毕业设计英文翻译1
毕业设计中英文翻译【范本模板】

英文The road (highway)The road is one kind of linear construction used for travel。
It is made of the roadbed,the road surface, the bridge, the culvert and the tunnel. In addition, it also has the crossing of lines, the protective project and the traffic engineering and the route facility。
The roadbed is the base of road surface, road shoulder,side slope, side ditch foundations. It is stone material structure, which is designed according to route's plane position .The roadbed, as the base of travel, must guarantee that it has the enough intensity and the stability that can prevent the water and other natural disaster from corroding.The road surface is the surface of road. It is single or complex structure built with mixture。
The road surface require being smooth,having enough intensity,good stability and anti—slippery function. The quality of road surface directly affects the safe, comfort and the traffic。
毕业设计外文翻译译文

1 工程概论1.1 工程专业1.2 工业和技术1.3 现代制造业工程专业1 工程行业是历史上最古老的行业之一。
如果没有在广阔工程领域中应用的那些技术,我们现在的文明绝不会前进。
第一位把岩石凿削成箭和矛的工具匠是现代机械工程师的鼻祖。
那些发现地球上的金属并找到冶炼和使用金属的方法的工匠们是采矿和冶金工程师的先祖。
那些发明了灌溉系统并建造了远古世纪非凡的建筑物的技师是他们那个时代的土木工程师。
2 工程一般被定义为理论科学的实际应用,例如物理和数学。
许多早期的工程设计分支不是基于科学而是经验信息,这些经验信息取决于观察和经历,而不是理论知识。
这是一个倾斜面实际应用的例子,虽然这个概念没有被确切的理解,但是它可以被量化或者数字化的表达出来。
3 从16、17世纪当代初期,量化就已经成为科学知识大爆炸的首要原因之一。
另外一个重要因素是实验法验证理论的发展。
量化包含了把来源于实验的数据和信息转变成确切的数学术语。
这更加强调了数学是现代工程学的语言。
4 从19世纪开始,它的结果的实际而科学的应用已经逐步上升。
机械工程师现在有精确的能力去计算来源于许多不同机构之间错综复杂的相互作用的机械优势。
他拥有能一起工作的既新型又强硬的材料和巨大的新能源。
工业革命开始于使用水和蒸汽一起工作。
从此使用电、汽油和其他能源作动力的机器变得如此广泛以至于它们承担了世界上很大比例的工作。
5 科学知识迅速膨胀的结果之一就是科学和工程专业的数量的增加。
到19世纪末不仅机械、土木、矿业、冶金工程被建立而且更新的化学和电气工程专业出现了。
这种膨胀现象一直持续到现在。
我们现在拥有了核能、石油、航天航空空间以及电气工程等。
每种工程领域之内都有细分。
6 例如,土木工程自身领域之内有如下细分:涉及永久性结构的建筑工程、涉及水或其他液体流动与控制系统的水利工程、涉及供水、净化、排水系统的研究的环境工程。
机械工程主要的细分是工业工程,它涉及的是错综复杂的机械系统,这些系统是工业上的,而非单独的机器。
本科毕业设计英文翻译

翻译部分英文原文SELF-ADVANCING HYDRAULIC POWERED SUPPORTSModern longwall mining employs hydraulic powered supports at the face area . The support not only holds up the roof , pushes the face chain conveyor , and advances itself , but also provides a safe environment for all associated mining activities . Therefore its successful selection and application are the prerequisite for successful longwall mining . Furthermore , due to the large number of units required , the capital invested for the powered support usually accounts for more than half of the initial capital for a longwall face . Therefore both from technical and economic points of view , the powered support is a very important piece of equipment in a longwall face .The application of modern powered supports can be traced back to the early 1950’s . Since then , following its adoption in every part of the world , there have been countless models designed and manufactured in various countries . But unfortunately , there still is no uniform system of classification .A simplified classification is used in this section . since a powered support consists of four major components(i. e. , canopy , caving shield , hydraulic legs or props , and base plate ) , the ways by which they are interrelated are used for classification . In this respect , two factors are most important : (1) presence or absence of a caving shield - if a caving shield is included , the support is a “ shield ”type , otherwise , a frame or a chock ; (2) number and type of arranging the hydraulic legs - since support capacity is generally proportional to the number of hydraulic legs , it is important to specify the number of hydraulic legs that a support has . Furthermore , the way the hydraulic legs are installed is important ; for example , a vertical installation between the base and the canopy has the highest efficiency of application whereas an inclined installation between the base and the caving shield has the least efficiency in supporting the roof .Based on this concept , there are four types of powered support , that is , the frame , chock , shield , and chock shield , in order of evolution of their development . However , it must be noted that the trend of development in each type is such that it becomes less distinguishable in terms of application .The four types of roof supports can be obtained for either longwall retreating or advancing systems , and they are available in standard , one-web-back , and immediate forward support ( IFS ) versions .With the standard system , the winning machine takes a cut or a slice , and the armored face conveyor is pushed over by the hydraulic rams that are fixed to the support units . The support units then are advanced sequentially to the conveyor . With the one-web-back system , a support is set back from the conveyor by a device that automatically keeps the leading edge of the support at a fixed distance from the conveyor .This allows easy access through the face and employs the standard method of advancing ; i. e. , pushing the conveyor first , and then advancing the support .With the IFS system , the support unit is advanced to the conveyor immediately after the cutting machine has passed , and the forward canopy of the support unit is long enough to support both the recently and newly exposed roof sections . After the supports have been advanced , the conveyor is pushed over .FRAMEThe frame support is an extension of the single hydraulic props conventionally used underground . Thus it is the first type developed in modern self-advancing hydraulic powered supports .It involves setting up two hydraulic props or legs vertically in tandem that are connected at the top by a single or two segmented canopies .The two segmented canopies can be hinge-jointed at any point between the legs or in front of the front leg .The base of the two hydraulic legs may be a circular steel shoe welded at bottom of each leg or a solid base connecting both legs (Fig .8.8) .Generally , a frame support consists of two or three sets of hydraulic legs . The set moving first is the secondary set , the set moving later is the primary set .There is a double-acting ram installed between each set . The piston of the ram is connected to the secondary set and the cylinder to the primary set . During support advance ( Fig. 8.9) , the primary set is set against the roof while the secondary set is lowered and pushed forward by the piston . Having reached the new position , the secondary set is set against the roof while the primary set is lowered and pulled forward by the cylinder . The distance of each advance ranges from 20 to 36 in. (0.50~0.91m) .Fig . 8.8 Frame supporta-primary set b-secondary setA B CFig . 