概率与统计 大题练习3(含解析)
高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
概率论与数理统计自考题-3_真题(含答案与解析)-交互

概率论与数理统计自考题-3(总分92, 做题时间90分钟)第一部分选择题一、单项选择题1.A、B为随机事件,则表示______• A.必然事件• B.不可能事件•**与B恰有一个发生**与B不同时发生SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] A、B为随机事件,A∪B表示A发生或B发生,表示A,B不能同时发生.故表示A与B恰有一个发生.2.若A,B为两事件,,P(A)>0,P(B)>0,则______•**(A∪B)=P(A)+P(B)•**(AB)=P(A)·P(B)•**(B|A)=1**(A-B)=P(A)-P(B)SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] P(A∪B)=P(A)+P(B)-P(AB)=P(B)(选项A不对);(选项B不对);(选项D不对);.3.某种商品进行有奖销售,每购买一件有的中奖概率.现某人购买了20件该商品,用随机变量X表示中奖次数,则X的分布属于______• A.正态分布• B.指数分布• C.泊松分布• D.二项分布SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] 根据二项分布定义知D正确.4.设随机变量ξ~N(2,σ2),且P{2<ξ<4}=0.3,则P{ξ<0}=______ •**•**•****SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 本题考查概率的求解方法.所以而=1-(0.3+0.5)=0.2.5.设二维随机变量(X,Y)的概率密度为f(x,y),则P{X>1}=______ A. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析]6.设随机变量X服从参数为的指数分布,则E(X)=______A. B.C.2 D.4SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 结合指数分布的一般形式,得.设随机变量X的均值E(X)=μ,方差D(X)=σ2,则E(X2)=______ • A.σ2-μ2• B.σ2+μ2• C.σ-μ• D.σ+μSSS_SIMPLE_SINA B C D分值: 2答案:B[解析] E(X)=μ,D(X)=σ2,又∵D(X)=E(X2)-E2(X),E(X2)=D(X)+E2(X)=σ2+μ2.8.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为______A.B.C.D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 即.9.设总体X服从参数的0-1分布,即X1,X2,…,Xn为X的样本,记为样本均值,则=______A. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] .设总体X的分布中带有未知参数θ,X1,X2,…,Xn为样本,(X1,X 2,…,Xn)和(X1,X2,…,Xn)是参数θ的两个无偏估计.对任意的样本容量n,若为比有效的估计量,则必有______A. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 估计量更有效.第二部分非选择题二、填空题1.某射手命中率为.他独立地向目标射击4次,则至少命中一次的概率为______.SSS_FILL分值: 2答案:[解析] 设Ai ={命中i次},i=0,1,2,3,4,所求概率P=1-P(A).2.有n个人,每人都等可能地被分配在N个房间中的任一间(N≥n),则“恰在指定的n间房中各有一人”的概率为______.SSS_FILL分值: 2答案:[解析] 每个人进入N个房间的选择为N,n个人的选择可能事件总数为N×N×…×N=N n,由题知,假定第1个人进入指定房间,第2个人则只有n-1次机会进入下一个房间,依次类推。
概率论和数理统计练习题与答案解析

