苯和苯衍生物紫外吸收光谱的测定

合集下载

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应

苯及其衍生物的紫外吸收光谱的绘制和溶剂效应1、实验目的1.了解苯及其衍生物的紫外吸收光谱及鉴定方法。

2.观察溶剂对吸收光谱的影响。

3.掌握紫外―可见分光光度计的使用。

2、实验原理芳香族化合物的特征吸收是由于苯环结构中三个乙烯的环状共轭体系ππ*→跃迁产生的两个强吸收带,谱带分别位于1185()nm E 带和1204()nm E 带,以及由于ππ*→跃迁和苯环振动重叠而产生的较弱吸收带B (带),谱带位于230270nm ―。

当苯处在气态时有良好的精细结构;当苯环上有取代基时,会对其3个特征吸收带强烈的影响,特征吸收带位移、精细结构简单化。

例如在碱性条件下的苯酚离子3个吸收带分别移至209nm ,235nm 和286(/)nm L mol cm ⋅。

利用紫外吸收光谱鉴定有机化合物的方法是在相同条件下(溶剂、浓度、pH 、温度等)比较未知物与已知纯化合物的吸收光谱,或在与标准谱图相同条件下将绘制的未知物的吸收光谱,再与标准谱图比较,若两者完全一致,基本可认为是同一化合物。

溶剂的极性对有机化合物的紫外吸收光谱有一定的影响,溶剂的极性增加会使有机化合物ππ*→跃迁产生的吸收带红移,n π*→跃迁产生的吸收带蓝移。

3、仪器和试剂1.仪器紫外―可见分光光度计;1.00cm 石英比色皿;带塞比色皿:2510mL 支;10mL 移液管3支。

2.试剂苯()AR 、苯甲酸()AR 、苯酚()AR 、环己烷()AR 、乙醇()AR 、丙酮()AR 。

4、实验操作1.苯及其衍生物的紫外吸收光谱的绘制(1)在石英吸收池,加两滴苯,加盖,放置约两分钟后,相对空石英吸收池,在200至320nm 波长范围内绘制紫外吸收光谱。

(2)在3支25mL 带塞比色管中分别加0.5()mL 两滴苯、20mg 苯酚、20mg 苯甲酸,用环己烷10mL 溶解后稀释至刻度为母液。

分别取2mL 母液于25mL 带塞比色管中,用环己烷溶液稀释至刻度,摇匀。

实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

七、思考题: 1.试样溶液浓度过大或过小,对测量有何影响?应如何调整? 2. εmax 值的大小与哪些因素有关? 紫外可见分光光度仪(北京普析通用仪器 UVWIN5)使用说明: 1、先开外设计算机,将干燥剂从样品室取出,盖好样品室盖,开启光度计电源, 10 秒钟后,开启计算机电源。 2、从计算机桌面上启动光度计应用程序 UVWIN5 图标,仪器自检(自检时不要
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 3
枣庄学院化学化工与材料科学学院仪器分析实验教案
黄薇
1.根据苯的吸收光谱分析确定苯的吸收谱线(列出的苯的吸收光谱图) 最大吸收波长:苯在紫外区有三个吸收带 π→π* 180-184nm π→π* π→π* 200-204nm 230-270nm ε=47000-60000 (远紫外意义不大) ε=8000 ε=204 (在远紫外末端也不常用) (弱吸收带,苯环的精细结构或苯带,常用
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 4
枣庄学院化学化工与材料科学学院仪器分析实验教案
黄薇
开启样品室盖) 。 3、参数设置:激活光谱扫描窗口,选择主菜单光谱扫描功能,选择【测量】菜 单下的【参数设置】子菜单,可打开设置窗口,选择需要测量的参数。选择测定 波长范围:300-250nm 4、基线校正:紫外光度计的一项校正功能,在吸光度或透光率扫描测光方式下, 空白溶液或溶剂执行校正。在光谱扫描之前,进行基线校正,再更改完扫描参数 后,也必须进行基线校正。 5、附件设置:选择主菜单光谱扫描功能选择【测量】菜单下的【附件】子菜单, 可打开附件设置窗口,点击“位置”,将相应的样品池选择为红色标记●,从而设 置当前样品池的位置。如果设置选择为空白样品(●在空白位置) ,则在进行基线 校正时,系统会自动切换到此样品池进行校正。 6、 光谱扫描: 将样品倒入比色皿中, 同上操作, 设置选择为样品 (●在样品位置) , 选择主菜单光谱扫描功能选择【测量】菜单下的【开始】子菜单,即可开始光谱 扫描。 7、图形处理:选择【图形】菜单下的相应子菜单,即可进行相应图形处理。例 如峰值检出:选择【图形】菜单下的【峰值检出】子菜单即可;选择【图形】菜 单下的【读屏幕】子菜单即可读出图形中相应的数据。 8、文件保存:想保存扫描文件,选择【文件】菜单下的【保存】子菜单,在弹 出的保存窗口中输入要保存的文件名,然后点击【确定】按钮即可。 9、导出数据:主要指测量数据,选择【文件】菜单下的【导出数据】子菜单, 通过【导出类型】对导出的文件类型进行选择,在【导出文件】编辑框中输入要 导出的文件名,或点击其右侧的“…”的按钮对文件进行选择。设置完成后,点击 【导出】按钮系统会按照设置的内容将说有的数据导出到指定的文件中。 10、测量结束后,样品室中取出比色皿,洗净放好,退出光度计应用程序,依 次关闭计算机和光度计电源, 样品室中放入干燥剂, 盖好防尘罩, 填写使用记录, 关好水、电、门。

