无刷电机振动和噪声

合集下载

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施姓名:XXX部门:XXX日期:XXX电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。

而电动机产生的电机振动电机振动噪音,主要有:1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。

4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。

一、机械性电机振动的产生原因与对策1、转子的不平衡电机振动A、原因:·制造时的残留不平衡。

第 2 页共 8 页·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

电动机突然振动和有噪音,老电工告诉你为什么

电动机突然振动和有噪音,老电工告诉你为什么

电动机突然振动和有噪音,老电工告诉你为什么
电动机在正常运转中,突然机身振动加大或出现不正常噪音,就说明电动机出现故障了。

我们都知道,电动机正常运转时,机身应该平稳,声音也均匀,由转子鼓风所引起的呼啸声,其节拍和电网频率相呼应。

.
出现振动过大或不正常噪音不外乎有下列原因:
1,机械方面原因。

这同样也分多种原因。

丨),电动机基础不牢或固定不紧,如底脚螺丝松动,电动机会产生剧烈振动。

2),转子零件松驰,如转子内风叶上的配重螺丝松驰或脱落,转子轴松驰,这时即使电动机低速运转也会发出敲击声或轧轧声。

3),按装时校正不好,电动机和被带机械轴心不一直。

4),由于轴弯或轴承损坏,使电动机转子偏心,电动机产生剧烈振动和不均匀碰擦声。

轴承润滑油不足,发出咝咝声。

轴承中钢珠损坏,发出'咕噜','咕噜'的声音。

2,电磁方面的原因。

绕组有了故障,造成磁场不平衡,使电动机产生低沉的吼声,同时电动机也振动起来,这时,断开电源噪音消失,接通电源,振动和噪音又重新产生。

三相电流不平衡和电动机过载或者是三相电机'走单相'都可引起电动机的吼鸣声,而且吼声特大。

转子断条时,电动机产生的转矩降低,负载电流时高时低,出现周期性振荡现象,并发出时高时低的嗡嗡声,机身振动。

定子铁芯硅钢片过于松驰,贴近电动机外壳会听到一种咝咝声。

综上所述,我们发现电动机有异常情况时,不仅要听声音,还要观察其他现象,闻有无焦臭味,电动机有无过热等。

准确判断,查找原因。

无刷电机振动和噪声

无刷电机振动和噪声

改善无刷电机电磁力矩产生的振动和噪声1、斜槽:使铁心槽斜置、使磁钢或充磁呈倾斜状;2、减小磁极间隙变化:对铁心磁极的端部进行直线或者圆弧状切割,使间隙尽量变宽;3、使磁感应正弦波化:采用中间厚两边薄鱼糕状磁钢,使充磁波形正弦波化。

磁钢极向异性化。

4、磁极的宽度和间隔变化:改变铁心极或者磁钢极幅度和间隔,使端部的影响平均化;5、高频化:增加沟数,提高变化频率,使影响程度减小;插入辅助沟、抵消槽的影响:绕线槽会造成磁场能量的变化,用插入辅助沟的方法来抵消这种影响;6、槽和磁极相互配合:选择磁场能量变化少的槽数和磁极数;7、铁心平滑化:如果采用无槽的空心绕线,从原理上讲可以彻底清除磁反应力矩。

控制器造成(控制器为正弦波驱动)1、位置检测器的局限性:这主要归于数字轴编码器所提供的位置信息有限分辨率。

因为编码器是一个比较昂贵的部件,这就需要使用可能的最低方案来减少成本。

一些运行要求可能需要使用特定种类的编码器,比如霍尔效应类型,它仅能提供比较低的分辨率。

这样,这种局限性可能很容易变成永磁驱动系统的量化错误的主要来源,相对于诸如和有限CPU字长及A/D转换器的分辨率等量化错误,它会产生一个更大的转矩波动;2、计算的错误:这主要归于有限的CPU字长。

