概率与统计大题通关30题

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率和统计类题目

概率和统计类题目

一个骰子投掷一次,出现点数大于3的概率是多少?A. 1/6B. 1/3C. 1/2(正确答案)D. 2/3假设某班级有30名学生,其中10名是女生,随机选择一名学生,是女生的概率是多少?A. 1/6B. 1/3(正确答案)C. 1/2D. 2/3一副扑克牌(52张,无大小王)中,随机抽取一张,它是红心的概率是多少?A. 1/4(正确答案)B. 1/3C. 1/2D. 3/4某地区过去一周每天下雨的概率分别为0.2, 0.3, 0.4, 0.3, 0.2, 0.1, 0.2,则这一周至少有一天下雨的概率是多少?(提示:考虑所有天都不下雨的概率,然后用1减去这个概率)A. 0.68B. 0.72C. 0.88(正确答案)D. 0.92一个正态分布随机变量的均值是10,标准差是2,那么这个变量取值在8到12之间的概率大约是多少?(提示:利用正态分布的性质,查表或使用统计软件计算)A. 0.3413B. 0.6826(正确答案)C. 0.9545D. 0.9973假设一个篮球队员在罚球线上投篮命中的概率是0.8,他连续投篮三次,至少命中一次的概率是多少?A. 0.15625B. 0.512C. 0.992(正确答案)D. 0.999一个盒子里有5个红球和5个蓝球,随机摸取一个球,然后放回,再随机摸取一个球,两次都摸到红球的概率是多少?A. 1/4(正确答案)C. 1/2D. 2/3假设一个班级的学生考试成绩服从正态分布,均分为70分,标准差为10分,那么一个学生得分在80分以上的概率大约是多少?(提示:利用正态分布的性质,查表或使用统计软件计算)A. 0.1587B. 0.2275C. 0.3413D. 0.2275(正确答案)一个工厂生产的产品中,有5%是次品。

现在随机抽取10件产品,其中至少有一件是次品的概率是多少?(提示:考虑所有产品都不是次品的概率,然后用1减去这个概率)A. 0.4013B. 0.5987(正确答案)C. 0.6591D. 0.7845。

概率与统计大题60道(有答案)资料

概率与统计大题60道(有答案)资料

佳音教育高考专题概率与统计大题60练[ gary专用gary2013-4-5题型一 直方图1.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望.解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率样本数据约为10.040.250.300.442++⨯=.(Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.2.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,,,,,进行分组,得到频率分布直方图如图5.(1)求直方图中的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知,,,)解:(1)由图可知,解得;(2);]50,0[ ]100,50(]150,100(]200,150(]250,200(]300,250(x7812557=12827=++36521825318257 91251239125818253=++573365⨯=-=150x++365218253(18257509125123150)9125818253⨯-=⨯++18250119=x219)5036525018250119(365=⨯+⨯⨯(3)该城市一年中每天空气质量为良或轻微污染的概率为,则空气质量不为良且不为轻微污染的概率为,一周至少有两天空气质量为良或轻微污染的概率为. 3.(2009浙江卷理)(本题满分14分)在这个自然数中,任取个数.(I )求这个数中恰有个是偶数的概率;(II )设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.解析:(I )记“这3个数恰有一个是偶数”为事件A ,则; (II )随机变量的取值为的分布列为所以的数学期望为题型二 抽样问题4. 一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1) 求z 的值.(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6,533652195036525018250119==⨯+⨯52531=-7812576653)53()52()53()52(116670777=--C C 1,2,3,,99331ξ31,2,31,22,3ξ2ξE ξ12453910()21C C P A C ==ξ0,1,2,ξξ012122123E ξ=⨯+⨯+⨯=9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解: (1).设该厂本月生产轿车为n 辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400(2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为. (3)样本的平均数为, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为. 【命题立意】:本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率问题.要读懂题意,分清类型,列出基本事件,查清个数.,利用公式解答.5 .为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。