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中至多击中目标一次〞的正确表示为〔 〕〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为〔 〕 〔A 〕365 〔B 〕364 〔C 〕363 〔D 〕3623.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 〕〔A 〕)(1)(B P A P -= 〔B 〕)()()(B P A P AB P = 〔C 〕1)(=+B A P 〔D 〕1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-00)(2x x ce x f x ,则=EX 〔 〕〔A 〕21〔B 〕1 〔C 〕2 〔D 〕41 5.以下各函数中可以作为某随机变量的分布函数的是〔 〕〔A 〕+∞<<∞-+=x x x F ,11)(21 〔B 〕⎪⎩⎪⎨⎧≤>+=001)(2x x x x x F 〔C 〕+∞<<∞-=-x e x F x ,)(3 〔D〕+∞<<∞-+=x x x F ,arctan 2143)(4π6.随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为〔 〕〔A 〕)2(2y f X - 〔B 〕)2(y f X - 〔C 〕)2(21yf X --〔D 〕)2(21y f X -7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=h 〔 〕〔A 〕81 〔B 〕83 〔C 〕41 〔D 〕31 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E 〔 〕〔A 〕3 〔B 〕6 〔C 〕10 〔D 〕129.设X 与Y 为任意二个随机变量,方差均存在且为正,假设EYEX EXY ⋅=,则以下结论不正确的选项是〔 〕〔A 〕X 与Y 相互独立 〔B 〕X 与Y 不相关 〔C 〕0),cov(=Y X 〔D 〕DY DX Y X D +=+)(答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中恰好击中目标一次〞的正确表示为〔 C 〕 〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为〔 A 〕〔A 〕2242 〔B 〕2412C C 〔C 〕24!2A 〔D 〕!4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 D 〕 〔A 〕)()|(A P B A P = 〔B 〕)()()(B P A P AB P = 〔C 〕)()()|(B P A P B A P = 〔D 〕0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX 〔 A 〕 〔A 〕32〔B 〕1 〔C 〕38 〔D 〕316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A 〔 B 〕 〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 6.随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为〔 D 〕〔A 〕)3(3y f X - 〔B 〕)3(yf X - 〔C 〕)3(31y f X -- 〔D 〕)3(31y f X - 7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=e 〔 B 〕〔A 〕81〔B 〕41 〔C 〕83 〔D 〕31 8.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D 〔 C 〕〔A 〕-14 〔B 〕13 〔C 〕40 〔D 〕41 9.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是〔 D 〕〔A 〕X 与Y 相互独立 〔B 〕EY EX Y X E +=+)( 〔C 〕DY DX DXY ⋅= 〔D 〕EY EX EXY ⋅= 一、填空题A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(假设A 与B 互不相容,则)(B P = ;)2(假设A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球〔不放回〕.第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a . X 的分布函数为 则常数=a ,}31{<<X P = .X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .X ,Y 是两个随机变量,2)(=X E ,20)(2=X E , 3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.0 2. 313. 414.41,435. 5.46. 1,57. 8. 21A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .21,X X 相互独立,其概率分布分别为 则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从[0,1]上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72. 0.9763. 314. 0.55. 