8.9 Method of advancing the frame supportThe frame support is very simple , but more flexible or less stable structurally . There are considerable uncovered spaces between the two pieces of canopy which allows broken roof rock to fall through . Consequently , the frame support is not suitable for a weak roof . Frames have become seldom used because they are less stable and require frequent maintenance .CHOCKIn a chock support , the canopy is a solid piece and the base may be either a solid piece or two separate parts connected by steel bars at the rear and / or the front ends . In both cases a large open space is left at the center for locating the double-acting hydraulic ram which is used to push and pull the chain conveyor and the chock in a whole unit ,respectively , a distinctive difference from the frame support . This setupdesigned for thin seams with two legs in the front and four legs in the rear , separated by awalkwa is also used in the shields and chock shields .Again , all hydraulic legs are installed vertically between the base and the canopy (Fig. 8. 10) . The number of legs ranges from three to six , but the four-leg chocks are by far the most popular ones . The six-leg chocks are y (Fig. 8.10c) . For the six-leg chocks , the canopy is generally hinge-jointed above the walkway . Most chock are also equipped with a gob window hanging at the rear end of the canopy . The gob window consists of several rectangular steel plates connected horizontally at both ends.A B CFig . 8.10 Schematics of various chock supportIn most chock supports , there are hinge joint connections between the legs and the canopy and between the legs and the base . But in order to increase the longitudinal stability , it is reinforced mostly with a box-shaped steel frame between the base and each leg . A leg restoring device is installed around each leg at the top of the box-shaped steel frame .The chocks are suitable for medium to hard roof . When the roof overhangs well into the gob and requires induced caving , the chocks can provide access to the gob .SHIELDShields , a new entry in the early seventies , are characterized by the addition of a caving shield at the rear end between the base and the canopy . The caving shields , which in general are inclined , are hinge-jointed to the canopy and the base making the shield a kinematically stable support , a major advantage over the frames and the chocks . It also completely seals off the gob and prevents rock debris from getting into the face side of the support . Thus the shield-supported face is generally clean .The hydraulic legs in the shields are generally inclined to provide more open space for traffic . Because the canopy , caving shield , and base are interconnected , it can well resist the horizontal force without bending the legs . Thus , unlike the solid constraint in the frame/ chock supports , the pin connections between the legs and the canopy ,and between the legs and the base in a shield support make it possible that the angle of inclination of the hydraulic legs varies with the mining heights . Since only the vertical component of hydraulic leg pressure is available for supporting theroof ,the actual loading capacity of the shield also varies with the mining heights .There are many variations of the shield supports . In the following ,six items areused to classify the shields , which enables a unified terminology to be developed for all kinds of shields . The types of motional traces of the canopy tip , leg positions and orientation , number of legs , canopy geometry , and other optional designs and devices can be clearly specified by the terminology .TYPES OF MOTIONAL TRACES FOR THE LEADING EDGE OF THE CANOPY.This is the most commonly recognized way of classifying the shield . Based on this criterion , there are three types , lemniscate , caliper , and ellipse (Fig. 8. 11) .A . Lemniscate.LB . Caliper.C C . Ellipse.EFig . 8.11 Three types of motional traces for leading edge of the shield canopyA . Lemniscate . This is the most popular type . The caving shield and the base are jointed by two lemniscate bars which have a total of four hinges . As the hydraulic legs are raised and lowered , the dimentions of the lemniscate bars are selected such that the leading edge of the canopy moves up and down nearly vertically , thus maintaining a nearly constant unsupported distance between the face-line and the leading edge of the canopy .This is a feature that is widely considered most desirable for good roof control . There are clear limits of mining height within which the leading edge of the canopy moves nearly vertically . These limits are strictly controlled by the dimentional and positional arrangements of the canopy , caving shield , lemniscate bars , and the base . Beyond these limits , the edges will move rapidly away from the face-line creating a large unsupported area .B . Caliper . In a caliper shield , the caving shield and the base are connected by a single hinge .When the hydraulic legs are raised , the leading edge of the canopy moves in an arc away from the face , thus increasing the unsupported area This is considered by most users the least desirable feature of the caliper shield But in practice if the seam thickness varies little , the dimentional and positional arrangement of canopy , caving shield , and the base can be so designed that the distance change of unsupported area will not be significant . On the other hand , when the legs are lowered , it reduces the unsupported area .C . Ellipse . In this type the caving shield and the base are so connected that when the hydraulic legs are moved up and down , the leading edge of the canopy follows an elliptical trace . This type is seldom used .CHOCK SHIELDThe chock shield combines the features of the chocks and the shields . As such it possesses the advantages of both .If all of the four or six legs are installed between the canopy and the base , it is called a chock shield . There are regular four or six-leg chock shields in which all legs are vertical and parallel . Others form V or X shapes . Some canopies are a single piece and some are two pieces with a hydraulic ram at the hinge joint . The chock shield has the highest supporting efficiency . They are suitable for hard roof .中文译文自移式液压支架液压支架广泛应用于现代长臂采煤工作面上。
毕业设计中英文翻译

本科生毕业设计(论文)外文翻译毕业设计(论文)题目:电力系统检测与计算外文题目:The development of the single chipmicrocomputer译文题目:单片机技术的发展与应用学生姓名: XXX专业: XXX指导教师姓名: XXX评阅日期:单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。
现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。
一、无线电世界造就了几代英才。
在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。
早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。
电子科学开始形成了一门新兴学科。
无线电电子学,无线通信开始了电子世界的历程。
无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。
从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。
无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。
至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。
无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。
二、从无线电时代到电子技术普及时代。
早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。