概率论与数理统计试题库及答案考试必做

概率论与数理统计试题库及答案考试必做

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件;试用 A 、B 、C 分别表示事件1A 、B 、C 至少有一个发生2A 、B 、C 中恰有一个发生3A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8;则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在1,6上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用,X Y 的联合分布函数Fx,y 表示P{a b,c}X Y ≤≤<=13.用,X Y 的联合分布函数Fx,y 表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量x,y 在区域D 上服从均匀分布,则x,y 关于X 的边缘概率密度在x = 1 处的值为 ;15.已知)4.0,2(~2-N X ,则2(3)E X +=16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=17.设X的概率密度为2()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在0,6上服从均匀分布,X 2服从正态分布N0,22,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则DY=19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或X ~ ;特别是,当同为正态分布时,对于任意的n ,都精确有X ~ 或X ~ .21.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且i EX μ=,2i DX σ=(1,2,)i =⋅⋅⋅ 那么211n i i X n =∑依概率收敛于 . 22.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;23.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差=24.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 AP A+B = P A; B ()P(A);P AB =C (|A)P(B);P B =D (A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 A “甲种产品滞销,乙种产品畅销”; B “甲、乙两种产品均畅销”C “甲种产品滞销”;D “甲种产品滞销或乙种产品畅销”;3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球;则第二人取到黄球的概率是A1/5 B2/5 C3/5 D4/54. 对于事件A,B,下列命题正确的是A 若A,B 互不相容,则A 与B 也互不相容;B 若A,B 相容,那么A 与B 也相容;C 若A,B 互不相容,且概率都大于零,则A,B 也相互独立;D 若A,B 相互独立,那么A 与B 也相互独立;5. 若()1P B A =,那么下列命题中正确的是A AB ⊂ B B A ⊂C A B -=∅D ()0P A B -=6. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A 增大 B 减少 C 不变 D 增减不定;7.设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=;那么对任意给定的a 都有A 0()1()a f a f x dx -=-⎰B 01()()2a F a f x dx -=-⎰ C )()(a F a F -= D 1)(2)(-=-a F a F8.下列函数中,可作为某一随机变量的分布函数是A 21()1F x x =+B x x F arctan 121)(π+= C =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 9. 假设随机变量X 的分布函数为Fx,密度函数为fx.若X 与-X 有相同的分布函数,则下列各式中正确的是AFx = F-x; B Fx = - F-x;C f x = f -x;D f x = - f -x.10.已知随机变量X 的密度函数fx=x x Ae ,x 0,λλ-≥⎧⎨<⎩λ>0,A 为常数,则概率P{X<+a λλ<}a>0的值A 与a 无关,随λ的增大而增大B 与a 无关,随λ的增大而减小C 与λ无关,随a 的增大而增大D 与λ无关,随a 的增大而减小 11.1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A 21X X = B1}{21==X X P C 21}{21==X X P D以上都不正确12.设离散型随机变量(,)X Y 的联合分布律为 且Y X ,相互独立,则A 9/1,9/2==βαB 9/2,9/1==βαC 6/1,6/1==βαD 18/1,15/8==βα13.若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为 A 二维正态,且0=ρ B 二维正态,且ρ不定C 未必是二维正态D 以上都不对14.设X,Y 是相互独立的两个随机变量,它们的分布函数分别为F X x,F Y y,则Z = max{X,Y} 的分布函数是AF Z z= max { F X x,F Y y}; B F Z z= max { |F X x|,|F Y y|}C F Z z= F X x ·F Y yD 都不是(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ15.下列二无函数中, 可以作为连续型随机变量的联合概率密度;Afx,y=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B gx,y=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C ϕx,y=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D hx,y=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他16.掷一颗均匀的骰子600次,那么出现“一点”次数的均值为A 50B 100 C120 D 15017. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A1. B9. C10. D6.18.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A ()()()D XY D X D Y =⋅B ()()()D X Y D X D Y +=+C X 和Y 独立D X 和Y 不独立19.设()(P Poission λX 分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ= A1, B2, C3, D020. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A 不相关的充分条件,但不是必要条件;B 独立的必要条件,但不是充分条件;C 不相关的充分必要条件;D 独立的充分必要条件21.设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是A 123X X X ++B 123max{,,}X X XC 2321i i X σ=∑D 1X μ-22.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B {}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅ C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅ D {}(1),1k k n k i nP X k C p p i n -==-≤≤ 23.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χD ()t n24.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是 A 1/1--=n S X t μ B 1/2--=n S X t μ C n S X t /3μ-= D n S X t /4μ-=25.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121n i i n m i i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n --三、解答题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率;2.任意将10本书放在书架上;其中有两套书,一套3本,另一套4本;求下列事件的概率;1 3本一套放在一起;2两套各自放在一起;3两套中至少有一套放在一起;3.调查某单位得知;购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%;求下列事件的概率;1至少购买一种电器的;2至多购买一种电器的;3三种电器都没购买的;4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率;5.一箱产品,A,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%;现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大6.有标号1∼n 的n 个盒子,每个盒子中都有m 个白球k 个黑球;从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率;7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率;1放回 2不放回8.设随机变量X 的密度函数为()x f x Ae -= ()x -∞<<+∞,求 1系数A,2 {01}P x ≤≤3 分布函数)(x F ;9.对球的直径作测量,设其值均匀地分布在b a ,内;求体积的密度函数;10.设在独立重复实验中,每次实验成功概率为,问需要进行多少次实验,才能使至少成功一次的概率不小于;11.公共汽车车门的高度是按男子与车门碰头的机会在以下来设计的,设男子的身高2(168,7)X N ,问车门的高度应如何确定12. 设随机变量X 的分布函数为:Fx=A+Barctanx,-x ∞<<+∞.求:1系数A 与B ;2X 落在-1,1内的概率;3X 的分布密度;13.把一枚均匀的硬币连抛三次,以X 表示出现正面的次数,Y 表示正、反两面次数差的绝对值 ,求),(Y X 的联合分布律与边缘分布;14.设二维连续型随机变量),(Y X 的联合分布函数为 )3arctan )(2arctan (),(y C x B A y x F ++= 求1A B C 、、的值, 2),(Y X 的联合密度, 3 判断X Y 、的独立性;15.设连续型随机变量X,Y 的密度函数为fx,y=(34)0,0,0,x y x y Ae -+>>⎧⎨⎩其他, 求 1系数A ;2落在区域D :{01,02}x y <≤<≤的概率;16. 设),(Y X 的联合密度为x y x x Ay y x f ≤≤≤≤-=0,10),1(),(,1求系数A,2求),(Y X 的联合分布函数;17.上题条件下:1求关于X 及Y 的边缘密度; 2X 与Y 是否相互独立18.在第16题条件下,求)(x y f 和)(y x f ;19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X 的数学期望()E X 和方差()D X ;20. 有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量准备了三组砝码 ,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少21. 公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望准确到秒;22.设排球队A 与B 比赛,若有一队胜4场,则比赛宣告结束,假设A,B 在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负23.一袋中有n 张卡片,分别记为1,2,﹒﹒﹒,n ,从中有放回地抽取出k 张来,以X 表示所得号码之和,求(),()E X D X ;24.设二维连续型随机变量X ,Y 的联合概率密度为:f x ,y=,0x 1,0y x 0,k <<<<⎧⎨⎩其他 求:① 常数k, ② ()E XY 及()D XY .25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率;26.一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少由 80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概率不低于 0.9527.甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%;28.设总体X 服从正态分布,又设X 与2S 分别为样本均值和样本方差,又设21(,)n X N μσ+,且1n X +与12,,,n X X X ⋅⋅⋅相互独立,求统计量的分布;29.在天平上重复称量一重为α的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N α,若以n X 表示n 次称量结果的算术平均值,为使()0.10.95n P X a -<≥成立,求n 的最小值应不小于的自然数30.证明题 设A,B 是两个事件,满足)()(A B P A B P =,证明事件A,B 相互独立; 31.证明题 设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间0,1上服从均匀分布;<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 必须写出分布的参数;2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 ;3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 ;4.