3ln 216.95 7. )5,1(2N 8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.〔1〕求取到的是白球的概率;〔2〕假设取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,假设三部机器均无故障,则该厂可猎取利润2万元;假设只有一部机器发生故障,则该厂仍可猎取利润1万元;假设有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可猎取的平均利润.设随机变量X 表示该厂一天所获的利润〔万元〕,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 〔万元〕 四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并推断X 与Y 的独立性.解: (1)5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;(2)由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y ,两边对y 求导,得解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以 注:21)(-==y y h x 为12+=x y 的反函数。
人教版小学六年级下册数学 6.3统计与概率 课时练 练习试题试卷含答案(3)

6.3统计与概率一、选择题1.下列事件存在可能性的是()A.太阳从西边升起B.杭州一年四季都下雨C.星期一过了就是星期五D.冬季过了就是春季2.两人玩扑克牌比大小的游戏,每人每次出一张牌,各出三次赢两次者胜.小红的牌是“9”、“7”、“5”;小芳的牌是“8”、“6”、“3”.当小红出“5”时,小芳出()才可能赢.A.8B.6C.3D.任意一张都行3.将一个六个面分别写有1~6的正方体骰子抛向空中,落下后朝上的点数是合数的可能性是( )A.13B.12C.23D.564.袋子里有8个小球,上面分别写有数字2、3、4、5、6、7、8、9,小东和小丽玩摸球游戏,下面的游戏规则对双方公平的是()A.任意摸一球,摸到的小球上面写质数小东胜,合数小丽胜B.任意摸一球,2的倍数小东胜,3的倍数小丽胜C.任意摸一球.小于5小东胜,大于5小丽胜D.任意摸一球,不是3的倍数小东胜,3的倍数小丽胜5.小明和小华下棋,下列方法决定谁先走,不公平的是()A.抛硬币.正面朝上,小明先走,反面朝上,小华先走B.投骰子.点数大于3,小明先走,点数小于3,小华先走C.做1号和2号两个签,谁抽到1号谁先走D.袋子里装有1红3白4个球,轮流摸球,谁先摸到红球谁先走6.李明、张兵和陈华三人玩转盘游戏,指针停在白色区域算李明胜,指针停在黑色区域算张兵胜,指针停在红色区域算陈华胜.张兵会选()转盘.A.B.C.D.二、填空题(共9小题,每空1分,共18分)1.在括号里填上“一定”“可能”或“不可能”.(1)长方形的四个角是90度.(2)离开了水,金鱼就存活.(3)一次抽奖活动的中奖率是50%,张老师抽了2张奖券,他中奖.2.同时掷两个骰子,和可能是.如果小明选5、6、7、8、9五个数,而小芳选2、3、4、10、11、12六个数,掷20次,赢的可能性大.3.口袋中只有5个红球,任意摸1个,要使摸出的红球的可能性是112,还要往口袋中放个其他颜色的球.4.口袋里有10个形状大小相同的球,其中红球有5个、白球有2个、黄球有3个,从中任意摸出1个球,摸到红球的可能性是(填分数),摸到白球的可能性是(填分数).5.一个袋子里放着5个梨、6个桃子、4个桔子、7个苹果,如果任意拿一个水果,有种可能,拿到的可能性最大.6.一副扑克牌,去掉大、小王,从中任意摸一张,摸到K的可能性是,摸到方块的可能性是.7.王东和李阳用转盘(如图)玩游戏,如果转盘指针指向质数就是王东胜,指向合数就是李阳胜.在A、B处填上合适的数(不与转盘上的数相同),使这个游戏对双方都公平.A可以是,B可以是.8.用3、6、8三张数字卡片摆三位数,如果摆出的三位数是奇数,小亮赢;摆出的三位数是偶数,小林赢,这样的游戏规则公平吗?(填“公平”或“不公平”)9.小明和小强玩掷骰子的游戏,如果掷出的数小于3算小明赢,如果掷出的数大于3算小强赢,小明赢的可能性是,小强赢的可能性是.游戏规则公平吗?.三、判断题(共6小题,每题2分,共12分)1.擅长游泳的人在河里游泳不可能会发生溺水事故.()2.有10张卡片,上面分别写着110--这些数.任意摸出一张,摸到偶数的可能性是1.()53.把一副完整的扑克去掉大小王,混合后从中任意取出1张,按数字(或字母)分,有13种可能的结果()4.盒内有大小、形状相同,颜色不同的红、黄、蓝、黑、白小球各5个,如果任意摸50次(每次放回),可能会有10次摸到黑色球()5.桌面上放有8张牌,标号分别为18-,现在把牌面朝下放在桌上.每次任意拿出一张,拿到单数算甲赢,拿到双数算乙赢.这个游戏规则公平()6.一个正方体的六个面分别写着1~6,小明连掷了五次,1,2,3,4,6各一次正面朝上,他掷第6次,正面朝上的一定是5()四、操作题(共3小题,6+10+10=26分)1.