半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。
毕设设计类外文翻译

Interior Design Supports Art Education: A Case StudyInterior design, as a field of study, is a rapidly growing area of interest – particularly for teenagers in the United States. Part of this interest stems from the proliferation ofdesign-related reality shows available through television media. Some art educators and curriculum specialists in the nation perceive the study of interior spaces as a ‘practical application’ of the arts.This article discusses an experiential design problem, originally used in higher education interior design studio courses that was modified and shared with students in third grade to address national academic standards. Later, this same project was modified for use with high school students in the educator’s community a nd with international design students in South Korea.Lastly, the project was presented in a workshop to art education students at a higher education institution. The project was modified to address (1) the age group level and (2) a topic relevant to the audience. Goals of the design project were: (1) to explore creative problem-solving, (2) to explore the application of design elements and principles, and (3) to increase student understanding of spatial relationships within an interior environment. Findings indicate that the project supported several visual art standards, including perception and community. This project may be of interest to current and future art educators and others interested in the potential of interior design content supporting art education.IntroductionThe design of interior spaces is a growing area of interest in the United States. Studies indicate that people spend 90 per cent of their time indoors, thereby making the quality design of interiors critical to the health and welfare of the population. Youth have been unconsciously encouraged since their childhood to develop awareness of their personal interior spaces and furnishings through popular storybooks they read that introduce the awareness of scale, proportion and ergonomics at a very young age (e.g. Three Little Bears and Alice in Wonderland). More recently, teens in the United States have become unexpectedly ‘hooked’ on design related reality shows such as Trading Spaces, Changing Rooms and Design on a Dime. Although Trading Spaces was originally intended for adults, according to the Wall Street Journal article titled ‘The Teen-Room Makeover’ (18 October 2002) the audience has more than 125,000 viewers aged 12 to 17 [1]. In support of that finding, a survey conducted in 2003 for a national chain of hardware stores discovered 65 per cent of teens said they have watched home improvement-related television shows [2].Teens seemingly have a growing interest in the design of interior spaces.In the United States in 2002, a qualitative study was developed to determine if interior design subject-matter could support national academic standards in elementary and secondary schools (kindergarten – twelfth grade) [3]. Findings of the study indicated that art educators and curriculum specialists perceived interior design to be supportive in meeting their standards as a type of ‘practical application’ of the arts. Perceptions of the curriculum specialists indicated they were looking for new ways to interpret fine art standards in their existing curriculum and that interior design offered one solution. As a result, the researcher, who was an interior design educator, was encouraged to identify and develop a project or lesson plan that could introduce children and youth to the importance of well-designed interior spaces yet support an art education standard in the nation.This article discusses an experiential interior design project that was modified from an exercise used in the freshman and sophomore college studio classes and shared with students in third grade, high school, and with international students in South Korea by this interior design educator. The educator was later invited to present this project to art education teachers at her university. The project supported several school district visual art standards, including perception and community. It was modified to address (1) the age group level and (2) a topic relevant to the audience. Goals of the design project were: (1) to explore creative problem solving, (2) to explore the application of design elements and principles, and (3) to increase student understanding of spatial relationships within an interior environment. This project may be of interest to current and future art educators and others interested in the potential of interior design content supporting visual art standards.Review of literatureThe review of literature briefly discusses (1) experiential learning theory, (2) findings from a qualitative study involving art educators, and (3) the interior design link with art education. The interior design project description and process of application will follow.Experiential learningExperiential learning theory, as an application of cognitive/perceptual models, is a tool toenhance the cognitive process of students. Specifically, the experiential learning cycleinvolves a concrete experience that leads to observations and reflections then to formation of abstract concepts and generalisations, before finally testing implications from concepts in new situations [4].The Association for Experiential Education defines experiential education astheprocess by which a learner constructs knowledge, skill and value from direct experience [5]. Drengson [6] defines experiential education as the process of practical engagement withconcepts and skills applied in a practical setting and delivered through physical and practical mental activity.One of the key components to enhance student learning is reflection. Dewey [7] suggests that to have meaning, an experience must be combined with thought. Kolb [8] suggests that reflections can offer a potential source of powerful data to link theory to practice. The mental engagement of an experiential learner can involve questioning, investigation, experimentation, curiosity, problem-solving, assuming responsibility, creativity and the construction of meaning [9].Experiential learning offers the spontaneous opportunity for learning, whether from unplanned moments, natural consequences, mistakes or successes [10]. Holistically, it involves not only the cognitive but also any combination of the senses, the emotions, and the physical [11].Qualitative study involving art educatorsIn 2001, a study was conducted to determine if interior design may be supportive tokindergarten – twelfth grade (K–12) teachers in meeting national academic standards,including the arts [12]. To understand perceptions of experts in interior design and elementary and secondary