CPU字长在变量和参数控制中会引起离散化的错误。

另外,逻辑控制中的计算使得上面的错误得以传输和积累。

最后结果会使控制电压或电流偏离理想的正弦值,从而导致转矩波动。

3、非完美的电流检测:理想的电流检测器一般是不存在的,所有电流检测器都有固有的偏差并会产生偏离错误。

因为磁场定位控建立在电流反馈,所以任何的电流检测错误都会直接影响转矩的性能。

定量分析这种影响五一会对启动器的设计带来很大的益处。

PWM开关:这主要是因为使用一个PWM逆变器来产生正弦波形的局限性。

由PWM开关产生的电流会有一个和开关频率相应的高频纹波。

高频纹波电流和电机的反电动势相互作用,从而产生一个高频转矩波动。

[2017年整理]电机振动与噪声的分析

[2017年整理]电机振动与噪声的分析

电机的振动及噪声1、概述噪声干扰人们正常谈话,降低人的思维能力,使人疲劳,并影响人睡眠、休息和工作,长期生活在大噪声的环境中,不仅可使人耳朵由痛感,还使人的听觉受到损害,甚至会发生昏厥和引起神经系统疾病。

而振动是噪声的来源,我们在控制噪声的同时也同样抑制了振动,所以在分析电机的噪声时,总是结合电机的振动一起来描述。

为了保证人们有一个合理的生活、工作环境,各国都制定了法规以限制噪声的污染。

我国在1988年参照国际标准ISO1680.2(1986)《声学——旋转电机辐射空气噪声的测定之第二部分简易法》和ISO 3746(1980)《声学——噪声源的声功率级测定:简易法》制定了GB10069.2-88《旋转电机噪声测定方法及限值:噪声简易测定方法》。

电机噪声主要来自三个方面,即空气噪声、机械噪声和电磁噪声,但有时也会将电路内部噪声列入噪声源之一。

电路内部噪声主要来自电路自励、电源哼声以及电路元件中的电子流起伏变化和自由电子的热运动。

2、电机噪声和振动及抑制措施(1)空气噪声空气噪声主要由于风扇转动,使空气流动、撞击、摩擦而产生。

噪声大小决定于风扇大小、形状、电机转速高低和风阻风路等情况。

空气噪声的基本频率f v:f v=Nn/60(H Z)其中,N——风扇叶片数n——电机转速(RPM)风扇直径越大,噪声越大,减小风扇直径10%,可以减小噪声2—3dB。

但随之冷量也会减少。

当风叶边缘与通风室的间隙过小,就会产生笛声(似吹笛声)。

如果风叶形状与风扇的结构不合理,造成涡流,同样也会产生噪声。

由于风扇刚度不够,受气流撞击时发生振动,也会增加噪声。

此外,转于有凸出部分,也会引起噪声。

针对以上产生空气噪声的原因,则下列措施有助于减小空气噪声:合理地设计风扇结构和风叶形状,避免产生涡流;保证风叶边缘与通风室有足够的间隙,在许可情况下,尽量缩小风扇直径;在许可情况下,将气流转向后再吹(吸)出,可明显降低噪声,此在吸尘器中已有采用;保证风路通畅,减小空气的撞击和摩擦。