苯和苯衍生物紫外吸收光谱的测定

苯和苯衍生物紫外吸收光谱的测定

实验三 苯和苯衍生物紫外吸收光谱的测定一、实验目的1.了解紫外可见光光度计的结构、用途及使用方法2.了解紫外吸收光谱在有机化合物结构鉴定中的作用及原理。

3. 了解溶剂极性及pH 对吸收光谱的影响及原理。

4. 了解紫外-可见吸收光谱的产生及不同助色团对苯的紫外吸收光谱的影响,。

二、实验原理作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。

尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。

因此紫外吸收光谱是配合红外、质谱、核磁进行有机物定性鉴定和结构分析的重要手段。

利用有机光谱定性的依据是化合物的吸收光谱特征,主要步骤是绘制纯样品的吸收光谱曲线,由光谱特征依据一般规律作出判断;用对比法比较未知物和已知纯化合物的吸收光谱,或将未知物吸收光谱与标准谱图对比,当浓度和溶剂相同时,若两者谱图相同(曲线形状、吸收峰数目、λmax 及 εmax 等),说明两者是同一化合物。

为进一步确证可换溶剂进行比较测定。

常用的光谱图集是Sadtler 谱图,它收集了46000多种化合物的紫外吸收光谱图,并附有五种索引,使用方便。

最后要用其他化学、物理或物理化学等方法进行对照验证才能作出正确的结论。

溶剂的极性对溶质吸收峰的波长、强度和形状都有影响,当溶剂极性增大时Π→Π*跃迁产生的吸收带红移,而n →Π*跃迁产生的吸收带蓝移。

有些基团的紫外吸收光谱和溶液的pH 关系很大,如苯酚在酸性与中性条件下的吸收光谱和碱性时不同。

溶剂的极性还影响吸收光谱的精细结构,当物质处于蒸气状态时,图谱的吸收峰上因振动吸收而表现出锯齿状精细结构。

仪器分析实验

仪器分析实验

实验一苯及其衍生物的紫外吸收光谱的测绘及溶剂对紫外吸收光谱的影响一、目的要求1.了解不同的助色团对苯的紫外吸收光谱的影响。

2.观察溶剂极性对丁酮、异亚丙基丙酮的吸收光谱以及pH 对苯酚的吸收光谱的影响。

3.学习并掌握紫外可见分光光度计的使用方法。

二、实验原理具有不饱和结构的有机化合物,特别是芳香族化合物,在紫外区(200~ 400nm)有特征吸收,为鉴定有机化合物提供了有用的信息。

方法是比较未知物与纯的已知化合物在相同条件(溶剂、浓度、pH 值、温度等)下绘制的吸收光谱,或将未知物的紫外光谱与标准谱图(如Sadtler紫外光谱图)比较,如果两者一致,说明至少它们的生色团和分子母核是相同的。

E1带、E2带和B带是苯环上三个共轭体系中的的π→π*跃迁产生的,E1带和E2带属强吸收带,在230~270nm范围内的B带属弱吸收带,其吸收峰常随苯环上取代基的不同而发生位移。