education, five focus group session sand six personal interviews were conducted with interior design educators, practitioners,K–12 teachers (elementary, junior high, and high school levels), national standards curriculum specialists (local and state level), and school-to-career curriculum specialists from June 2001 to April 2002[13].Focus group findings indicated that K–12teachers, at both elementary and secondary levels, felt that interior design could be supportive in meeting visual art standards because youth are frequently analysing their personal and public spaces. Participants described specific examples of interior design materials they currently needed in their course work to include: examples of good and bad interior spaces, information about elements and principles of design as they relate to interior spaces, and hands-on col our wheels of sturdy materials. In addition they requested that the materials be low cost, stimulating,‘touchable’,recyclable, self-contained, and fun. Lesson plans the visual art teachers suggested included:• reinvention of the ‘shoe box’ projec t;• development of well-known stories (The Three Pigs, Three Little Bears, and Alice in Wonderland) into space models to teach proportion and scale. In addition, it was suggestedthe following lesson plan: use of Goldilocks story to analyse ‘client or consumer needs’;• use of a Dr Seuss story (literary passage) to generate a conceptual model that enhances creativity;• study of cultural spaces at the junior high level that would enhance study of personal expression of identity in interiors [14].The visual arts curriculum specialists indicated hat interior design –as a ‘practical application’ should be introduced in elementary levels where there is a ‘small window of opportunity’ to give good information about the visual arts. See Table 1 fo r an example of the visual art standards in kindergarten – third grade levels. One visual art specialist advocated that the design process was more important to teach than a particular design method. He suggested moving students from designing personal spaces – and the study of elements and principles of design – in elementary levels to the analysis of private and public spaces in the junior high level. Then the high school levels could be reserved for additional indepth Exploration.Today, junior high and high school students are quite attracted to design-related reality shows. Over the last five years, the number of designrelated television shows has increased dramatically [15]. Why are these shows so attractive to teens and young adults? Rodriguez [16]has suggested that this interest is linked to the teens need for expression of self andself-identity.An individual’s unique identity is established through personalisation of space, which is critical to overall development of self [17]. Developing a sense of self involves the use of symbols to communicate to others one’s personal underlying identity.Interior design link with art educationIt is not common for interior design to be linked with art education in K–12 grade levels in the United States. However, the Foundation for Interior Design EducationResearch[18]standards and guidelines – the accreditation organization for higher education interior design programmes in the nation – reveal that there are many shared areas between visual arts and interior design (e.g.elements and principles of design).Rasmussen and Wright [19]advocate the need for a new model for art education. The new model should offer youth an aesthetic education that does more than just serve the traditional concerns of established arts curriculum. Experiences indicate that young people try to make sense of their own lives by creating contextual understanding through actively, and intentionally, making connections to signs, perceptions and experiences. This is a challenge to develop a new art education model that creates a balance between social andcontextual needs, knowledge of young people, and theaesthetic medium itself.The study of interior spaces offers one such context for learning in the physical environment.People spend 90 per cent of their time in interior spaces [20]. Youth consciously or unconsciously, analyse and respond to their near environment. They also learn best if they understand why they are learning what they are learning. Application of design and art to everyday life can assist in making connections in student learning, and develop more awareness of good design as well as an appreciation of the arts. Youth need theopportunity to learn more about design and human behavior so they can learn they have choices about how supportive their environments can be. Children can [determine] how design influences their behaviors; howdesign can be used to manipulate behavior; how design can encourage or discourage conversation, establish status, put people in power positions, increase or decrease anxiety [21].Therefore, based on (1) the experiential learning theoretical underpinnings, (2) recommendations made by art educators and curriculum specialists, and (3) a call for a new ways of teaching art education, an interior design educator at a higher education institution modified an experiential design project that involved the use of elements and principles of design and an opportunity for self-expression of personal spaces. The designproblem of the personal space was changed based on the grade level.Case study project descriptionAlthough art educators and curriculum specialists perceived that interior design content could be supportive to visual art standards, it was determined that a case study project needed to be developed and presented to various grade levels. It was also determined that a conceptual model of interior spaces should be used toenhance student creativity and exploration rather than a finite model that would offer too many rules and boundaries. Project descriptionThe experiential interior design project involved the construction of athree-dimensional concept model using 44 triangular and rectangular pieces of cardstock (stiff) paper in a neutral colour [22]. The objective was to discover, manipulate and create interior spaces based on a given design problem (e.g. design your space station on a planet of your choice or design your home in the Rocky Mountains of Colorado). The purpose ofthe project was to encourage students to design a conceptual structure from the interior out, keep-ing in mind the function of the building. The student’s model had to incorporate a minimum of six spaces and three levels to encourage vertical as well as horizontal volumes. All 44 pieces of cardstock had to be used in the finished model, which sometimes posed achallenge to the youth. The cardstock pieces could not be ripped, torn, or pierced. However, they could be bent and shapedaccording