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

这个板块中关于噪音的问题非常多。

在此我总结了1下,只从最常见发生机率最大也是刚刚开始做无刷最容易忽视的情况做1个分析和有效解决方案,我看好多的噪音求助就属于我下面要说的噪音种类了。

先说这种情况下的原因,解决方案相信大家看完了就应该知道怎么做了。

所有的电动机均呈现某种形式的齿槽效应。

齿槽效应越低电动机转动越平稳。

在电动机和电动机的铁芯结构中的磁体所产生的非均匀磁场形成了齿槽效应:当转子中的磁体切割定子齿时产生磁力。

当磁力从1个齿转到另外1个齿时,磁力帮助或阻止转动,使转子有规律的加速或者减速。

不均匀的磁拉力产生的齿槽效应。

电动机转动不平稳会引起速度脉动和转矩脉动、效率损耗、振动和噪音。

速度脉动是指全过程内的速度变化或者速度波动;而转矩脉动则描述了全过程内的转矩变化,槽中绕铜导线将增加这一效果。

而从1个齿到另外1个齿的不平衡拉力也在转子中产生了径向偏差,根据这一个产生的齿槽效应的强弱,相应幅度的电磁振动和电磁噪音将随之出现。

这种情况在无刷电机中表现最为明显。

根据这个基础在保证满足基本性能要求情况下,调整相关参数或气隙或磁钢磁场强度或者其他,只要是减弱齿槽效应的就可以,相对来说已经做好的电机调气隙是最方便的,直接降低了气隙磁密,这样可以解决或者削弱90%(这里不是说噪音的幅度是说电磁噪音的种类)以上的电磁噪音,只不过需要牺牲其他方面的性能。

具体调整矛盾的程度自己把握控制。

至于为什么,因为不管是电枢结构或者是电磁参数不当或者材料共振频率或者其他原因所形成的电磁振动噪音最终要表现于外时,必须得通过1个途径,那就是气隙。

控制了气隙也就可以直接影响电磁振动。

这里要说明一下电磁振动是电磁噪音的声源,他们本为1体,只不过因为其他相关原因表现出来的幅度不同而已。

这里我有点疑惑,这个相对于做过成熟的无刷设计者来说应该是众所周知了的问题吧?为什么没人把它明白的说出来,这个论坛上我没见到人说,只看见到处的噪音求助和讨论。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。

而电动机产生的电机振动电机振动噪音,主要有:1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。

4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。

一、机械性电机振动的产生原因与对策1、转子的不平衡电机振动A、原因:·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

2、轴承之异常电机振动与电机振动噪音A、原因:·轴承内部的伤。

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

这个板块中关于噪音的问题非常多。

在此我总结了1下,只从最常见发生机率最大也是刚刚开始做无刷最容易忽视的情况做1个分析和有效解决方案,我看好多的噪音求助就属于我下面要说的噪音种类了。

先说这种情况下的原因,解决方案相信大家看完了就应该知道怎么做了。

所有的电动机均呈现某种形式的齿槽效应。

齿槽效应越低电动机转动越平稳。

在电动机和电动机的铁芯结构中的磁体所产生的非均匀磁场形成了齿槽效应:当转子中的磁体切割定子齿时产生磁力。

当磁力从1个齿转到另外1个齿时,磁力帮助或阻止转动,使转子有规律的加速或者减速。

不均匀的磁拉力产生的齿槽效应。

电动机转动不平稳会引起速度脉动和转矩脉动、效率损耗、振动和噪音。

速度脉动是指全过程内的速度变化或者速度波动;而转矩脉动则描述了全过程内的转矩变化,槽中绕铜导线将增加这一效果。

而从1个齿到另外1个齿的不平衡拉力也在转子中产生了径向偏差,根据这一个产生的齿槽效应的强弱,相应幅度的电磁振动和电磁噪音将随之出现。

这种情况在无刷电机中表现最为明显。

根据这个基础在保证满足基本性能要求情况下,调整相关参数或气隙或磁钢磁场强度或者其他,只要是减弱齿槽效应的就可以,相对来说已经做好的电机调气隙是最方便的,直接降低了气隙磁密,这样可以解决或者削弱90%(这里不是说噪音的幅度是说电磁噪音的种类)以上的电磁噪音,只不过需要牺牲其他方面的性能。