已知2)20,8(1.0=F ,则=)8,20(9.0F ;5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计;6.设样本的频数分布为则样本方差2s =_____________________;7.设总体X~N μ,σ²,X1,X2,…,Xn 为来自总体X 的样本,X 为样本均值,则D X =________________________;8.设总体X 服从正态分布N μ,σ²,其中μ未知,X1,X2,…,Xn 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;9.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值x1,x2, (x)落入W 的概率为,则犯第一类错误的概率为_____________________; 10.设样本X1,X2,…,Xn 来自正态总体N μ,1,假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H0成立的条件下,对显著水平α,拒绝域W 应为______________________;11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __;12.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个简单随机样本,其中参数μ和2σ均未知,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则假设0H :0μ=的t 检验使用的统计量是 ;用X 和Q 表示13.设总体2~(,)X N μσ,且μ已知、2σ未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X σ+++,12323X X X μσ++,222123X X X μ++-,(1)2X μ+中是统计量的有 ;14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 ;15.设总体X 服从参数为p 的两点分布,p 01p <<未知;设1,,n X X 是来自该总体的一个样本,则21111,(),6,{},max n niin i n i ni i X XX X X X pX ≤≤==--+∑∑中是统计量的有 ;16.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;17.设2~(,)X X X N μσ,2~(,)Y Y Y N μσ,且X 与Y 相互独立,设1,,m X X 为来自总体X 的一个样本;设1,,n Y Y 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S σσ服从的分布是 ;18.设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为的置信区间是 查表0.025 1.96Z =19.设总体X ~2(,)N μσ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D X =________________________;20.设总体X 服从正态分布N μ,σ²,其中μ未知,X 1,X 2,…,X n 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;21.设12,,,n X X X ⋅⋅⋅是来自正态总体2(,)N μσ的简单随机样本,μ和2σ均未知,记11n i i X X n ==∑,221()ni i X X θ==-∑,则假设0:0H μ=的t 检验使用统计量T= ;22.设11m i i X X m ==∑和11ni i Y Y n ==∑分别来自两个正态总体211(,)N μσ和222(,)N μσ的样本均值,参数1μ,2μ未知,两正态总体相互独立,欲检验22012:H σσ= ,应用检验法,其检验统计量是 ;23.设总体X ~2(,)N μσ,2,μσ为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平α下,检验假设0:80H μ=,1:80H μ≠的拒绝域为 ,在显著性水平α下,检验假设2200:H σσ=0σ已知,2110:H σσ≠的拒绝域为 ;24.设总体X ~12(,),01,,,,n b n p p X X X <<⋅⋅⋅为其子样,n 及p 的矩估计分别是 ;25.设总体X ~[]120,,(,,,)n U X X X θ⋅⋅⋅是来自X 的样本,则θ的最大似然估计量是 ;26.设总体X ~2(,0.9)N μ,129,,,X X X ⋅⋅⋅是容量为9的简单随机样本,均值5x =,则未知参数μ的置信水平为0.95的置信区间是 ;27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差微米如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;29.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差= 30.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~ )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是X X A +)( +A ∑=-n i iX n B 1211)( a X C +)( +10 131)(X a X D ++5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是)(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计5、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是)(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当__ __时,一般采用统计量X t =A 220μσσ未知,检验=B 220μσσ已知,检验= C 20σμμ未知,检验= D 20σμμ已知,检验=7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __A 方差分析的目的是检验方差是否相等B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ A 既可能犯第一类错误也可能犯第二类错误B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都不变D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N μσ的均值μ和作区间估计,得到置信度为95%的置信区间,意义是指这个区间A 平均含总体95%的值B 平均含样本95%的值C 有95%的机会含样本的值D 有95%的机会的机会含μ的值 10.在假设检验问题中,犯第一类错误的概率α的意义是 A 在H 0不成立的条件下,经检验H 0被拒绝的概率 B 在H 0不成立的条件下,经检验H 0被接受的概率 C 在H 00成立的条件下,经检验H 0被拒绝的概率 D 在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 12.X 服从正态分布,1-=EX ,25EX =,),,(1n X X 是来自总体X 的一个样本,则∑==ni inX X 11服从的分布为___ ;A N 1-,5/nB N 1-,4/nC N 1-/n,5/nD N 1-/n,4/n13.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当___ __时,一般采用统计量X U =A 220μσσ未知,检验=B 220μσσ已知,检验=C 20σμμ未知,检验=D 20σμμ已知,检验=14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _ A 方差分析的目的是检验方差是否相等 B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ A 第一类错误和第二类错误同时都要犯B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都要变小D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆθ是未知参数θ的一个估计量,若ˆE θθ≠,则ˆθ是θ的___ _____A 极大似然估计B 矩法估计C 相合估计D 有偏估计 17.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2, …,x n落入W 的概率为,则犯第一类错误的概率为__________; A B C D18.在对单个正态总体均值的假设检验中,当总体方差已知时,选用A t 检验法B u 检验法C F 检验法D 2χ检验法19.在一个确定的假设检验中,与判断结果相关的因素有 A 样本值与样本容量 B 显著性水平α C 检验统计量 DA,B,C 同时成立 20.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平下,下列结论中正确的是A 必须接受0HB 可能接受,也可能拒绝0HC 必拒绝0HD 不接受,也不拒绝0H21.设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是A 22111()1n i i S X X n ==--∑B 22211()n i i S X X n ==-∑C 221S X +D 222S X +22.总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于LA 152σ/2LB 15.36642σ/2LC 162σ/2LD 16 23.设12,,,nX X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C X X θ-+==-∑为 2σ的无偏估计,C =A 1/nB 1/1n -C 1/2(1)n -D 1/2n - 24.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 25.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B {}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D {}(1),1k kn k i nP X k C p p i n -==-≤≤ 26.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χ D ()t n27.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是A 1/1--=n S X t μ B 1/2--=n S X t μ C nS X t /3μ-=D nS X t /4μ-=28.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n -- 29.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A4114i i X X ==∑ B142X X μ+-C42211()i i K X X σ==-∑ D4211()3i i S X X ==-∑30. 设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是统计量的是A 22212321()X X X σ++ B13X μ+C123max(,,)X X X D 1231()3X X X ++三、计算题1.已知某随机变量X 服从参数为λ的指数分布,设n X X X ,,,21 是子样观察值,求λ的极大似然估计和矩估计;10分2.某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为: 已知原来直径服从)06.0,(N μ,求:该天生产的滚珠直径的置信区间;给定05.0=α,645.105.0=Z ,96.1025.0=Z 8分3.某包装机包装物品重量服从正态分布)4,(2μN ;现在随机抽取16个包装袋,算得平均包装袋重为900=x ,样本均方差为22=S ,试检查今天包装机所包物品重量的方差是否有变化05.0=α488.2715262.6)15(2025.02975.0==)(,χχ8分 4.设某随机变量X 的密度函数为⎩⎨⎧+=0)1()(λλx x f 其他10<<x 求λ的极大似然估计; 6分5.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α求出滚珠的平均直径的区间估计;8分)96.1,645.1(025.005.0==Z Z6.某种动物的体重服从正态分布)9,(μN ,今抽取9个动物考察,测得平均体重为3.51公斤,问:能否认为该动物的体重平均值为52公斤;05.0=α8分96.1645.1025.005.0==Z Z7.设总体X 的密度函数为:⎩⎨⎧+=0)1()(ax a x f 其他10<<x , 设n X X ,,1 是X 的样本,求a 的矩估计量和极大似然估计;10分8.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,求σ的置信区间1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ8分9.