小红和小丽玩转盘游戏,指针停在黑色区域算小红赢,指针停在白色区域算小丽赢,请你用铅笔按要求涂一涂转盘.2.连线3.连一连,从下面的5个盒子里,分别摸出1个球.五、解决问题(共5小题,6+6+6+7+7=32分)1.在口袋里放红、绿铅笔.任意摸一枝,要符合要求,分别应该怎样放?(1)放8枝,摸到红铅笔的可能性是12.(2)放10枝,摸到红铅笔的可能性是35.(3)摸到红铅笔的可能性是13,可以怎样放?你能写出两种不同的放法吗?2.丁丁和玲玲做小数乘除法计算的游戏.丁丁每次从下面的卡片中任意拿出一张(卡片向下,看不到卡片上的算式),用上面的数去乘或除玲玲手中卡片上的数,得数大于3.5就算丁丁赢,得数小于3.5就算玲玲赢.①谁赢的可能性大?为什么?②请你改变一下上面的除数或因数,使这个游戏公平.3.丫丫和红红做游戏,在一个不透明的袋子里装有7个白球,5个黄球,从中任意摸一个球,摸到白球丫丫获胜,摸到黄球红红获胜.(1)你认为这个游戏规则公平吗?为什么?(2)你能确定一下公平的游戏规则吗?4.学校举行乒乓球决赛的小明、小张两名同学的资料.姓名小明小强双方交战记录4胜3负3胜4负在校队练习成绩10胜5负14胜6负(1)你认为本次决赛中,谁获胜的可能性大?为什么?(2)如果学校要推选一名选手参加区乒乓球选拔赛,你认为推荐谁比较合适?5.宝龙城市广场某商铺计划开展购物满千元即可参加飞镖投奖的活动,工作人员用一个半径60厘米的圆形木板制作了一个镖盘.(本题p取3)(1)如图1,这个镖盘的面积是平方厘米.(2)如图2,如果投中阴影部分获一等奖,投中空白部分获二等奖,如果没投中,可重新投掷,直至投中为止,求获一等奖的可能性大小是多少?(百分号前保留一位小数)(3)如图3,已知扇形AOB的圆心角是90°,四边形ABCD是商家打算增设的一块“双倍奖金”区域,求获得1000元奖金的可能性大小是多少?(百分号前保留一位小数)答案一、选择题1.D.2.B.3.A.4.A.5.B.6.A.二、填空题1.一定,不可能,可能.2.2、3、4、5、6、7、8、9、10、11、12;小芳.3.55.4.12;15.5.4,苹果.6.113;14.7.:质数(如3),质数(如7).8.不公平.9.13,12,不公平.二、判断题1.´.2.´.3.Ö.4.Ö.5.Ö.6.´.四、操作题1.解:2.解:连线如下:3.解:五、解决问题1.解:(1)红铅笔:1842´=(枝),绿铅笔:844-=(枝);答:放4枝红铅笔,4枝绿铅笔;(2)红铅笔:31065´=(枝),绿铅笔:1064-=(枝);答:放6枝红铅笔,4枝绿铅笔;(3)放法一:红铅笔放1枝,绿铅笔放2枝;方法二:红铅笔放2枝,绿铅笔放4枝.2.解:①计算结果有8种可能:3.50.2 3.5¸>、3.5 2.1 3.5´>、3.50.35 3.5´<、3.5 1.3 3.5¸<、3.5 3.5 3.5¸<、3.5 1.7 3.5´>、3.5 4.6 3.5´>、3.50.8 3.5¸>其中大于3.5的可能性是58,小于3.5的可能性是385388>,丁丁赢的可能性大.②把0.2¸改为0.2´,3.50.2 3.5´<,这样结果大于3.5、小于3.5的都有4种可能,都占12,游戏规则公平.3.解:(1)因为白球和黄球的个数不一样,所以摸到白球和黄球的可能性不一样,所以游戏规则不公平.(2)要使游戏规则公平,可以拿出2个白球.(合理即可,无固定答案.)4.解:(1)小明获胜的可能性为:44(43)7¸+=,小强获胜的可能性为:33(34)7¸+,4377>,所以本次决赛中,小明获胜的可能性大;(2)小明的胜率为:10100%66.7%105´»+,小强的胜率为:14100%70%146´=+,66.7%70%<,所以要推选一名选手参加区乒乓球选拔赛,小强比较合适;5.解:(1)236010800´=(平方厘米)答:这个镖盘的面积是10800平方厘米.(2)223(6040)(360)´-¸´120010800=¸11.1%»答:获一等奖的可能性是11.1%.(3)22211[3(6040)(6040)](360)42´´--´-¸´[300200]10800=-¸10010800=¸0.9%»答:获得1000元奖金的可能性是0.9%.故答案为:10800.。
考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.关于随机事件{X≤a,Y≤b}与{X>a,Y>b},下列结论正确的是( ) A.为对立事件.B.为互不相容事件.C.为相互独立事件.D.P{X≤a,Y≤b}>P{X>a,Y>b}.正确答案:B解析:如图3—1所示,选项(A)、(D)都是不一定成立的.如果{X≤a,Y≤b}与{X>a,Y>b}相互独立,则应P{(X≤a,Y≤b)(X>a,Y>b)}=0,不一定与P{X≤a,Y≤b}P{X>a,Y>b}相等,故(C)不正确.综上,应选B.知识模块:概率论与数理统计2.设随机变量(X,Y)的分布函数为F(x,y),则(X,X)的分布函数G(x,y)为( )A.F(x,y).B.F(y,x).C.F(一x,一y).D.F(一y,一x).