to the whim of the student.Flow from one space to another and one level to another was emphasized. The decision-making design process was explained and encouraged.Outcomes consisted of a three-dimensional abstract model which, if successfully executed, demonstrated the break-down of traditional spatial paradigms. Design problemsEach student grade level was given a different design problem based on the academic standards that were to be met in that class. In some cases, several academic standards were addressed at the same time. Two national standards for visual arts in the United States were selected to be supported with this project: communication and perception. The communication standard indicates that students in kindergarten – third grade should recognise the use of the visual arts as a means of communication (e.g. select and use visual images, themes and ideas in their own work). The perception standard indicates that students know, understand and apply elements of visual arts and principles of design (e.g. Identify elements and principles of design).Third grade studentsAfter procuring appropriate permission, the design educator brought volunteer college-age interior design students to the elementary school to help administer the project. Three third grade classes (twenty students in each class) had just finished a science unit on space and orbits and were studying specific visual art standards. The children were asked to design a personal space station on a planet of their choice. The goal was to help students relate the newly learned science information to something in real life (e.g. Their home), yet encourage exploration of visual arts (see Figs. 2–4).Each team of students was given the same 44 pieces of cardstock (all cut out) in a plastic bag, a cardboard base (15” x 15” square) on which to build the model, and cellophane tape to use in constructing the model. To enhance reflection of this experiential project, each team of three students was asked to give a two-minute verbal presentation in front of the class on their finished model. In this manner, they could discuss their design solution and the design educator could assess their use of creativity through design elements and principles.The college students and design educator rotated through the three classrooms of students to answer questions, encourage use of design elements and principles, and applaud their creative exploration. The third grade teachers assisted in supporting the structure of the class and encouraging shy students who were reluctant to begin.It was interesting to observe that the children rarely built the models on their provided classroom tables. Instead,they moved to the floor space, located the base for the model in between team members, and began construction. Each team member assumed a role in the process. One team member seemed t o act as the ‘designer’, one as the ‘builder/construction crew’ and the last as the ‘supplier’ of materials. Students excitedlydiscussed the positioning of the triangular pieces of cardstock in their model, their rooms in their space stations, and the different ways to turn the model to create different vantage points.The teams of third graders had one hour to complete the models. Then their verbal presentations began, interspersed with questions and comments from the design educator and third grade teachers. Informal observations indicatedthat application of design elements and principles was strong – perhaps due to the consistent rectangular and triangular shapes that had been provided – thereby supporting the visual arts perception standard. Manipulation of shapes was innovative. Line, shape and form were used to provide movement through adjoining spaces and offered a sense of verticality. Interior volumes were created that supported human behaveour in interior spaces. For example, one team’s presentation discussed how their space station boasted an exercise room with trampolines to strengthen human muscles that weakened as a result of zero gravity in outer space. The communication standard was supported in their finished models in a couple ways. First there was a theme of design as it relates to protection from foreign objects. For example, one team’s space station on Saturn incorporated a force field to protect it from flying rocks. Other visual themes of security and safety evoked the implementation of security cameras, alien detectors, missile launchers, telescope laboratories, control stations and transport rooms. Another visual theme related to circulation. Circulation within the structure was depicted by the third graders through the use of escalators, stairs, elevators and poles. A third visual theme was unique human needs as they relate to interior spaces. Almost every team’s space station incorporated a room for their mothers! In addition, depending on the students’ personal interests, unique space station features ranged from chemical rooms to sandboxes. It was obvious in their multiple unique design solutions their use of creativity had been explored and enhanced.Evaluation and assessment that took place, after the classes were dismissed, indicated that the third grade teachers perceived that this experiential design project supported the visual arts standards in both the communication and perception components as well as the third grade science academic standard concerning space and orbits. In addition, the experiential component of the project had unexpected results when certain quiet, unassuming students in the class became animated and highly engaged in learning. One teacher shared her excitement with the design educator about a new connection that wasformed with one of students that she had not been able to connect with before the design exercise.High school studentsAfter the case study with the third grade students, it was determined to offer this project to high school students. Diversity students in a nearby community were invited to attend a complimentary design workshop at a local library. The interior design educator was asked to present a design problem that would relate to arteducation (see Figs. 6–8).Their problem was to use the same experiential project and shapes to design and construct a conceptual model of their new home or cabin in the Rocky Mountain region. The same project constraints existed. Due to the students’ ages, discussions took place prior to the exercise about innovative problem-solving, the exploration of creativity and the elements and principles of design used within the design process. Some of these elements and principles included:Scale. Awareness of human scale was addressed to develop understanding of proportion and scale of the structure and interior spaces. Shape. Triangular shapes were deliberately selected to encourage students to