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=10.10分某出租车公司欲了解:从金沙车站到火车北站乘租车的时间; 随机地抽查了9辆出租车,记录其从金沙车站到火车北站的时间,算得20x =分钟,无偏方差的标准差3s =;若假设此样本来自正态总体2(,)N μσ,其中2,μσ均未知,试求σ的置信水平为的置信下限;11.10分设总体服从正态分布2(,)N μσ,且μ与2σ都未知,设1,,n X X 为来自总体的一个样本,其观测值为1,,n x x ,设11n i i X X n ==∑,2211()n n i i S X X n ==-∑;求μ和σ的极大似然估计量;12.8分掷一骰子120次,得到数据如下表若我们使用2χ检验,则x 取哪些整数值时,此骰子是均匀的的假设在显著性水平0.05α=下被接受13.14分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布, 规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,21()0.008192nii x x =-=∑;问1在显著性水平0.05α=下,这天生产的食盐的平均净重是否和规定的标准有显著差异2 在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准3你觉得该天包装机工作是否正常14.8分设总体X 有概率分布现在观察到一个容量为3的样本,11x =,22x =,31x =;求θ的极大似然估计值15.12分对某种产品进行一项腐蚀加工试验,得到腐蚀时间X 秒和 腐蚀深度Y 毫米的数据见下表:X 5 5 10 20 30 40 50 60 65 90 120 Y 4 6 8 13 16 17 19 25 25 29 46假设Y 与X 之间符合一元线回归模型01Y X ββε=++1试建立线性回归方程;2在显著性水平0.01α=下,检验01:0H β=16. 7分设有三台机器制造同一种产品,今比较三台机器生产能力,记录其五天的日产量17.10分设总体X 在),0(θ)0(>θ上服从均匀分布,n X X ,,1 为其一个样本,设},,max{1)(n n X X X =1)(n X 的概率密度函数()n p x 2求()[]n E X18.7分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布,规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准19.10分设总体X 服从正态分布2(,)N μσ,1,,n X X 是来自该总体的一个样本,记11(11)kk i i X X k n k ==≤≤-∑,求统计量1k k X X +-的分布;20.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=<概率论>试题参考答案一、填空题1. 1 C B A 2 C B A C B A C B A3 B A C A C B 或 C B A C B A C B A C B A2. , 3.3/7 , 4.4/7 = 1/1260 , 5., 6. 1/5, 7.1=a ,=b 1/2, 8., 9.2/3, 10.4/5, 11.5/7, 12.Fb,c-Fa,c, 13.F a,b, 14.1/2, 15., 16., 17.1/2, 18.46, 19.85 20.22(,),(0,1),(,),(0,1)N N N N nnσσμμ; 21.22μσ+, 22,1/8 ,23.X =7,S 2=2 , 24.2N ,n σμ⎛⎫⎪⎝⎭,二、选择题1.A 2.D 3.B 4.D 5.D 6.C 7.B 8.B 9.C 10 .C11.C 12.A 13.C 14.C 1 5.B 16.B 17.C 18.B 19.A 20 .C21.C 22.B 23.A 24.B 25.C 三、解答题 1. 8/15 ;2. 11/15, 21/210, 32/21;3. 1 , 2, 3 ;4. ;5. 取出产品是B 厂生产的可能性大;6. m/m+k;7.11{}(3/13)(10/13)k P X K -== 28. 1A =1/2 , 211(1)2e -- , 31,02()11,02xx e x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩9. 1/32/3330()161()(),()366f x x x a b b a πππ-⎧⎪=⎨⎡⎤∈⎪⎢⎥-⎣⎦⎩其他, 10. 4≥n11. 提示:99.0}{01.0}{≥<≤≥h x P h x P 或,利用后式求得31.184=h 查表(2.33)0.9901φ= 12. 错误!A=1/2,B=1π; 错误! 1/2; 错误! f x=1/π1+x 2 13. 14. 12,,22A B C ππ===;2 222(,)(4)(9)f x y x y π=++;3 独立 ;15. 1 12; 2 1-e -31-e -816. 124A =24322432340003812(/2)010(,)3861014301111x y y y x x y x y x F x y y y y x y x x x x y x y <<⎧⎪-+-≤<≤<⎪⎪=++≥≤<⎨⎪-≤<≤⎪≥≥⎪⎩或 17. 1212(1),01()0,x x x x f x ⎧-≤≤=⎨⎩其他 ; 212(1),01()0,y y y y f y ⎧-≤≤=⎨⎩其他2不独立18. 22,0,01()0,Y X yy x x f y x x ⎧<<<<⎪=⎨⎪⎩其他 ;22(1),1,01(1)()0,X Y x y x y y f x y -⎧≤<<<⎪-=⎨⎪⎩其他19. 1224(),()749E X D X ==20. 丙组 21. 10分25秒 22. 平均需赛6场j PiP1/823. 2(1)(1)(),()212k n k n E X D X +-== ; 24. k = 2, EXY=1/4, DXY=7/144 25. 26. 27. 537 28. (1)t n - 29. 1630. 提示:利用条件概率可证得;31. 提示:参数为2的指数函数的密度函数为220()00xe xf x x -⎧>=⎨≤⎩ ,利用21xY e-=-的反函数⎪⎩⎪⎨⎧--=0)1ln(21y x 即可证得;<数理统计>试题参考答案一、填空题1.)1,0(N , 2.∑=n i i X n 11=, 3.121-∑=ni i x n , 4., 5.)ˆ()ˆ(β<θD D 6.2 , 7.n 2σ, 8.n-1s 2或∑=n 1i 2i )x -(x , 9. , 10.⎭⎬⎫⎩⎨⎧>2u |u |σ,其中n x u =11.21X u α-±, 385;12.X t =13. 222123X X X μ++-, (1)2X μ+ ; 14.1(,,)n F x x 为1()ni i F x =∏,15.2111,(),6,{}max n ni in i i ni i X XX X X ≤≤==--∑∑ ;16.21X u α-±,17. (,)F m n , 18.,, 19.n 2σ, 20.n-1s 2或∑=n1i 2i )x -(x ,21.T =, 22.F ,2121(1)()(1)()mi i ni i n X X F m Y Y ==--=--∑∑ , 23.__22221122100222()()(1),(1)(1)n n i i i i n x x x x t n n n αααχχσσ==-⎧⎫⎧⎫--⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪->-⋃<-⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎩⎭⎩⎭∑∑, 24.2,1X S n p p X∧∧==- , 25.12max{,,,}n X X X θ=⋅⋅⋅ ,26.[4.412,5.588], 27.2 , 28.1/8 , 29.X =7, S 2=2, 30.2N ,n σμ⎛⎫⎪⎝⎭二、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.D 8.A 9.D 10.C11.A 12.B 13.D 14.D 15.C 16.D 17.B 18.B 19.D 20.A21.D 22.B 23.C 24.A 25.B 26.A 27.B 28.C 29.C 30.A 三、计算题 1.10分解:设n X X X ,,,21 是子样观察值 极大似然估计: ∑⋅===-=-∏ni iix nni x eeL 11)(λλλλλ∑=-⋅=ni i n n x l n L l 1)(λλλ0)(1=-=∂∂∑=ni i n x n L l λλλ x1=λ 矩估计:λ=⋅λ⋅=⎰+∞λ-1)(0dx e x X E x 样本的一阶原点矩为:∑==ni i X n X 11所以有:XX X EX 1ˆ1=λ⇒=λ⇒= 2.8分解:这是方差已知,均值的区间估计,所以有: 置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯-所以为:]146.15,754.14[ 3.8分解:统计量为:)1(~)1(222--n X S n σ0H :22024==σσ,1H :202σσ≠16=n ,22=S ,224=σ代入统计量得875.116215=⨯ 262.6)15(875.12975.0=<χ所以0H 不成立,即其方差有变化; 4.6分解:极大似然估计:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得 ∑∑==+-=ni ini iXX n 11ln ln ˆλ5.8分解: 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x 代入计算可得]96.192.015,96.192.015[⨯+⨯-化间得:]131.15,869.14[ 6.8分解:52:00==μμH ,01:μμ≠H7.093523.51-=-=-nx σμ96.12=αμ96.17.0|7.0|025.0=μ<=-所以接受0H ,即可以认为该动物的体重平均值为52;7.10分 解: 矩估计为:210121)1()(21++=++=+⋅=+⎰a a x a a dx x a x X E a a 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX a X a a --=⇒=++112ˆ21极大似然估计:∏∏==⋅+=+=ni i a ni ni an x a x a x x x f 1121)1(])1[(),,,(两边取对数:∑=++=ni i n x a a n x x f 11)ln()1ln(),,(ln两边对a 求偏导数:=∂∂afln ∑=++ni i x a n 1)ln(1=0 所以有:∑=--=ni ix na1)ln(1ˆ8.8分 解:由2222221)1(ααχσχ≤-≤-S n 得 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:)11()1(222αχS n -,)11()1(2212αχ--S n 将12=n ,2.0=S 代入得 15.0,31.09.解:这是两正态总体均值差的区间估计问题;由题设知,2-n n 1)s -(n 1)s -(n s .05.01.9s 3.11s 172y 9.175x 6,n 5,n 21222211w 222121++========α,,,, 2分=, 4分 选取9=,则21μμ-置信度为的置信区间为: ⎥⎦⎤⎢⎣⎡+++++21w 21221w212n 1n 12)s -n (n t y -x ,n 1n 12)s -n (n t -y -x αα 8分 =,. 10分 注:置信区间写为开区间者不扣分; 10. 解:由于μ未知,故采用2222(1)~(1)n S n χχσ-=-作枢轴量 2分要求()1L P σσα≥=- 2分这等价于要求22()1L P σσα≥=-, 也即2222(1)(1)()1Ln S n S P ασσ--≤=- 2分而2212(1)((1))1n S P n αχασ--≤-=- 2分所以2212(1)(1)Ln S n αχσ--=-,故2221(1)(1)Ln S n ασχ--=- 1分 故σ的置信水平为1α-的置信下限为L σ=由于这里9n =,0.05α=,20.95(8)15.507χ=所以由样本算得ˆ 2.155L σ= 1分 即σ的置信水平为的置信下限为; 11. 解:写出似然函数221222()()2222(,)(2)ni i i n x x ni L eμμσσμσπσ=-----=∑== 4分取对数2222211ln (,)ln(2)()2nn ii L x μσπσμσ==---∑ 2分求偏导数,得似然方程221231ln 1()0ln 1()0n i i n i i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 3分解似然方程得:ˆX μ=,ˆσ= 1分12.解:设第i 点出现的概率为i p ,1,,6i =101266:H p p p ====,1126:,,,H p p p 中至少有一个不等于161分采用统计量 221()ri i i i n np np χ=-=∑1分在本题中,6r =,0.05α=,20.95(5)11.07χ= 1分所以拒绝域为2{11.107}W χ=≥ 1分 算实际的2χ值,由于1612020i np =⨯=,所以22222621()(20)4(2020)(20)(20)2010i i i i n np x x x np χ=--+-+--===∑ 1分所以由题意得2(20)011.10710x -≤<时被原假设被接受即9.4630.54x <<,故x 取[10,30]之间的整数时, 2分 此骰子是均匀的的假设在显著性水平0.05α=下被接受;1分13. 解:“这几天包装是否正常”,即需要对这天包装的每袋食盐净重的期望与方差分别作假设检验1检验均值,总共6分0:1H μ=,1:1H μ≠ 选统计量,并确定其分布~(1)X t t n =-确定否定域21{||}{|| 2.306}W t t t α-=≥=≥统计量的观测值为0.1875x t ==因为21||0.1875 2.306t t α-=<=,所以接受0:1H μ=;2检验方差,总共6分220:0.02H σ≤,220:0.02H σ>选统计量222211()~(1)0.02nii XX n χχ==--∑确定否定域2221{(1)}{15.5}W n αχχχ-=≥-=≥ 统计量的观测值为222221180.032()20.480.020.02n i i x x χ=⨯=-==∑因为22120.4815.5(1)n αχχ-=>=-,所以拒绝220:0.02H σ≤32分结论:综合1与2可以认为,该天包装机工作是不正常的; 14.解:此时的似然函数为123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ======== 2分即225()2(1)2(1)L θθθθθθθ=⨯-⨯=- 2分 ln ()ln 25ln ln(1)L θθθ=++- 1分ln ()511d L d θθθθ=-- 1分 令 ln ()0d L d θθ= 1分得θ的极大似然估计值5ˆ6θ=.1分15.解:1解:根据公式可得01ˆˆY X ββ=+其中 011ˆˆˆXYXX l lY X βββ⎧=⎪⎨⎪=-⎩ 2分。