正确答案:B解析:G(x,y)=P{Y≤x,x≤y}=P{x≤y,Y≤x}=F(y,x).故应选B.知识模块:概率论与数理统计3.设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为( )A.B.C.D.正确答案:C解析:V(x,y)能够作为分布函数,则需满足0≤F(x,y)≤1,F(+∞,+∞)=1,F(一∞,一∞)=F(x,一∞)=F(一∞,y)=0,关于x,y单调不减且右连续,故F(+∞,+∞)=Aπ(B+)=1,满足此条件的只有(C).知识模块:概率论与数理统计4.设随机变量X和Y相互独立,且有相同的分布函数F(x),Z=X+Y,FZ(z)为Z的分布函数,则下列成立的是( )A.FZ(2z)=2F(z).B.FZ(2z)=[r(z)2C.FZ(2z)≤[F(z)]2.D.FZ(2z)≥[,(z)]2.正确答案:D解析:如图3—2所示,FZ(2z)=P{Z≤2z}=P{X+Y≤2z},X+Y≤2z对应区域为A,由于X和Y相互独立,且有相同的分布函数F(z),从而[p(z)]2=F(z)F(z)=P{X≤z}P{y≤z}=P{X≤z,Y≤z},X≤z,y≤z对应区域B,显然BA,故FZ(2z)≥[F(z)]2,因此选(D).知识模块:概率论与数理统计5.设X1和X2是两个相互独立的连续型随机变量,其概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则下列说法正确的是( ) A.f1(x)+f2(x)必为某一随机变量的概率密度.B.f1(x)f2(x)必为某一随机变量的概率密度.C.F1(x)+F2(x)必为某一随机变量的分布函数.D.F1(x)F2(x)必为某一随机变量的分布函数.正确答案:D解析:由已知条件,有∫-∞+∞f1(x)dx=∫-∞+∞f2(x)dx=1,F1(+∞)=F2(+∞)=1,∫-∞+∞[f1(x)+f2(x)]dx=∫-∞+∞f1(x)dx+∫-∞+∞f2(x)dx=1,选项(A)不正确;例如令f1(x)=,故选项(B)不正确;F1(+∞)+F2(+∞)=2,故选项(C)不正确,因此选(D).知识模块:概率论与数理统计6.已知随机变量X和Y相互独立,其概率分布为则下列式子正确的是( )A.X=YB.P{X=Y}=0.?C.P{X=Y}=.D.P{X=Y}=1.正确答案:C解析:P{X=Y}=P{X=一1,Y=一1}+P{x=1,Y=1}=P{X=一1}P{Y=一1}+P{X=1}P{Y=1} = 知识模块:概率论与数理统计7.设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x 轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为( )正确答案:B解析:由已知条件,如图3—4所示。
考研数学三(概率论与数据统计)模拟试卷33(题后含答案及解析)

考研数学三(概率论与数据统计)模拟试卷33(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}A.有相同的期望.B.有相同的方差.C.有相同的分布.D.服从同参数p的0—1分布.正确答案:D解析:由于辛钦大数定律除了要求随机变量X1,X2,…,Xn,…相互独立的条件之外,还要求X1,X2,…,Xn,…同分布与期望存在,只有选项(D)同时满足后面的两个条件,应选(D).知识模块:概率论与数据统计2.设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn,n≥1}A.数学期望存在.B.有相同的数学期望与方差.C.服从同一离散型分布.D.服从同一连续型分布.正确答案:B解析:由于Xn相互独立,所以Yn相互独立.选项(A)缺少“同分布”条件;选项(C)、(D)缺少”数学期望存在”的条件,因此它们都不满足辛钦大数定律,所以应选(B).事实上,若EXn=μ,DXn=σ2存在,则根据切比雪夫大数定律:对任意ε>0有即依概率收敛到零.知识模块:概率论与数据统计3.设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时以φ(x)为极限的是A.B.C.D.正确答案:C解析:由于X1,X2,…,Xn,…相互独立同分布,其期望和方差都存在,且.以φ(x)为极限,故应选(C).知识模块:概率论与数据统计4.设随机变量序列X1,X2,…,Xn,…相互独立,EXi=μi,DXi=2,i=1,2,…,令p=P{|Yn<p},则A.{Xn:n=1,2,…}满足辛钦大数定律.B.{Xn:n=1,2,…}满足切比雪夫大数定律.C.p可以用列维一林德伯格定理近似计算.D.p可以用拉普拉斯定理近似计算.正确答案:B解析:由于X1,X2,…相互独立,其期望、方差都存在,且对所有i=1,2,…,DYi=2<l(l>2),因此{Xn:n=1,2,…}满足切比雪夫大数定律,应选(B).知识模块:概率论与数据统计5.设X1,X2,…,Xn是取自正态总体N(0,σ2)的简单随机样本,X与S2分别是样本均值与样本方差,则A.B.C.D.