60°,∴△MCN是等边三角形.6. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.7. 【答案】最小的等腰直角三角形的面积42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.8. 【答案】D二、填空题②③④【解析】序号正误逐项分析①×△BAD与△ACD中,虽有两角和一边相等,但不是对应关系的角和边,所以不能判定两三角形全等,因而也就不能得出AB=AC②√∠BAD=∠CAD结合AD是△ABC的边BC上的高,可得∠B=∠C,所以AB=AC,因而△ABC是等腰三角形③√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB+BD=AC+CD ,得AB-BD=AC-CD ,两式相加得2AB=2AC,所以,AB=AC,得△ABC是等腰三角形④√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB-BD=AC-CD ,得AB+BD=AC+CD ,两式相加得2AB=2AC,所以AB=AC,得△ABC是等腰三角形10. 【答案】5[解析] ∵在等边三角形ABC中,D是AB的中点,AB=8,∴AD =4,BC=AC=AB=8,∠A=∠C=60°.∵DE⊥AC于点E,EF⊥BC于点F,∴∠AED=∠CFE=90°.∴AE=12AD=2.∴CE=8-2=6.∴CF=12CE=3.∴BF=5.11. 【答案】50[解析] ∵AB=AC,E为BC的中点,∴∠BAE=∠EAD=20°.∴∠BAD=40°,又∵BD⊥AC,∴∠ABD=90°-∠BAD=90°-40°=50°.12. 【答案】48【解析】∵∠ABC=60°,∠ACB=60°,∴∠A=180°-60°-60°=60°,∴△ABC 是等边三角形,∴AB=BC=AC,∵BC=48,∴AC=4813. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、作图题15. 【答案】解:如图所示,△ABC即为所求.16. 【答案】解:如图所示:四、解答题17. 【答案】解:∵AB=AC,∠C=30°,∴∠B=30°. ∵AB⊥AD,AD=4 cm,∴BD=8 cm.∵∠ADB=90°-∠B=60°,∠C=30°,∴∠DAC=30°=∠C.∴CD=AD=4 cm.∴BC=BD+CD=8+4=12(cm).18. 【答案】解:(1)∵四边形ABCD是长方形,∴AD∥BC.∴∠BEG=∠AGC′=48°.由折叠的性质得∠CEF=∠C′EF,∴∠CEF=12(180°-48°)=66°.(2)证明:∵四边形ABCD是长方形,∴AD∥BC.∴∠GFE=∠CEF.由折叠的性质得∠CEF=∠C′EF,∴∠GFE=∠C′EF.∴GE=GF,即△EFG是等腰三角形.19. 【答案】解:(1)证明:∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵CE⊥BD,∴∠BCE+∠DBC=90°.∴∠ABD=∠BCE.在△DAB和△EBC中,⎩⎨⎧∠ABD =∠BCE ,AB =BC ,∠DAB =∠EBC =90°,∴△DAB ≌△EBC(ASA). ∴AD =BE.(2)证明:∵E 是AB 的中点,∴AE =BE. ∵BE =AD , ∴AE =AD.∴点A 在线段ED 的垂直平分线上. ∵AB =BC ,∠ABC =90°, ∴∠BAC =∠BCA =45°. ∵∠BAD =90°, ∴∠BAC =∠DAC =45°. 在△EAC 和△DAC 中,⎩⎨⎧AE =AD ,∠EAC =∠DAC ,AC =AC ,∴△EAC ≌△DAC(SAS). ∴CE =CD.∴点C 在线段ED 的垂直平分线上. ∴AC 是线段ED 的垂直平分线. (3)△DBC 是等腰三角形.理由:由(1)知△DAB ≌△EBC ,∴BD =CE. 由(2)知CE =CD. ∴BD =CD.∴△DBC 是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学13.3 等腰三角形课时训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是( )A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB等于( )A.30°B.45°C.60°D.90°3.如图,AD平分∠BAC,AD⊥BD于点D,DE∥AC,则图中的等腰三角形有()A.0个B.1个C.2个D.3个4.如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠M AB等于( )A.50°B.40°C.25°5.如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为( )A.20°B.40°C.60°D.80°6. (2020·毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或107. (2019•梧州)如图,是的边的垂直平分线,为垂足,交于点,且,则的周长是A.12 B.13C.14 D.158. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.二、填空题9. 等腰三角形的两边长分别为6 cm,13 cm,其周长为________ cm.10.如图,在△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长为_ _______.11. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.12.(2020·常州)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=________°.13. (2020·宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米,则AC= 米.14. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.15. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.16. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=_ _______.三、解答题17.如图,已知△ABC中,D为BC边上一点,且AB=AC=BD,AD=CD,求∠BAC 的度数.18.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC于点F. 求证:DE=DF.19.如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.20. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.21.已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB =DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.人教版八年级数学13.3 等腰三角形课时训练-答案一、选择题1. 【答案】C2. 【答案】 C [解析] 连接AB.根据题意得OB=OA=AB,∴△AOB是等边三角形.∴∠AOB=60°.3. 【答案】C [解析] 如图所示.∵DE∥AC,∴∠1=∠3.∵AD平分∠BAC,∴∠1=∠2.∴∠2=∠3.∴AE=DE.∴△ADE是等腰三角形.∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°.∵∠2=∠3,∴∠B=∠BDE.∴BE=DE.∴△BDE是等腰三角形.4. 【答案】 C [解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=1 2×(180°-130°)=25°.故选C.5. 【答案】D [解析] ∵a∥b∥c,∴∠ACE=∠α.∵△ABC是等边三角形,∴∠ACB=60°.∴∠α=∠ACE=∠ACB+∠BCE=60°+20°=80°.6. 【答案】B,【解析】本题考查等腰三角形的三边关系.解:分两种情况讨论:若3为底边,腰长为7,则此等腰三角形的周长为3+7+7=17;若7为底边,腰长为3,则此等腰三角形不存在,因为3+3<7,不符合三角形的三边关系,故选B.7. 【答案】B【解析】∵是的边的垂直平分线,∴,∵,∴的周长是:.故选B.8. 【答案】最小的等腰直角三角形的面积42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.二、填空题9. 【答案】32 [解析] 由题意知,应分两种情况:(1)当腰长为6 cm时,三角形的三边长为6 cm,6 cm,13 cm,6+6<13,不能构成三角形;(2)当腰长为13 cm时,三角形的三边长为6 cm,13 cm,13 cm,能构成三角形,周长=2×13+6=32(cm).10. 【答案】 4 [解析] ∵∠B=∠C=60°,∴∠BAC=60°.∴△ABC为等边三角形.∵AB=8,∴BC=AB=8.∵AD为角平分线,∴BD=CD.∴CD=4.11. 【答案】(-2,2) [解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).12. 【答案】30°【解析】本题考查了等边三角形和等腰三角形以及垂直平分线的性质.因为FE 垂直平分BC,∴FC=FB∴∠B=∠BCF∵△ACF是等边三角形,∴∠AFC =60°,∴∠B=30°13. 【答案】48【解析】∵∠ABC=60°,∠ACB=60°,∴∠A=180°-60°-60°=60°,∴△ABC 是等边三角形,∴AB=BC=AC,∵BC=48,∴AC=4814. 【答案】28 cm15. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.16. 【答案】9三、解答题17. 【答案】解:∵AD=CD,∴设∠DAC=∠C=x°.∵AB=AC=BD,∴∠BAD=∠BDA=∠DAC+∠C=2x°,∠B=∠C=x°.∴∠BAC=3x°.∵∠B +∠BAC +∠C =180°,∴5x =180,解得x =36.∴∠BAC =3x°=108°.18. 【答案】证明:连接AD.∵AB =AC ,D 为BC 的中点,∴AD 平分∠BAC.又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.19. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形,∴∠CAB =∠CBA =∠C =60°.∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°.∴△CDM 是等边三角形.∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎪⎨⎪⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF≌△EBF(ASA).∴DM=BE. ∴CD=BE.(2)∵ED⊥AC,∠CAB=∠CBA=60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF.∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.20. 【答案】解:∵∠ADB=30°+40°=70°,AB=BD,∴∠BAD=∠ADB=70°.∴∠BAC=∠BAD+∠CAD=100°.21. 【答案】解:(1)证明:∵AB=AC,∴点A在BC的垂直平分线上.∵DB=DC,∴点D在BC的垂直平分线上.∴直线AD是BC的垂直平分线.∴AD⊥BC.(2)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.(3)DE=AC+BE.理由:同(2)得∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.。

相关文档
最新文档