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习题集附答案1. 概率1.1 条件概率题目:某班有60名学生,其中有30名男生和30名女生。

从中随机抽取一位学生,求抽到女生的概率。

答案:由于抽到女生只有30人中的一个机会,总数为60人,所以女生的概率为30/60=1/2。

1.2 独立事件题目:一副52张的扑克牌中,第一次从中抽取一张 A,不放回,第二次抽取一张 K,求第二次抽到 K 的概率。

答案:由于第一次抽取 A 后不放回,所以总共只剩下51张牌。

其中,抽到 K 的机会只有4张,所以概率为4/51。

1.3 事件的并、交与补题目:在数学课上,调查了50位学生的成绩情况,结果发现40位学生擅长代数,35位学生擅长几何,其中有30位学生既擅长代数又擅长几何。

求至少擅长其中一科的学生人数。

答案:根据题意,至少擅长其中一科的学生人数等于擅长代数的人数加上擅长几何的人数再减去既擅长代数又擅长几何的人数。

即40 + 35 - 30 = 45。

2. 统计2.1 样本均值题目:某班有30名学生,进行一次数学测验,得分如下:80, 85, 90, 70, 75, 95, 100, 85, 92, 78, 88, 90, 85, 82, 86, 88, 90, 92, 86, 95, 85, 82, 92, 88, 90, 85, 90, 88, 80, 90求该班级的平均分。

答案:将所有学生的得分相加,并且除以学生总数,即(80 + 85 + 90 + 70 + 75 + 95 + 100 + 85 + 92 + 78 + 88 + 90 + 85 + 82 + 86 + 88 + 90 + 92 + 86 + 95 + 85 + 82 + 92 + 88 + 90 + 85 + 90 + 88 + 80 + 90) / 30 ≈ 87.12.2 极差题目:某班级考试的分数如下:80, 85, 70, 95, 90, 92, 65, 88求该班级考试分数的极差。

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.【答案】(1)1 2;(2)分布列见解析,1.【分析】(1)根据组合知识求得取球的方法数,然后由概率公式计算概率;(2)确定X的所有可能取值为0,1,2,然后分别计算概率得分布列,再由期望公式计算出期望.【详解】(1)设事件A=“取出的2个小球上的数字不同”,则P A=C12C12+C12C12C14C14=12.(2)X的所有可能取值为0,1,2.①当相邻小球上的数字都不同时,如1212,有2×A22×A22种,则P X=0=2×A22×A22A44=13.②当相邻小球上的数字只有1对相同时,如1221,有2×A22×A22种,则P X=1=2×A22×A22A44=13.③当相邻小球上的数字有2对相同时,如1122,有2×A22×A22种,则P X=2=2×A22×A22A44=13.所以X的分布列为X012P 131313所以X的数学期望E X=0×13+1×13+2×13=1.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.【答案】(1)7 27;(2)分布列见解析,31781.【分析】(1)写出所有可能情形,利用互斥事件的概率和公式即可求出;(2)算出X为不同值时对应的概率并填写分布列,之后求出数学期望即可.【详解】(1)设“三局比赛后,甲得3分”为事件A,甲得3分包含以下情形:三局均为平局,三局中甲一胜一平一负,所以P A=133+A3313 3=727,故三局比赛甲得3分的概率为7 27 .(2)依题意知X的可能取值为2,3,4,5,P X=2=2×132=29,P X=3=2×C12133=427,P X=4=2×C12134+C1313 4=1081,P X=5=1-P X=2-P X=3-P X=4=1-29-427-1081=4181,故其分布列为:X2345P2942710814181期望E X=2×29+3×427+4×1081+5×4181=31781.3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?【答案】(1)9种(2)349.【分析】(1)法一,利用分步乘法计数原理集合组合数的计算,即可求得答案;法二,利用间接法,即用不考虑队长人选对甲的限制的所有选法,减去甲担任队长的选法,即可得答案;(2)考虑第一次传球,老师传给了甲还是传给乙、丙、丁中的任一位,继而确定第二次以及第三次传球后球回到老师手中的情况,结合乘法公式以及互斥事件的概率求法,即可求得答案.【详解】(1)法一,先选出队长,由于甲不担任队长,方法数为C13;再选出副队长,方法数也是C13,故共有方法数为C13×C13=9(种).方法二先不考虑队长人选对甲的限制,共有方法数为A 24=4×3=12(种);若甲任队长,方法数为C 13,故甲不担任队长的选法种数为12-3=9(种)答:从甲、乙、丙、丁中任选两人分别担任队长和副队长,甲不担任队长的选法共有9种.(2)①若第一次传球,老师传给了甲,其概率为14;第二次传球甲只能传给乙、丙、丁中的任一位同学,其概率为67;第三次传球,乙、丙、丁中的一位传球给老师,其概率为17,故这种传球方式,三次传球后球回到老师手中的概率为:14×67×17=398.②若第一次传球,老师传给乙、丙、丁中的任一位,其概率为34,第二次传球,乙、丙、丁中的一位传球给甲,其概率为27,第三次传球,甲将球传给老师,其概率为17,这种传球方式,三次传球后球回到老师手中的概率为34×27×17=398,所以,前三次传球中满足题意的概率为:398+398=349.答:前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是349.4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO 问界M 7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望E ξ .【答案】(1)73.3分(2)分布列见解析;期望为35【分析】(1)根据频率分布直方图求解中位数的方法可得答案;(2)确定抽取的“问界粉”人数,再确定ξ的取值,求解分布列,利用期望公式求解期望.【详解】(1)由频率分布直方图可知:打分低于70分的客户所占比例为40%,打分低于80分的客户的所占比例为70%,所以本次调查客户打分的中位数在[70,80)内,由70+10×0.50-0.400.70-0.40=2203≈73.3,所以本次调查客户打分的中位数约为73.3分;(2)根据按比例的分层抽样:抽取的“问界粉”客户3人,“非问界粉”客户7人,则ξ的所有可能取值分别为0,1,2,其中:P (ξ=0)=C 03C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 07C 210=115,所以ξ的分布列为:ξ012P715715115所以数学期望E (ξ)=0×715+1×715+2×115=35.5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.【答案】(1)35(2)4411000【分析】(1)利用全概率公式,即可求得答案;(2)求出乙答对的概率,设每一轮比赛中甲得分为X ,求出X 的每个值对应的概率,即可求得三轮比赛后,甲总得分为Y 的每个值相应的概率,即可得答案.【详解】(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件A i i =1,2,3 ,记随机任选1题,甲答对为事件B ,则P A 1 =14,P A 2 =14,P A 3 =12,P B |A 1 =25,P B |A 2 =25,P B |A 3 =45,则P B =P A1 P B |A 1 +P A2 P B |A 2 +P A3 P B |A 3=14×25+14×25+12×45=35;(2)设乙答对记为事件C ,则P C =P A 1 P C |A 1 +P A 2 P C |A 2 +P A 3 P C |A 3 =14×12+14×12+12×12=12,设每一轮比赛中甲得分为X ,则P X =1 =P BC =P B P C =35×1-12 =310,P X =0 =P BC ∪BC =P BC +P CB=35×12+1-35 ×1-12 =12,P (X =-1)=P B C =1-35 ×12=15,三轮比赛后,设甲总得分为Y ,则P Y =3 =3103=271000,P Y =2 =C 23310 2×12=27200,P Y =1 =C 13×310×122+C 23×3102×15=2791000,所以甲最终获得奖品的概率为P =P Y =3 +P Y =2 +P Y =1 =271000+27200+2791000=4411000.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .【答案】(1)X 的分布列见解析,期望E (X )=95(2)y=7x +17;预测广告费支出10万元时的销售额为87万元.【分析】(1)根据超几何分布的概率公式求解分布列,进而可求解期望,(2)利用最小二乘法求解线性回归方程即可.【详解】(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市有C ,D ,E 这3家超市,则随机变量X 的可能取值为1,2,3P (X =1)=C 13C 22C 35=310,P (X =2)=C 23C 12C 35=35,P (X =3)=C 33C 35=110,∴X 的分布列为:X123P31035110数学期望E (X )=1×310+2×35+3×110=95.(2)x =2+4+5+6+85=5,y =30+40+60+60+705=52,b=ni =1x i y i -nx yni =1x 2i -nx2=60+160+300+360+560-5×5×524+16+25+36+64-5×52=7,a=52-7×5=17.∴y 关于x 的线性回归方程为y=7x +17;在y =7x +17中,取x =10,得y =7×10+17=87.∴预测广告费支出10万元时的销售额为87万元.7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i =1,第i 局乙当裁判0,第i 局甲或丙当裁判, i =1,2,⋅⋅⋅,n ,p i =P X i =1 ,X 表示前n 局中乙当裁判的次数.(1)求事件“n =3且X =1”的概率;(2)求p i ;(3)求E X ,并根据你的理解,说明当n 充分大时E X 的实际含义.附:设X ,Y 都是离散型随机变量,则E X +Y =E X +E Y .【答案】(1)34;(2)p i =-13 ×-12i -1+13;(3)p i ,答案见解析。