正确答案:D解析:根据正态总体抽样分布公式知应选(D).知识模块:概率论与数据统计6.设X1,…,Xn,Xn+1,…,x2n,X2n+1,…,X3n是取自正态分布总体N(μ,σ2)的一个简单随机样本(n≥2),记则一定有A.B.Si2~χ2(n—1).C.D.正确答案:D解析:由于Xi与Si2分别是取自正态总体N(μ,σ2)的一个容量为n的简单随机样本,根据正态总体的抽样分布知,对i=1,2,3,有因此选项(A)、(B)、(C)均不成立,应选(D).知识模块:概率论与数据统计7.设X1,X2,…,Xn是取自总体x的一个简单随机样本,DX=σ2,是样本均值,则下列估计量的期望为σ2的是A.B.C.D.正确答案:C解析:应选(C).知识模块:概率论与数据统计8.设X1,X2,…,Xn是取自总体X的简单随机样本,记则A.ES=σ.B.ES2=σ2.C.D.正确答案:B解析:从上题知ES2=σ2,应选(B).进一步分析知识模块:概率论与数据统计9.设是从总体X中取出的简单随机样本X1,…,Xn的样本均值,则是μ的矩估计,如果A.X~N(μ,σ2).B.X服从参数为μ的指数分布.C.P{x=m}=μ(1一μ)m-1,m=1,2,…D.X服从[0,μ]上均匀分布.正确答案:A解析:若X~N(μ,σ2),则EX=μ,μ的矩估计为μ=X,应选(A).若X 服从参数为μ的指数分布,则μ的矩估计对于选项(C),X服从参数为μ的几何分布,,μ的矩估计;对选项(D),于是μ的矩估计知识模块:概率论与数据统计填空题10.设随机变量X1,X2,…,Xn,Y1,Y2,…,Yn相互独立,且Xi服从参数为λ的泊松分布,Yi服从参数为的指数分布,i=1,2,…,n,则当n充分大时,近似服从__________分布,其分布参数为_____________与__________.正确答案:正态;解析:X1+Y1,X2+Y2,…,Xn+Yn相互独立同分布.因EXi=DXi=λ,EYi=λ,DYi=λ2,故E(Xi+Yi)=2λ,D(Xi+Yi)=λ+λ2,当n充分大时,近似服从正态分布,其分布参数知识模块:概率论与数据统计11.设总体X服从参数为p的0一1分布,则来自总体X的简单随机样本X1,X2,…,Xn的概率分布为_____________。
高考数学概率统计大题综合试题含答案解析

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。
数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。
为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。
1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。
2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。
A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。
2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。
2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。
今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。
解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。
根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计 大题练习31.某校决定为本校上学所需时间超过30分钟的学生提供校车接送服务(所有学生上学时间均不超过60分钟).为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分),将600人随机编号,为001,002,…,600,将抽取的50名学生的上学所需时间分成六组:第一组(0,10],第二组(10,20],…,第六组(50,60],得到如图所示的频率分布直方图.(1)若抽取的50个样本是用系统抽样的方法得到的,且第一个抽取的编号为006,则第5个抽取的编号是多少?(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为a 分钟,b 分钟,求满足|a -b |>10的概率.(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?解析:(1)因为600÷50=12,且第一个抽取的编号为006,所以第5个抽取的数是6+(5-1)×12=54,即第5个抽取的编号是054.