具体调整矛盾的程度自己把握控制。

至于为什么,因为不管是电枢结构或者是电磁参数不当或者材料共振频率或者其他原因所形成的电磁振动噪音最终要表现于外时,必须得通过1个途径,那就是气隙。

控制了气隙也就可以直接影响电磁振动。

这里要说明一下电磁振动是电磁噪音的声源,他们本为1体,只不过因为其他相关原因表现出来的幅度不同而已。

这里我有点疑惑,这个相对于做过成熟的无刷设计者来说应该是众所周知了的问题吧?为什么没人把它明白的说出来,这个论坛上我没见到人说,只看见到处的噪音求助和讨论。

无刷直流电机噪音标准

无刷直流电机噪音标准

无刷直流电机(BLDC Motor)的噪音标准并没有统一的全球或国家级别的强制性标准,而是根据不同的应用场合和环境要求来制定。

然而,无刷直流电机噪音水平通常被视为电机性能和质量的一部分,制造商通常会在产品研发阶段设定自己的噪音控制目标,以满足特定应用场景下的静音要求。

在一些应用中,例如家用电器、电动汽车、无人机、医疗器械等,电机噪音控制非常重要,通常希望电机在正常工作时的噪音水平尽可能低。

对于无刷直流电机,合格的噪音水平可能参照以下大致标准:家用电器电机:在正常使用距离下(例如1米),噪音水平可能要求低于50分贝(dB(A))。

工业应用中,如高端伺服电机,要求噪音更低,可能需要控制在40 dB(A)以下。

特殊高精度应用场合,例如实验室设备,可能要求更低的噪音等级。

当然,实际应用中无刷直流电机的噪音控制还会受到电机设计、制造质量、轴承选择、转子平衡性、散热风扇、电磁设计、以及电机控制器算法等多种因素的影响。

工程师在设计时会尽量通过优化结构、选材、生产工艺以及控制算法来降低噪音水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改善无刷电机电磁力矩产生的振动和噪声
1、斜槽:使铁心槽斜置、使磁钢或充磁呈倾斜状;
2、减小磁极间隙变化:对铁心磁极的端部进行直线或者圆弧状切割,使间隙尽量变宽;
3、使磁感应正弦波化:采用中间厚两边薄鱼糕状磁钢,使充磁波形正弦波化。

磁钢极向异性化。

4、磁极的宽度和间隔变化:改变铁心极或者磁钢极幅度和间隔,使端部的影响平均化;
5、高频化:增加沟数,提高变化频率,使影响程度减小;
插入辅助沟、抵消槽的影响:绕线槽会造成磁场能量的变化,用插入辅助沟的方法来抵消这种影响;
6、槽和磁极相互配合:选择磁场能量变化少的槽数和磁极数;
7、铁心平滑化:如果采用无槽的空心绕线,从原理上讲可以彻底清除磁反应力矩。

控制器造成(控制器为正弦波驱动)
1、位置检测器的局限性:这主要归于数字轴编码器所提供的位置
信息有限分辨率。

因为编码器是一个比较昂贵的部件,这就需要使用可能的最低方案来减少成本。

一些运行要求可能需要使用特定种类的编码器,比如霍尔效应类型,它仅能提供比较低的分辨率。

这样,这种局限性可能很容易变成永磁驱动系统的量化错误的主要来源,相对于诸如和有限CPU字长及A/D转换器的分辨率等量化错误,它会产生一个更大的转矩波动;
2、计算的错误:这主要归于有限的CPU字长。

CPU字长在变量
和参数控制中会引起离散化的错误。

另外,逻辑控制中的计算使得上面的错误得以传输和积累。

最后结果会使控制电压或电流偏离理想的正弦值,从而导致转矩波动。

3、非完美的电流检测:理想的电流检测器一般是不存在的,所有
电流检测器都有固有的偏差并会产生偏离错误。

因为磁场定位控建立在电流反馈,所以任何的电流检测错误都会直接影响转矩的性能。

定量分析这种影响五一会对启动器的设计带来很大的益处。

4、PWM开关:这主要是因为使用一个PWM逆变器来产生正弦
波形的局限性。

由PWM开关产生的电流会有一个和开关频率相应的高频纹波。

高频纹波电流和电机的反电动势相互作用,从而产生一个高频转矩波动。

另外,非同步的PWM频率和基波频率部分在转矩中会导致非周期的谐波,在开关和基波频率之间有一个相对比较低的比率时,这可能变得相当可观。

相关文档
最新文档