概率与统计基础过关题(附答案)

概率与统计基础过关题(附答案)

统计与概率基础过关题一、选择题1.某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A. 15,10, 20B. 15,15,15C. 10, 5,30D. 15, 5,252.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )A .7B .15C .25D .353.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100mL (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL (含80)以上时,属醉酒驾车。

据有关调查,在一周内,某地区查处酒后驾车和醉酒驾车共500人.如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为 ( ) A .50 B .75C .25D .1504.若样本数据 x 1+1,x 2+1,…,x 10+1的平均数是10,那么对于数据x 1+2,x 2+2, …,x 10+2有( )A.平均数是10B. 平均数是11C.平均数是12D. 平均数是14, 7.5(21)x -的展开式中4x 的系数是( )A .—80B .80C .—5D .58.书架上有不同的语文书10本,不同的英语书7本,不同的数学书5本,现从中任选一本阅读,不同的选法种数有A .20B .22C .32D .350 9.下列说法正确的是( )A .如果一事件发生的概率为十万分之一,说明此事件不可能发生B .如果一事件不是不可能事件,说明此事件是必然事件C .事件的概率的范围是()01,. D .如果一事件发生的概率为99.999%,说明此事件必然发生. 10.向桌面掷骰子1次,则向上的数是4的概率是( )A.C11个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A. 0.42 B. 0.28 C. 0.3 D. 0.712.有5位同学想参加语文、数学、外语三种课外兴趣小组,每人只能报一项,则不同的报名方式有( ).) 0.0150.01 0.00.0250.0150.010.005频率组距A.8种B.15种C.53种D.35种二、填空题13.抛掷一枚均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6),则事件“出现点数大于4”的概率是_____________.14.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

专练10(统计与概率大题)(30题)-2021年中考数学考点必杀500题(通用版)(原卷版)

专练10(统计与概率大题)(30题)-2021年中考数学考点必杀500题(通用版)(原卷版)

2021中考考点必杀500题专练10(统计与概率大题)(30道)1.在中考理化实验操作中,初三某班除两名同学因故外全部参加考试,考试结束后,把得到的成绩(均为整数分,满分10分)进行统计并制成如图1所示的条形统计图和如图2所示的扇形统计图(不完整).(1)m ;(2)若从这些同学中,随机抽取一名整理一下实验器材,求恰好抽到成绩不小于8分同学的概率;(3)若两名同学经过补测,把得到的成绩与原来成绩合并后,发现成绩的中位数发生改变,求这两名同学的成绩和.2.阳光中学为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人周的零花钱数额,并绘制了如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)随机调查的学生人数是__________,并补全条形统计图;(2)求被调查的学生每人一周零花钱数额的中位数及众数;(3)为捐助贫困山区儿童学习,全校800名学生每人自发地捐出一周的零花钱,请估计全校学生共捐款钱数.3.“垃圾分类,从我做起”,为改善群众生活环境,促进资源循环,提升全民文明素养,垃圾分类已经在全国各地开展.垃圾一般可分为可回收物、厨余垃圾、有害垃圾、其它垃圾四类,我们把以上对应类别的垃圾桶分别依次记为A,B,C,D.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶A,B,C,D.(1)直接写出甲扔对垃圾的概率;(2)请用列表法或画树状图的方法,求出甲、乙两人同时扔对垃圾的概率.4.为了解某校九年级学生的理化实验操作情况,随机抽查40名同学实验操作的得分(满分为10分).根据获取的样本数据,制作了如图的条形统计图和扇形统计图,请根据相关信息解答下列问题.(1)①中的描述应为“6分”,其中m的值为________;扇形①的圆心角的大小是________;(2)这40个样本数据平均数是________,众数是________,中位数是________;(3)若该校九年级共有1280名学生,估计该校理化实验操作得满分的学生有多少人.5.为了解学生掌握垃圾分类知识的情况,我学校举行有关垃圾分类的知识测试活动,现从七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为;7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图所示:七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:请你根据以上提供信息,解答下列问题:(1)上表中a=______,b=______,c=_______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)我校七、八年级共1100名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?6.九(1)班针对“你最向往的研学目标”的问题对全班学生进行了调查(共提供A、B、C、D四个研学目标,每名学生从中分别选一个目标),并根据调查结果列出统计表绘制扇形统计图.男、女生最向往的研学目标人数统计表根据以上信息解决下列问题:(1)m=;n=;(2)扇形统计图中A所对应扇形的圆心角度数为;(3)从最向往的研学目标为C的4名学生中随机选取2名学生参加竞标演说,求所选取的2名学生中恰好有一名男生、一名女生的概率.7.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.8.劳动教育是新时代对教育的新要求,是中国特色社会主义教育制度的重要内容,是全面发展教育体系的重要内容,是大、中、小学必须开展的教育活动.某中学为落实劳动教育,组织八年级学生进行了劳动知识技能竞赛,现随机抽取了部分同学的成绩(百分制),制成如图所示的不完整的统计图表:表一表二根据以上信息回答下列问题.(1)若抽取的学生成绩处在8090x ≤<这一组的数据如下:88;87;81;80;82;88;84;86,根据以上数据填空:a =__________;b =________.(2)在扇形统计图中,表示问卷成绩在90100x ≤≤这一组的扇形圆心角度数为__________.(3)已知该校八年级共有学生500名,若将成绩不少于80分的学生称为“劳动达人”,请你估计该校八年级一共有多少名学生是“劳动达人”.9.某校在第五届全国学生“学宪法 讲宪法”活动中举办了宪法知识竞赛,并从中选取了部分学生的竞赛成绩进行统计(满分100分,成绩均不低于50分),绘制了如下尚不完整的统计图表. 调查结果频数分布表请根据以上信息,回答下列问题:(1)填空:m = ,n = ,本次抽取了 名学生; (2)请补全频数分布直方图;(3)若甲同学的竞赛成绩是所有竞赛成绩的中位数,据此推测他的成绩落在 分数段内;(4)竞赛成绩不低于90分的4名同学中正好有2名男生和2名女生,现准备从中随机选出2名同学参加市里面“学宪法 讲完法”演讲比赛,求正好抽到一男一女的概率.10.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)请你用频数分布直方图.......计算这50个家庭去年的月均用水量的平均数和中位数(各组的实际数据用该组的组中值表示);若该小区有2000个家庭,请你用频数分布直方图.......得到的数据估计该小区月均用水总量;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量标准应该定为多少?为什么?11.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育缀炼,每位同学从长跑.签球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为__________;(2)选择长跑训练的人数占全班人数的百分比是__________,该班共有同学___________人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.12.某校为了激发青少年锻炼身体的意识,举办了1分钟跳绳比赛.下列是七年级参赛学生的成绩,绘制成如下的频数分布表与频数分布直方图:请你根据图表提供的信息,解答下列问题(1)直接写出m,n,a,b的值,并补全频数分布直方图;(2)如果130分(含130分)以上为优秀等级,那么这次七年级参赛学生的优秀率是多少?(3)比赛成绩前四名是1名男生和3名女生,若从他们中任选2人参加联校跳绳比赛,试求恰好选中性别不同的概率.13.为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组(从左到右的顺序).统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级______名学生,并将频数分布直方图补充完整;(2)该年级1500名考生中,考试成绩120分以上(含120分)学生有______名;(3)如果第一组(75~90)中只有一名是女生,第五组(135~150)中只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想.请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.14.