break paradigms of rectangular interior spaces.Colour. The cardstock pieces were of a neutral colour to enhance spatial composition rather than draw attention to colour usage or juxtaposition. Volume/Mass. The mass of thethree-dimensional model was important in communicating the use of common elements and principles of design (e.g. line, rhythm). Line. A variety of different lines (e.g. diagonal, horizontal) were investigated in the manipulation of the shapes. Space. Space was created through the manipulation of shapes. Theories of complexity, mystery and refuge within interior spaces were discussed. Informal assessment of the finished design models indicated that the design solutions werevery creative.Later that semester, by invitation, the same design project was taken to college students training to be art educators in a mini-workshop format. The art education students found the exercise effective in enhancing creativity and understanding how interior design can enhance understanding of visual arts.International studentsAlthough there was no intention to meet a national visual arts academic standard at a specific grade level, this same experiential design project was presented in Seoul, South Korea to college-aged international students. The design problem was to use the same 44 pieces to develop a design concept model for acommercial building in Seoul. Language translators were used to help the design educatorintroduce the project, guide the students through the process, and understand their verbal presentations at the end of the workshop.Students commented during and after the workshop how the model enhanced their visual literacy skills (they used different words) and creativity within the context of everyday life. The experiential nature of the workshop was seemingly a pleasure to them (see Figs.9–11).Discussion and conclusionThis interior design case study project was designed to be experiential in nature to enhance student learning of the visual arts. Student and teacher assessment of the various groups indicated enthusiasm for the design project because it enhanced creativity, explored multiple design solutions, related to real life, and increased their understanding of human behaviour within the context of the physical environment. Teacherassessment of the age groups indicated that the project did support visual art standards at the appropriate grade level. In addition, their assessment indicated satisfaction with the manner in which the interior design project encouraged student usage of the design elements and principles and the application of design to everyday living. Several instructors indicated that quiet and shy students in their class became engaged in the learning process, which had not been previously observed. Perception of art educators and art education students was that this project supported a variety of visual art standards such as perception and communication. This interior design case study project can be modified for various age and cultural groups and may be of interest to educators who are interested in working collaboratively with colleagues from other disciplines.Visual art programmes in the United States are being cut from the K–12 curriculum. By linking visual arts to an up-and-coming aesthetic field, such as interior design, there may be new ways to sustain and grow visual art programmes in the nation.References1. Orndoff, K. (2003) ASID American Society of Interior Designers 2003 Strategic Environment Report. Future Impact Education, p. 9.2. Levitz, S. (2004) Teens Hooked on Home Décor, London Free Press (Ontario, CA), 24 June, p. D2.3. Clemons, S. (2002) Collaborative Links with K–12: A Proposed Model Integrating Interior Design with National Education Standards, Journal of Interior Design, Vol. 28, No. 1, pp.40–8.4. Rubin, S. G. (1983) Overcoming Obstacles to Institutionalization of Experiential Learning Programs, New Directions for Experiential Learning, Vol. 20, pp. 43–54.5. Luckman, C. (1996) Defining Experiential Education, Journal of Experiential Education, Vol. 19, No. 1, pp. 6–7.6. Drengson, A. R. (1995) What Means this Experience? in Kraft, R. J. & Sokofs, M. [Eds] The Theory of Experiential Education. Boulder, CO: Association for Experiential Education, pp. 87–93.7. Dewey, J. (1916) Democracy and Education. New York: Macmillan.8. Kolb, D. A. (1984). Experiential Learning: Experience as the Sources of Learning and Development. Englewood Cliffs, NJ: Prentice-Hall.9. Luckmann, C. op. cit.10. Ibid.11. Carver, R. (1996) Theory for Practice: A Framework for Thinking about Experiential Education, Journal of Experiential Education, Vol. 19, No. 1, pp. 8–13.12. Clemons, S. op. cit.13. Ibid.14. Ibid.15. Bien, L. (2003) Renovating how-to TV Shows in a Race to Duplicate Success of ‘Trading Spaces’. The Post Standard (Syracuse, NY), 31 October, p. E1.16. Rodriguez, E. M. (2003) Starting Young, Miami Herald, 28 December, p. H–1.17. Baillie S. & Goeters, P. (1997) Home as a Developmental Environment. Proceedings of the American Association of Housing Educators, New Orleans, LA, pp. 32–6.18. Foundation of Interior Design Education Research (FIDER) home page. Available from URL: / (Accessed 4th January 2005).19. Rasmussen, B & Wright, P. (2001) The theatre workshop as educational space: How imagined reality is voiced and conceived, International Journal of Education & the Arts, Vol. 2, No. 2, pp.1–13.20. Environmental Protection Agency (2006) An Introduction to Indoor Air Quality (online). Available from URL: /iaq/ ia-intro.html (Accessed 26th September 2006).21. InformeDesign (n.d.) Implications, Vol. 1, No. 2, p. 2 (online). Available from URL: /# (Accessed 4th January 2005).22. Curfman, J. & Clemons, S. (1992) From Forty-Four Pieces to a New Spatial Paradigm, in Birdsong, C. [Ed.] Proceedings of the Interior Design Educators Council Southwest Regional Meeting, New Orleans, pp. 2–4./detail/refdetail?tablename=SJWD_U&filename=SJWD00000744102&uid=WEEvR EcwSlJHSldSdnQ0SWZDdUlMV1dWZi9tOGkyYTBaTzBVQjVYeENXYVp4MVRJQjI3cmZRYS9YRmhvdnlxazJRPT 0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!Interior Design in Augmented Reality EnvironmentABSTRACTThis article presents an application of Augmented Realitytechnology for interior design. Plus, an Educational InteriorDesign Project is reviewed. Along with the dramatic progress ofdigital technology, virtual information techniques are alsorequired for architectural projects. Thus, the new technology ofAugmented Reality offers many advantages for digitalarchitectural design and construction fields. AR is also beingconsidered as a new design approach for interior design. In an ARenvironment, the virtual furniture can be displayed and modifiedin real-time on the screen, allowing the user to have an interactiveexperience with the virtual