影响有机化合物的紫外吸收光谱的因素有:内因(共轭效应、空间位阻、助色效应)和外因(溶剂的极性和酸碱性)。

溶剂的极性和酸碱性不仅影响待测物质吸收波长的移动,还影响吸收峰吸收强度和它的形状。

三、仪器紫外可见分光光度计(自动扫描型)石英吸收池容量瓶(10 mL,5 mL)吸量管(1 mL,0.1 mL)四、试剂苯、乙醇、氯仿、丁酮、异亚丙基丙酮、正庚烷(均为A.R)苯的正庚烷溶液(以1︰250比例混合而成)、甲苯的正庚烷溶液(以1︰250比例混合而成)0.3 mg ·mL-1苯酚的乙醇溶液、0.3 mg ·mL-1苯酚的正庚烷溶液、0.4 mg ·mL-1苯酚的水溶液、0.8 mg ·mL-1苯甲酸的正庚烷溶液、0.8 mg ·mL-1苯甲酸的乙醇溶液、0.3 mg ·mL-1 苯乙酮的正庚烷溶液、0.3 mg ·mL-1苯乙酮的乙醇溶液异亚丙基丙酮分别用水、甲醇、正庚烷配成浓度为0.4 mg ·mL-1的溶液五、实验步骤1.苯及其一取代物的吸收光谱的测绘在五只5 mL容量瓶中分别加入0.50 mL苯、甲苯、苯乙酮、苯酚、苯甲酸的正庚烷溶液,用正庚烷稀释至刻度,摇匀。

3.2 重要有机化合物的紫外吸收光谱及应用[最新]

3.2 重要有机化合物的紫外吸收光谱及应用[最新]

苯环上发色基团对吸
收带的影响
K、B、R带均红移
6/23/2021
3.稠环芳烃化合物
(1) 共轭体系增大, (2) 紫外吸收均比苯环移向长波长方向,可达可见光区 (3) 精细结构比苯环更明显。
在前面,已经了 解了
典型有机物的光 谱特
征,目的是为了 将紫
外吸收光谱应用 于有
机物的结构解析
6/23/2021
(5) 有些双键或基团“身
兼数职”,计算时是重
复计算
6/23/2021

m a基 x 3 R 2 1 3 5 7 232
C
AB
1
2
6/23/2021

6/23/2021

max
共轭烯烃吸收光谱的 m变ax化规律是:共轭双键连有取代基 λmax 红移;共轭体系增大, 也m红ax 移。
㏒ε
N HCl H
4
E2带
B带
3
B带
2
苯胺
1
甲苯 苯
0
200 220 240 260 280 300 波长λ(nm) (b)
6/23/2021
(3)发色团取代苯衍生物
光谱特征:含双键的取代基团,与苯环共轭后,双键在200~ 250nm出现K带,使B带发生强烈红移,有时B带被淹没在K 带之中,同时氧上的孤对电子:R带,弱。
基准值。
λi和ni是由双键上取代基的种类和个数决定的校
6/23/2021
λmax=λ基+Σniλi
注意: ?

(1) 以丁二烯基的基准值
大的为母体;
(2) 与共轭体系无关的孤
立双键不参与计算;
(3) 不在双键上的取代基

苯及其衍生物的紫外吸收光谱的测绘

苯及其衍生物的紫外吸收光谱的测绘

苯及其衍生物的紫外吸收光谱的测绘园艺学院茶叶与深加工09级2班潘奉 20092774一实验目的了解不同助色团对苯的紫外吸收光谱的影响;了解溶剂对紫外吸收光谱的影响;以及掌握紫外吸收分光光度计的操作方法。

二实验原理具有不饱和结构的有机化合物,特别是芳香族化合物,在近紫外区(200-400)有特征吸收,为鉴定有机化合物提供了有用的信息。

方法是比较未知物与纯的已知化合物在相同条件(溶剂、浓度、pH值、温度等)下绘制的吸收光谱,或将绘制的未知物的吸收光谱与标准谱图相比较,如果两者一致,说明至少它们的生色团和分子母核是相同的。