为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)在上述表格中:a=,b=,c=;(2)根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);(3)该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.15.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A,B,C,D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=_______,n=______;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.16.2020年3月,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称中央《意见》),就加强大中小学劳动教育进行了系统设计和全面部署.2020年11月,中共云南省委、云南省人民政府全面对照落实中央《意见》精神,结合云南实际,印发了《关于全面加强新时代大中小学劳动教育的实施意见》(以下简称《实施意见》),《实施意见》要求各地各校组织学生广泛开展劳动教育实践活动.昆明甲、乙两校想从下面四个劳动实践基地中任选一个,地点如下:A:澄江抚仙湖仙湖农场劳动实践教育基地;B:富民半山耕云劳动实践教育基地;C:石林杏林大观园中医药文化研学实践教育基地;D:石林锦苑花卉鲜花种植劳动实践教育基地.(1)求甲校选择到澄江抚仙湖仙湖农场劳动实践教育基地的概率;(2)甲、乙两校决定通过抽签的方式确定本次开展劳动教育实践活动的目的地,请你用树状图或列表的方法求出两所学校到同一地点开展劳动教育实践活动的概率.17.《生物多样性公约》第十五次缔约方大会(COP15)重新确定于2021年5月17日至30日在云南省昆明市举办.“生物多样性”的目标、方法和全球通力合作,将成为国际范围的热点关注内容.为广泛宣传云南生物多样性,某校组织七、八年级各200名学生对《云南的生物多样性》白皮书相关知识进行学习并组织定时测试.现分别在七、八两个年级中各随机抽取了10名学生,统计这部分学生的竞赛成绩,相关数据统计、整理如下:(收集数据)七年级10名同学测试成绩统计如下:72,84,72,91,79,69,78,85,75,95八年级10名同学测试成绩统计如下:85,72,92,84,80,74,75,80,76,82(整理数据)两组数据各分数段,如下表所示:(分析数据)两组数据的平均数、中位数、众数、方差如下表:(问题解决)根据以上信息,解答下列问题:(1)填空:a =________,b =________,c =________; (2)计算八年级同学测试成绩的方差是:()()()()()()()()(2222222221=80858072809280848080807480758080810S ⎡⨯-+-+-+-+-+-+-+-+⎣八年级请你求出七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上算优秀,请估计这两个年级竞赛成绩达到优秀学生的人数共有多少人? (4)根据以上数据,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由(写出一条理由即可).18.从2020年安徽省体育中考方案了解到男生1500米是必测项目,为了解某校九年级男生1500米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a = ,b = ;(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为 度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1500米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.某校设有体育选修课,每位同学必须从羽毛球、篮球、乒乓球、排球、足球五项球类运动中选择一项且只能选择一项球类运动,在该校学生中随机抽取10%的学生进行调查,根据调查结果绘制成如图所示的尚不完整的频数分布表和扇形统计图.请根据以上图、表信息解答下列问题:(1)频数分布表中的a=,b=;(2)补全扇形统计图;(3)排球所在的扇形的圆心角为度;(4)全校有多少名学生选择参加乒乓球运动?20.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与“2020年新冠病毒防护知识”在线问答.社区管理员随机从甲、乙两个小区各抽取20名居民的答卷成绩,并对他们的成绩(单位:分)进行统计、分析如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:分析数据:应用数据:(1)填空:a = ,b = ,c = ,d = ; (2)求扇形统计图中圆心角α的度数;(3)若甲小区共有1200人参与答卷,请估计甲小区成绩在90分以上的人数.21.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A 级、2A 级、3A 级,其中1A 级最好,3A 级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级. 两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱. (1)三箱油桃出现的先后顺序共有哪几种不同的可能? (2)孙明与王军,谁买到1A 级的可能性大?为什么?22.某校为了解学生安全意识强弱,在全校范围内随机抽取了部分学生进行问卷调查.将调查结果汇总分析,并绘制成如下两幅尚不完整的统计图. 根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)求扇形统计图中,“较强”层次所占扇形的圆心角度数;(3)若该校有1900名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要接受强化安全教育的学生人数.23.目前微信、支付宝、共享单车、和网购给我们的生活带来很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人,(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图(1)根据图中信息求出m=__________;n=_______________;(2)请把图中的条形统计图补充完整;(3)根据抽样调查结果,请估算全1800名学生中,大约有多少人最认可微信和支付宝这两样新生事物?24.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题: (1)m = ,n= ; (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 ;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名.25.病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组:100500x ≤<,500900x ≤<,9001300x ≤<,13001700x ≤<,17002100x ≤<,21002500x ≤<.)根据以上信息回答问题: (1)补全频数分布直方图.(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.据新华网报道在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C 市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1万人)26.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是__________;(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?27.重庆,别称“山城”、“雾都”,旅游资源丰富,自然人文旅游景点独具特点.近年来,重庆以其独特“3D魔幻”般的城市魅力吸引了众多海内外游客,成为名副其实的旅游打卡网红城市.某中学想了解该校九年级1200名学生对重庆自然人文旅游景点的了解情况,从九(1)、九(2)班分别抽取了30名同学进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E 组:90<x≤100.测试成绩统计图如下:b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.c.九(1)(2)班测试成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)根据题意,直接写出m,n的值:m=,n=;九(2)班测试成绩扇形统计图中A 组的圆心角α=°;(2)在此次测试中,你认为班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可):;(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.28.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图29.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.30.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率与统计》解答题通关1、随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.2、某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为其中0<a<1,0<b<1(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元。