furniture in a real-world environment.Here, AR environment is exploited as the new workingenvironment for architects in architectural design works, and thenthey can do their work conveniently as such collaborativediscussion through AR environment. Finally, this study proposesa newmethod for applying AR technology to interior designwork, where a user can view virtual furniture and communicatewith 3D virtual furniture data using a dynamic and flexible userinterface. Plus, all the properties of the virtual furniture can beadjusted using occlusion- based interaction method for a TangibleAugmented Reality. General TermsApplications of computer science in modeling, visualization andmultimedia, graphics and imaging, computer vision, human-computerinteraction, et al.KeywordsAugmented Reality, Tangible AR, CAAD, ARToolKit, Interiordesign.1. INTRODUCTIONVisualizing how a particular table or chair will look in a roombefore it is decorated is a difficult challenge for anyone. Hence,Augmented Reality (AR) technology has been proposed forinterior design applications by few previous authors, for example,Koller, C. Wooward, A. Petrovski; K. Hirokazu, et al. The relateddevices typically include data glassesconnected to a。
现代包装机械设备毕业课程设计外文文献翻译、中英文翻译

1 英文文献翻译1.1 Modern PackagingAuthor:Abstract1. Changing Needs and New RolesLooking back, historical changes are understandable and obvious. That all of them have had an impact on the way products are brought, consumed and packaged is also obvious. What is not so obvious is what tomorrow will bring. Yet, it is to the needs, markets, and conditions of tomorrow that packaging professionals must always turn their attention.The forces that drove packaging during the Industry Revolution continue to operate today. The consumer society continues to grow and is possibly best described by a 1988s bumper sticker, “Born to Shop”. We consume goods today at a rate 4 to 5 times greater than we did as recently as 1935. Most of these goods are not essential to survival; they constitute what we may call “the good life”.In the second half of the 20th century, the proliferation of goods was so high that packaging was forced into an entirely new role, that of providing the motivation rather than presenting the goods itself. On a shelf of 10 competing products, all of them similar in performance and quality, the only method of differentiating became the package itself. Marketer aimed at lifestyles, emotional values, subliminal images, features, and advantages beyond the basic product rather than the competitor’s. In some in instances, the package has become the product, and occasionally packaging has become entertainment.A brand product to carry the product manufacturer or product sales of theretailer’s label, usually by the buyer as a quality assessment guidance. In some cases, competing brands of product quality is almost no difference, a difference is the sale of its packaging. An interesting visually attractive packaging can give a key marketing advantage and convince impulse spending. However, the packaging should accurately reflect the quality of products/brand value in order to avoid the disappointment of consumers, encourage repeat purchases and build brand loyalty. Ideally, the product should exceed customer expectations.2. Packaging and the Modern Industrial SocietyThe importance of packaging to a modern industrial society is most evident when we examine the food-packaging sector. Food is organic in nature, having an animal or plant source. One characteristic of such organic matter is that, by and large, it has a limited natural biological life.A cut of meat, left to itself, might be unfit for human consumption by the next day. Some animal protein products, such as seafood, can deteriorate within hours.The natural shelf life of plant-based food depends on the species and plant involved. Pulpy fruit portions tend to have a short life span, while seed parts, which in nature have to survive at least separated from the living plant are usually short-lived.In addition to having a limited natural shelf life, most food is geographically and season-ally specific. Thus, potatoes and apples are grown in a few North American geographical regions and harvest during a short maturation period. In a world without packaging,we would need to live at the point of harvest to enjoy these products, and our enjoyment of them would be restricted to the natural biological life span of each. It is by proper storage, packaging and transport techniques that we are able to deliver fresh potatoes and apples, or the products derived from them, throughout the year and throughout the country. Potato-whole,canned, powdered, flaked, chipped, frozen, and instant is available, anytime, anywhere. This ability gives a society great freedom and mobility. Unlike less-developed societies, we are no longer restricted in our choice of where to live, since we are no longer tied to the food-producing ability of an area. Food production becomes more specialized and efficient with the growth of packaging. Crops and animal husbandry are moved to where their production is most economical, without regard to the proximity of a market. Most important, we are free of the natural cycles of feast and famine that are typical of societies dependent on natural regional food-producing cycles.Central processing allows value recovery from what would normally be waste by products of the processed food industry from the basis of other sub-industries. Chicken feathers are high in protein and, properly mill and treated, can be fed back to the next generation of chickens. Vegetable waste is fed to cattle or pigs. Bagasse, the waste cane from sugar pressing, is a source of fiber for papermaking. Fish scales are refined to make additives for paints and nail polish.The economical manufacture of durable goods also depends on good packaging.A product's cost is directly related to production volume. The business drive to reduce costs in the supply chain must be carefully balanced against the fundamental technical requirements for food safety and product integrity, as well as the need to ensure an. efficient logistics service. In addition, there is a requirement to meet the aims of marketing to protect and project brand image through value-added pack design. The latter may involve design inputs that communicate distinctive, aesthetically pleasing, ergonomic, functional and/or environmentally aware attributes. But for a national or international bicycle producer to succeed, it must be a way of getting the product to a market, which may be half a world away. Again, sound packaging, in this case distributionpackaging, is a key part of the system.Some industries could not exist without an international market. For example, Canada is a manufacturer of irradiation equipment, but