苯在230-270nm之间出现有精细结构的B带是其特征吸收峰,中心在254nm附近,其最大吸收峰常随苯及苯环上取代基的不同而发生位移。

苯在190-210nm上还有E1、E2带吸收,其摩尔吸光系数高,属强吸收。

三实验仪器与试剂仪器:UV紫外分光光度计试剂:苯(分析纯),乙醇,正己烷,苯酚。

四实验步骤1、配制溶液:取4只50ml的容量瓶,分别标号为1,2,3,4,。

在1号和2号容量瓶中分别加入6滴苯,3号和4号容量瓶中分别加入6滴苯酚。

然后在1号和3号容量瓶中再分别加入无水乙醇溶液,定容至50ml,摇匀,静置于桌面。

2号和4号容量瓶中再分别加入正己烷溶液,定容至50ml,摇匀,静置。

2、测定溶液:在带盖的石英吸收池中,相对环己烷,从220-320nm进行波长扫描,制作并得到吸收光谱。

3、分析图样:观察各吸收谱的图形,分析不同溶剂对苯的吸光度的影响,了解不同助色团对苯的紫外吸收光谱的影响。

五结果分析所得吸收光谱图样如下:图1:苯的吸收光谱Sample-1吸光度(A b s )波长(nm)-1012345200250300Sample-1吸光度(A b s )波长(nm)-1012345200250300图2:苯+正己烷图3、苯+乙醇Sample-1吸光度(A b s )波长(nm)-1012345200250300Sample-1吸光度(A b s )波长(nm)-1012345200250300Sample-1吸光度(A b s )波长(nm)-1012345200250300图5:苯酚+正己烷 图6:苯酚+乙醇Sample-1吸光度(A b s )波长(nm)图4:苯在正己烷和乙醇中的吸光度的比较 红色:苯+乙醇 蓝色:苯+正己烷-1 012345200250 300实验分析结果如下:1、由图1可得苯蒸汽的吸收光谱图样,用手心将装苯的比色皿焐热再进行测定是为了排除干扰,准确得到苯的吸收光谱。

紫外吸收光谱法测定苯的含量

紫外吸收光谱法测定苯的含量

江南大学实验报告实验名称紫外吸收光谱法测定苯的含量一、实验目的1、了解紫外光谱法测定苯的原理及方法。

2、了解TU-1901双光束紫外可见分光光度计的使用。

3、学习利用吸收光谱曲线进行化合物鉴定和纯度检查。

二、实验原理许多有机化合物或其衍生物,在可见光或紫外光区有吸收光谱,各种物质分子有其特征的吸收光谱。

吸收光谱的形状和物质的特性有关,可作为定型鉴定的依据,而在某选定的波长下,测量其吸收光度即可对物质进行定量分析。

紫外吸收光谱用于定量分析时,符合朗伯比尔定律,即A=κbc,式中A为吸光度,κ为摩尔吸收系数,b为液层厚度。

三、仪器和试剂1、仪器TU-1901型紫外-可见分光光度计,1cm石英比色皿,5ml吸量管,10ml容量瓶。

2、试剂苯(色谱纯),乙醇(AR、95%),0.1g/L苯标准溶液。

四、实验步骤1、吸收曲线的绘制将装有参比溶液和标准试样的比色皿放入光路中,在紫外分光光度计上,从波长200-300nm,每隔0.5nm扫描出苯的吸收曲线。

指出苯的B吸收带,找出B吸收带的最大吸收波长。

2、试样中苯含量的测定(1)苯标准曲线的绘制分别吸取1.0ml、2.0ml、3.0ml、4.0ml、5.0ml0.1g/l的苯标准溶液于5只10ml容量瓶中,用乙醇稀释至刻度,摇匀。

用1ml石英比色皿,以乙醇做参比溶液,在最大吸收波长处分别测定其吸光度。

以吸光度为纵坐标,苯的含量为横坐标绘制标准曲线。

(2)测定乙醇试样中苯的含量准确吸取含苯的试样5ml于10ml容量瓶中,用乙醇稀释至刻度,摇匀,用1cm石英比色皿,以乙醇做参比溶液,在最大吸收波长处测定试样溶液的吸光度,根据苯标准曲线查的相应的样品浓度。