(2)第四组的人数为0.008×10×50=4,设这4人分别为A ,B ,C ,D ,第六组的人数为0.004×10×50=2,设这2人分别为x ,y ,随机抽取2人的可能情况有AB ,AC ,AD ,BC ,BD ,CD ,xy ,Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共15种,其中他们上学所需时间满足|a -b |>10的情况有Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共8种.所以满足|a -b |>10的概率P =815.(3)全校上学所需时间超过30分钟的学生约有600×(0.008+0.008+0.004)×10=120(人), 所以估计全校应有120÷40=3辆这样的校车.2.某教师统计甲、乙两位同学20次考试的数学成绩(满分150分),根据所得数据绘制茎叶图如图所示.(1)根据茎叶图求甲、乙两位同学成绩的中位数; (2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可); (3)现从甲、乙两位同学的不低于140分的成绩中任意选出2个,设事件A 为“选出的2个成绩分别属于不同的同学”,求事件A 发生的概率.解析:(1)甲同学成绩的中位数是116+1122=119,乙同学的中位数是128+1282=128.(2)从茎叶图可以看出,乙同学成绩的平均值比甲同学成绩的平均值高,乙同学的成绩比甲同学的成绩更稳定.(3)甲同学的不低于140分的成绩有2个,分别设为a ,b ,乙同学的不低于140分的成绩有3个,分别设为c ,d ,e .从甲、乙两位同学的不低于140分的成绩中任意选出2个的情况有{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种,而选出的2个成绩分别属于不同的同学的情况有{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,c },共6种,因此P (A )=610=35.3、为了调查一款电视机的使用寿命(单位:年),研究人员对该款电视机进行了相应的调查,得到的数据如下图所示.并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示.愿意购买 该款电视机 不愿意购买该款电视机合计40岁及以上 800 1 000 40岁以下 600 合计 1 200(1)(2)根据表中数据判断,是否有99.9%的把握认为“是否愿意购买该款电视机”与“市民的年龄”有关; (3)若按照电视机的使用寿命进行分层抽样,从使用寿命在[0,4)和[4,20]内的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用寿命都在[4,20]内的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .P (K 2≥k 0) 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828(2)依题意,完善表格如下表所示,愿意购买该 款电视机 不愿意购买该款电视机合计40岁及以上 800 200 1 000 40岁以下 400 600 1 000 合计 1 200 800 2 000 故K 2=2 000×(800×600-200×400)1 000×1 000×1 200×800≈333.333>10.828,故有99.9%的把握认为“是否原意购买该款电视机”与“市民的年龄”有关.(3)依题意知,抽取的5台电视机中使用寿命在[0,4)内的有1台,使用寿命在[4,20]内的有4台,则从5台电视机中随机抽取2台,所有的情况有C 25=10(种),其中满足条件的有C 24=6(种),故所求概率P =610=35.4.某校学生参与一项社会实践活动,受生产厂家的委托,采取随机抽样的方法调查某市市民对某新研发品牌洗发水的满意度,被调查者在0分到100分的整数中给出自己的认可分数.现将收集到的100位市民的认可分数分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,并根据数据绘制出如图所示的频率分布直方图.(1)求这100位市民认可分数的中位数(精确到0.1),平均数(同一组中的数据用所在区间的中点值代表); (2)生产厂家根据同学们收集到的数据,拟随机在认可分数为80及其以上的市民中选出2位市民当产品宣传员,求这2位宣传员的认可分数都在[90,100]内的概率.解析:(1)由于[40,50),[50,60),[60,70)这三组的频率分别为0.1,0.2,0.3,故中位数位于[60,70)中,为60+10×23≈66.7,平均数为10×(45×0.01+55×0.02+65×0.03+75×0.025+85×0.01+95×0.005)=67. (2)易知认可分数在[80,90)内的人数为10,认可分数在[90,100]内的人数为5.从认可分数在[90,100]内的5人中随机选择2人的基本事件有1+2+3+4=10(个),从认可分数在[80,90)和[90,100]内的15人中随机选择2人的基本事件有1+2+3+…+14=105(个).故这2位宣传员的认可分数都在[90,100]内的概率为P =10105=221.5.