商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值。

3、随着网络信息化的高速发展,越来越多的大中小企业选择做网络推广,为了适应时代的发展,某企业引进一种通讯系统,该系统根据部件组成不同,分为系统A和系统B,其中系统A由5个部件组成,系统B由3个部件组成,每个部件独立工作且能正常运行的概率均为p(0<p<1),如果构成系统的部件中至少有一半以上能正常运行,则称系统是“有效”的.(1)若系统A与系统B一样有效(总体有效概率相等),试求p的值;(2)若p=对于不能正常运行的部件,称为坏部件,在某一次检测中,企业对所有坏部件都要进行维修,系统A中每个坏部件的维修费用均为100元,系统B中第n 个坏部件的维修费用y(单位:元)满足关系y=50n+150(n=1,2,3),记企业支付该通讯系统维修费用为X,求EX.4、甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单提成4元;乙公司无底薪,40单以内(含40单)的部分每单提成6元,大于40单的部分每单提成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)若将大于40单的工作日称为“繁忙日”,根据以上频数表能否在犯错误的概率不超过0.05的前提下认为“繁忙日”与公司有关?(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘,你会推荐小王去哪家?为什么?参考公式和数据:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)元/公斤,估计明年单价不变的可能性为10%,变为3.60元/公斤的可能性为60%,变为3.70元/公斤的可能性为30%.统计杂交稻B 的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B 的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(,)(1,2,10)i i x y i =L ,并得到散点图如下,参考数据见下.(1)估计明年常规稻A 的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B 的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B 的亩产超过765公斤的概率; (3)判断杂交稻B 的单价y (单位:元/公斤)与种植亩数x (单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y 关于x 的线性回归方程;调查得知明年此地杂交稻B 的种植亩数预计为2万亩.若在常规稻A 和杂交稻B 中选择,明年种植哪种水稻收入更高?统计参考数据: 1.60x =, 2.82y =,101()()0.52i i i x x y y =--=-∑,1021()0.65i i x x =-=∑,附:线性回归方程ˆybx a =+,121()()()niii nii x x y y b x x ==--=-∑∑.6、某学校为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A 餐厅分数的频率分布直方图和B 餐厅分数的频数分布表:B 餐厅分数频数分布表分数区间频数[0,10) 2[10,20) 3[20,30) 5[30,40)15[40,50)40[50,60] 35定义学生对餐厅评价的“满意度指数”如下:分数[0,30)[30,50)[50,60]满意度指数0 1 2(1)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;(2)以频率估计概率,从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;(3)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.7、我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布(32,16)N.(1)购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?(2)2019年该基地考虑增加人工投入,现有以往的人工投入增量x (人)与年收益增量y模型①:由最小二乘公式可求得y 与x 的线性回归方程:ˆ 4.111.8yx =+; 模型②:由散点图的样本点分布,可以认为样本点集中在曲线:y a =的附近,对人工投入增量x 做变换,令t =,则y b t a =⋅+,且有772112.5,38.9,()()81.0,()3.8i i i i i t y t t y y t t ====--=-=∑∑.(i )根据所给的统计量,求模型②中y 关于x 的回归方程(精确到0.1);(ii )根据下列表格中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更附:若随机变量2(,)Z N μσ~,则(33)0.9974P Z μσμσ-<<+=,100.99870.9871≈;样本(,)(1,2,,)i i t y i n ⋯=的最小二乘估计公式为:121()()ˆˆˆ,()nii i nii tt y y bay bt tt ==--==--∑∑,另,刻画回归效果的相关指数22121ˆ()1()niii nii y yR y y ==-=--∑∑8、某公司销售部随机抽取了1000名销售员1天的销售记录,经统计,其柱状图如图. 该公司给出了两种日薪方案.方案1:没有底薪,每销售一件薪资20元;方案2:底薪90元,每日前5件的销售量没有奖励,超过5件的部分每件奖励20元. (1)分别求出两种日薪方案中日工资y (单位:元)与销售件数n 的函数关系式; (2)若将频率视为概率,回答下列问题:(Ⅰ)根据柱状图,试分别估计两种方案的日薪X (单位:元)的数学期望及方差; (Ⅱ)如果你要应聘该公司的销售员,结合(Ⅰ)中的数据,根据统计学的思想,分析选择哪种薪资方案比较合适,并说明你的理由.9、某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:( 1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率; ( 2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:预计去年消费金额在 (0,1600]内的消费者今年都将会申请办理普通会员,消费金额在 (1600,3200]内的消费者都将会申请办理银卡会员,消费金额在 (3200,4800]内的消费者都 将会申请办理金卡会员. 消费者在申请办理会员时,需一次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案: 方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星” 给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖 励 600 元; 金卡会员中的“幸运之星”每人奖励 800 元.方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有 3 个白球、 2 个红球 (球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸一个球.若摸到红球的总数 消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) . 以方案 2 的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.10、某产品年末搞促销活动,由顾客投掷4枚相同的、质地均匀的硬币,若正面向上的硬币多于反面向上的硬币,则称该次投掷“顾客胜利”.顾客每买一件产品可以参加3次投掷活动,并且在投掷硬币之前,可以选择以下两种促销方案之一,获得一定数目的代金券.方案一:顾客每投掷一次,若该次投掷“顾客胜利”,则顾客获得代金券万元,否则该次投掷不获奖;方案二:顾客获得的代金券金额和参加的3次投掷活动中“顾客胜利”次数关系如表: 获得代金券金额(万元) 0“顾客胜利”次数123(1)求顾客投掷一次硬币,该次投掷“顾客胜利”的概率;(2)若某公司采购员小翁为公司采购很多件该产品,请从统计的角度来分析,小翁该采取哪种奖励方案?11、在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A ,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序序依次编号为001-900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;(2)若采用系统抽样法抽样,且样本中最小编号为008,求样本中所有编号之和; (3)若采用分层抽样,按照学生选择A 题目或B 题目,将成绩分为两层,且样本中A.题目的成绩有8个,平均数为7,方差为4;样本中B 题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.12. 在2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g )进行了问卷调查,得到如下频率分布直方图:(1)求频率分布直方图中a 的值;(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求? (3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量Z 服从正态分布2(,)N μσ,其中样本平均数x 作为μ的估计值,样本标准差s 作为σ的估计值,设X 表示从该销售范围内的消费者中随机抽取10名,其月饼购买量位于(781,1635)g g 的人数.求X 的数学期望.附:经计算得427s =≈,若随机变量Z 服从正态分布2(,)N μσ,则()P Z μσμσ-<<+ 0.6827,(22)0.9545P X μσμσ<=-<+=.13、某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]L 分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求“乘客A ,B 乘车等待时间都小于20分钟”的概率;(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望.14、改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).乘车等待时间(分钟)乙站O400.048O405101520253035频率/组距0.036甲站频率/组距乘车等待时间(分钟)3530252015105(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)15、随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.(Ⅰ)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;(Ⅱ)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立.记X 为选中月平均收入薪资高于8500元的城市的人数,求X 的分布列和数学期望()E X ;(Ⅲ)记图中月平均收入薪资对应数据的方差为21s ,月平均期望薪资对应数据的方差为22s ,判断21s 与22s 的大小.(只需写出结论)16、 据《人民网》报道,“美国国家航空航天局( NASA)发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)人工造林飞播造林新封山育林退化林修复人工更新内蒙 618484 311052 74094 136006 90382 6950河北 583361 345625 33333 135107 65653 3643河南 149002 97647 13429 22417 15376 133重庆 226333 100600 62400 63333陕西 297642 , 184108 33602 63865 16067甘肃 325580 260144 57438 7998新疆 263903 118105 6264 126647 10796 2091青海 178414 16051 159734 2629宁夏 91531 58960 22938 8298 1335北京 19064 10012 4000 3999 1053(I)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?(Ⅲ)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.17、某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量的使用情况,通过抽样,得到100位员工每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如图所示.(Ⅰ)从该企业的员工中随机抽取3人,求这3人中至多有1人手机月流量不超过900M的概率;(Ⅱ)据了解,某网络运营商推出两款流量套餐,详情如下:套餐名称月套餐费(单位:元) 月套餐流量(单位: M)A 20 700B 30 1000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以所需费用的数学期望为决策依据,该企业订购哪一款套餐更经济?A B C D四所高中校按各校人18、在某区“创文明城区”(简称“创城”)活动中,教委对本区,,,数分层抽样调查,将调查情况进行整理后制成下表:(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与“创城”活动是相互独立的.(Ⅰ)若该区共2000名高中学生,估计A学校参与“创城”活动的人数;(Ⅱ)在随机抽查的100名高中学生中,从,A C两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;(Ⅲ)若将上表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.19、某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为ξ,求ξ的分布列;(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.20、国际上常用恩格尔系数(食品支出总额占个人消费支出总额的比重)反映一个国家或家庭生活质量的高低,恩格尔系数越低,生活质量越高.联合国根据恩格尔系数的大小,对世界各国的生活质量有一个划分标准如下:(Ⅰ)从以上五个家庭中随机选出一个家庭,求该家庭在2008年和2018年都达到了“富裕” 或更高生活质量的概率;(Ⅱ) 从以上五个家庭中随机选出三个家庭,记这三个家庭在2018年达到“富裕”或更高生活质量的个数为X ,求X 的分布列;(Ⅲ) 如果将“贫穷”,“温饱”,“小康”,“相对富裕”,“富裕”,“极其富裕”六种生活质量分别对应数值:0,1,2,3,4,5. 请写出A ,B ,C ,D ,E 五个家庭在以上五个年份中生活质量方差最大的家庭和方差最小的家庭(结论不要求证明).21、为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a 表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a ,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)22、2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米. (Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;(Ⅱ)在给出的10年数据中,随机抽取三年,记X 为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求X 的分布列和数学期望()E X ;(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为21s ,农村人均住房面积的方差为22s ,判断21s 与22s 的大小.(只需写出结论).23、苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:产地 A B C D E批发价格150 160 140 155 170市场份额15% 10% 25% 20% 30% 市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.(Ⅰ)从该地批发市场销售的富士苹果中随机抽取一箱,估计该箱苹果价格低于160元的概率; (Ⅱ)按市场份额进行分层抽样,随机抽取20箱富士苹果进行检验, ①从产地,A B 共抽取n 箱,求n 的值;②从这n 箱中随机抽取三箱进行等级检验,随机变量X 表示来自产地B 的箱数,求X 的分布列和数学期望.(Ⅲ)产地F 的富士苹果明年将进入该地市场,定价160元/箱,并占有一定市场份额,原有五个产地的苹果价格不变,所占市场份额之比.不变(不考虑其他因素).设今年苹果的平均批发价为每箱1M 元,明年苹果的平均批发价为每箱2M 元,比较12,M M 的大小.(只需写出结论)24、某机构对A 市居民手机内安装的“APP ”(英文Application 的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP 的个数,整理得到如图所示频率分布直方图:(Ⅰ)从A 市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP 的个数不低于30的概率;(Ⅱ)从A 市随机抽取3名使用智能手机的居民进一步做调研,用X 表示这3人中手机内安装APP 的个数在[20,40)的人数.①求随机变量X 的分布列及数学期望; ②用Y 1表示这3人中安装APP 个数低于20的人数,用Y 2表示这3人中手机内安装APP 的个数不低于40的人数.试比较EY 1和EY 2的大小.(只需写出结论)25.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。

相关文档
最新文档