3、结束工作(1)实验结束,关闭紫外工作软件、电脑电源。

(2)取出吸收池,清洗晾干放入盒内保存。

(3)清理台面,填写仪器使用记录。

五、实验结果最大吸收波长λmax=254.50nm由此可知乙醇试样中苯的实际含量为c=0.025*2=0.05mg/ml。

苯的紫外吸收三条光谱

苯的紫外吸收三条光谱

苯的紫外吸收三条光谱
紫外吸收光谱是一种用来测量分子结构和成分的常规技术。

最近,研究人员发
现苯的紫外吸收光谱有三个重要的特征,即214 nm处一条较宽的主应力带、ᴅ 32 ~136 nm处的γ谱和212 nm处的α谱。

首先,苯的紫外吸收光谱在214nm处有一条较宽的主应力带,其振动能量随温
度变化而发生变化,可以用来检测某种物质形成的等温状态下的振动分布。

其次,苯的紫外吸收光谱在δ 32~136 nm处有一条γ谱,其可以作为它的结构特征指示器,用于研究苯分子的分析和表征,进而反映其结构特性。

最后,苯的紫外吸收光谱在212 nm处具有α谱,这种光谱明显受到线范围振动的影响,可以清晰地检测到不同的苯的偶极矩的大小,以及其原子之间的电子能量谱。

因此,苯的紫外吸收光谱具有三条重要的特征,它们可以提供有用的信息用来
研究苯的分子重整,以及它的结构特征的变化。

通过对苯的紫外吸收光谱进行研究,并与其他测量技术如高分辨率红外光谱、核磁共振谱和 X 射线衍射等结合起来,
将有助于我们进一步了解苯分子中的实际结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苯和苯衍生物紫外吸收光谱的测定
实验三苯和苯衍生物紫外吸收光谱的测定
一、实验目的
1.了解紫外可见光光度计的结构、用途及使用方法
2.了解紫外吸收光谱在有机化合物结构鉴定中的作用及原理。

3.了解溶剂极性及pH对吸收光谱的影响及原理。

4. 了解紫外-可见吸收光谱的产生及不同助色团对苯的紫外吸收光谱的影响,。

二、实验原理
作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。

尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。

因此
苯、甲苯、苯酚、苯胺、硝基苯、苯甲醛、苯甲酸的环己烷溶液,用环己烷稀释至刻度,摇匀。

用1 cm石英吸收池,以环己烷作参比溶液,在紫外区200-400nm进行波长扫描,得8种物质的紫外吸收光谱。

观察比较苯及其衍生物的吸收光谱,讨论取代基对苯原有的吸收带的影响。

3、溶剂极性对紫外吸收光谱
(1)溶剂极性对n →Π*跃迁的影响
在3个10mL 具塞比色管中各加0.04mL丁酮,分别用水、乙醇、氯仿稀释至刻度,摇匀。

用带盖的1cm石英吸收池相对各自的溶剂作参比在200-320nm波长范围内绘制紫外吸收光谱。

观察比较不同极性溶剂对n →Π*跃迁的影响,讨论原因。

(2)溶剂极性对Π→Π*跃迁的影响
在3个10mL具塞比色管各加0.20 mL异亚丙基丙酮溶液,分别用正己烷、氯仿、水稀释至刻度摇匀。

用带盖的1cm石英吸收池相对各自的溶剂做参比溶液,在200-320nm波长范围内绘制紫外吸收光谱。

观察比较不同极性溶剂对Π→Π*跃迁的影响,讨论原因。

(3)溶剂极性对β-羰基化合物酮式和烯醇式互变异构体的影响:
在3个5 mL具塞比色管中分别加入0.5mL乙
酰乙酸乙酯,各用正己烷、乙醇、水稀释至刻度,摇匀。

用1cm石英吸收池,分别以各自溶剂作参比溶液,在紫外区200-400nm进行波长扫描,得乙酰乙酸乙酯在3种不同极性溶剂中的紫外吸收光谱。

观察比较不同极性溶剂中乙酰乙酸乙酯的
=243nm)的ε值大小,烯醇式产生K带吸收(λ
max
讨论原因。

(4)溶剂对吸收光谱精细结构的影响
用滴管取2滴苯加入1 cm石英吸收池中,加盖,放置2-3min后置于样品光路中,以空石英吸收池作参比,在200-320nm波长范围内绘制紫外吸收光谱,得苯蒸气的吸收光谱。