在2018年俄罗斯世界杯期间,莫斯科的某商场推出了来自中国的某商品,该商品按等级分类,有等级代码,为得到该商品的等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据:等级代码数值x 38 48 58 68 78 88 销售单价y /元 16.8 18.8 20.8 22.8 24 25.8(1)(系数精确到0.1);(2)若该商场销售的此商品的等级代码数值为98,请估计该等级的此商品的销售单价为多少元.参考公式:对一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线的斜率和截距的最小二乘估计分别为1221ˆni ii nii x ynx y bxnx ==-=-∑∑,ˆˆay bx =-, 参考数据:6i =1x i y i =8 440,6i =1x 2i =25 564.解析:(1)由题意,得x -=38+48+58+68+78+886=63,y -=16.8+18.8+20.8+22.8+24+25.86=21.5,所以1221ˆni ii nii x ynx ybxnx ==-=-∑∑=8 440-6×63×21.525 564-6×632≈0.2,a ^=y --b ^x -=21.5-0.2×63=8.9,故所求线性回归方程为y ^=0.2x +8.9.(2)由(1)知,当x =98时,y ^=0.2×98+8.9=28.5. 故估计该等级的此商品的销售单价为28.5元.6、某保险公司决定每月给推销员确定一个具体的销售目标,对推销员实行目标管理,销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此该公司随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图([14,16)小组对应的数据缺失):(1)(ⅰ)根据图中数据,求出月销售额在[14,16)内的频率; (ⅱ)根据频率分布直方图估计月销售额目标定为多少万元时,能够使70%的推销员完成任务,说明理由; (2)该公司决定从月销售额在[22,24)和[24,26]两个小组的推销员中,选取2位介绍销售经验,求选出的推销员来自同一个小组的概率.解析:(1)(ⅰ)月销售额在[14,16)内的频率为1-2×(0.03+0.12+0.18+0.07+0.02+0.02)=0.12. (ⅱ)若70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标,根据频率分布直方图知,[12,14)和[14,16)两组的频率之和为0.18,故估计月销售额目标应定为16+0.120.24×2=17(万元).(2)根据频率分布直方图可知,[22,24)和[24,26]两组的频率之和为0.08,由50×0.08=4可知待选的推销员一共有4人,设这4人分别为A 1,A 2,B 1,B 2,则不同的选择有{A 1,A 2},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{B 1,B 2},一共6种情况,每一种情况都是等可能的,而2人来自同一组的情况有2种,故选出的推销员来自同一个小组的概率为P =26=13.7、已知药用昆虫的产卵数y 与一定范围内的温度x 有关,现收集了该中药用昆虫的6组观测数据如表: 温度x /℃ 21 23 24 27 29 32 产卵数y /个61120275777经计算得:6666211111126,33,()()557,()84,66i i i i i i i i i x x y y x x y y x x ========--=-=∑∑∑∑621()3930ii y y =-=∑,线性回归模型的残差平方和为31670605.8≈e ,分别为观察数据中温度和产卵数1,2,3,4,5,6i =,(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆy bx a =+(精确到0.1 );(2)若用非线性回归模型求得y 关于x 的回归方程xe y2303.006.0ˆ=,且相关指数20.9952R =,①试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好;②用拟合效果更好的模型预测温度为35℃时该中药用昆虫的产卵数(结果取整数). 附:一组数据1122(,),(,),,(,)n n x y x y x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分为121()()ˆˆˆ,()niii nii x x y y bay bx x x ==--==--∑∑,相关指数R 2=∑∑==---n i ini i iy yyy1212)()ˆ(1答案及解析:(1)依题意,61621()()557ˆ6, 6.684()iii ii x x y y n bx x ==--===≈-∑∑, 所以ˆ33 6.626138.6a≈-⨯=-, 所以y 关于x 的线性回归方程为ˆ 6.6138.6yx =-。