在2个10 mL具塞比色管中分别加入0.01mL 苯,各用环己烷、乙醇稀释至刻度,摇匀。

用1cm 石英吸收池,分别以各自溶剂作参比溶液,在200-320nm波长范围内绘制紫外吸收光谱。

得苯在2种不同极性溶剂中的紫外吸收光谱。

观察比较以上3种吸收光谱,讨论溶剂对吸收光谱精细结构的影响,说明原因。

(5)溶液的酸碱性对苯酚吸收光谱的影响
在2个10 mL具塞比色管中分别加入1.0 mL 苯酚水溶液,各用0.1mol·L-l HCl 和
0.1mol·L-l NaOH溶液稀释至刻度,摇匀。

用1cm 石英吸收池,以水作参比,在200-320nm波长范围扫描,得苯酚在2种酸度不同的溶液中的吸收光谱。

观察比较以上2种吸收光谱,讨论原因。

五、数据处理
1、不同取代基对苯的吸收光谱的影响:
2、溶剂极性对紫外吸收光谱的影响:
(3) 溶剂极性对β-羰基化合物酮式和烯醇式互变异构体的影响:
(4) 溶剂对苯吸收光谱精细结构的影响
(5) 溶液的酸碱性对苯酚吸收光谱的影响
六、思考题
1、为什么溶剂极性增大,n→π*跃迁产生的吸收带发生蓝移,而π→π*跃迁产生的吸收带发生红移?
答:在极性溶剂中π→π*跃迁所需能量减小,而n→π*跃迁所需能量增大。

极性溶剂分子的偶极使溶质分子的极性增强,因而在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动);而在极性溶剂中,n→π
* 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动)。

2、为什么苯酚的吸收光谱受NaOH的影响较大,而受HCl的影响较小?若用苯胺代替苯酚进行本实验,你推测实验结果将会怎样?
答:羟基有不成键的孤电子对,能与苯环产生p-π共轭。

对光谱的影响较大,使吸收带长移,吸收强度增大。

但和盐酸成盐后,由于孤电子对被占用,p-π共轭消失,取代基的影响也相应减弱,因此它的吸收光谱与苯相似,则发生蓝移。

若用苯胺代替苯酚进行本实验,实验结果与本实验结果会相反。

加入碱会使苯胺发生蓝移,加入酸会使苯胺发生红移。

3、某些具有共轭双健的分子受紫外-可见光后激发后,会产生荧光。

如甲苯在265nm激发,在285nm发射荧光,请问在进行有机物的吸收光谱实验时,是否要考虑荧光发射对吸收光谱的影响?
答:不用考虑(1)你做吸收光谱分析时使用的波长与发射的荧光波长通常是不同的,如果测定的波长下没有吸收光谱和荧光发射光谱峰的重叠,这种影响就不存在。

(2)如果吸收光谱和荧光光谱有部分重叠(测定波长下也有荧光的贡献),也应该是没影响的。

因为由同一个物质产生的吸收光谱强度和发射光谱强度相对量是恒定的,当存在荧光发射光谱时,它又同时进入了检测器(与吸收波长太近,仍进入狭缝),则它导致的结果是使透过光强度增强了一些,换言之,使测到的总吸光度值降低了一些(因为吸收光谱是使透过光减弱了一些),但降低后的吸光度与浓度仍成线性(与示差分析原理相似),因此,是没有影响的。

一种极端的情况:吸光强度与荧光强度刚好抵消,这时无论浓度怎么变,总A不变,这种极端应该非常罕见,若真遇此情况,你可以改变吸收波长,使测定波长下的荧光强度降低一些,这需要用同一溶液分别做吸收光谱曲线和荧光光谱曲线扫描来决定,荧光光度计上有此功能。

至于吸收光谱与荧光光谱会不会完全重叠在一起?这是不可能的,两类光谱曲线都成镜像关系(形状相似,但波长是错开的),不会重叠。

此外,紫外吸收光谱的光源强度对于荧光分子发射荧光的光源强度而言,还是较弱,因此,即使有荧光,我想I f也应该很弱。

(3)荧光测定时,不必考虑吸收光谱的影响,因为荧光测定是在90度方向测量的,它属于暗背景下测量,吸收光谱是在直线方向(即激发光源的光谱不会转90度弯进入荧光检测器的)。

苯和苯衍生物紫外吸收光谱的测定
班级:应化1001
姓名:周树亮
学号:A20100015。

相关文档
最新文档