the Canadian market (which would account for perhaps one unit every several years) could not possibly support such a manufacturing capability. However, by selling to the world, a manufacturing facility becomes viable. In addition to needing packaging for the irradiation machinery and instrumentation, the sale of irradiation equipment requires the sale packaging and transport of radioactive isotopes, a separate challenge in itself. In response to changing consumer lifestyles, the large retail groups and the food service industry development. Their success has been involved in a competition fierce hybrid logistics, trade, marketing and customer service expertise, all of which is dependent on the quality of packaging. They have in part led to the expansion of the dramatic range of products offered, technology innovation, including those in the packaging. Supply retail, food processing and packaging industry will continue to expand its international operations. Sourcing products around the world more and more to assist in reducing trade barriers. The impact of the decline has been increased competition and price pressure. Increased competition led to the rationalization of industrial structure, often in the form of mergers and acquisitions. Packaging, it means that new materials and shapes, increased automation, packaging, size range extension of lower unit cost. Another manufacturer and mergers and acquisitions, the Group's brand of retail packaging and packaging design re-evaluation of the growing development of market segmentation and global food supply chain to promote the use of advanced logistics and packaging systems packaging logistics system is an integral part of, and played an important role in prevention in the food supply or reduce waste generation.3. World Packaging.This discussion has referred to primitive packaging and the evolution of packaging functions. However, humankind's global progress is such that virtually every stage in the development of society and packaging is present somewhere in the world today. Thus, a packager in a highly developed country will agonize over choice of package type, hire expensive marketing groups to develop images to entice the targeted buyer and spend lavishly on graphics. In less-developed countries, consumers are happy to have food, regardless of the package. At the extreme, consumers will bring their own packages or will consume food on the spot, just as they did 2000 years ago.Packagers from the more developed countries sometimes have difficulty working with less-developed nations, for the simple reason that they fail to understand that their respective packaging priorities are completely different. Similarly, developing nations trying to sell goods to North American markets cannot understand our preoccupation with package and graphics.The significant difference is that packaging plays a different role in a market where rice will sell solely because it is available. In the North American market, the consumer may be confronted by five different companies offering rice in 30 or so variations. If all the rice is good and none is inferior, how does a seller create a preference for his particular rice? How does he differentiate? The package plays a large role in this process.The package-intensive developed countries are sometimes criticized for over packaging, and certainly over-packaging does exist. However, North Americans also enjoy the world's cheapest food, requiring only about 11 to 14% of our disposable income. European food costs are about 20% of disposable income, and in the less-developed countries food can take 95%of family income.4. The status and development trend of domestic and international packaging machineryWorldwide, the history of the development of the packaging machinery industry is relatively short, science and technology developed in Europe and America in general started in the 20th century until the 1950s the pace greatly accelerated.From the early 20th century, before the end of World War II World War II,medicine,food, cigarettes,matches,household chemicals and other industrial sectors, the mechanization of the packaging operations; the 1950s, the packaging machine widely used common electric switches and tube for the main components of the control system to achieve the primary automation; 1960s, Electrical and optical liquid-gas technology is significantly increased in the packaging machine, machines to further expand on this basis a dedicated automated packaging line; the 1970s, the micro- electronic technology into the automation of packaging machines and packaging lines, computer control packing production process; from the 1980s to the early 1990s, in some field of packaging, computer, robot application for service, testing and management, in preparation for the over-flexible automatic packaging lines and "no" automatic packaging workshop.Actively promoted and strong co-ordination of all aspects of society, and gradually establish a packaging material, packaging, printing, packaging machinery and other production sectors, and corresponding to the research, design, education, academic, management and organization, and thus the formation of independent and complete. The packaging of light industrial system, and occupies an important place in the national economy as a whole.Based on recent years data that members of the World Packaging Alliance output value of the packaging industry accounts for about 2% of the total output value of the national economy; in which the proportion of packaging machinery, though not large, but the rapid development of an annual average of almost growing at a rate of about 10%. Put into use at the packaging machine is now more than thousand species of packaging joint machines and automated equipment has been stand-alone equate. According to the new technological revolution in the world development trend is expected to packaging materials and packaging process and packaging machinery will be closely related to obtain the breakthrough of a new step, and bring more sectors into the packaging industry.China Packaging Technology Association was established in 1980. Soon, the China National Packaging Corporation have been born. Since then, one after another in the country organized a national and international packaging machinery exhibition, seminars, also published I had the first ever "China Packaging Yearbook and other packaging technology books. All this indicates that China is creating a new packaging historical perio d.1.2中文翻译现代包装1、不断变化的需求和新的角色,回顾以往,包装所带来明显的历史性变化是可以理解的, 一个产品包装方式的给他们的销量带来的影响也是显而易见的。
本科毕业设计外文文献翻译

(Shear wall st ructural design ofh igh-lev el fr ameworkWu Jiche ngAbstract : In t his pape r the basic c oncepts of man pow er from th e fra me sh ear w all str uc ture, analy sis of the struct ur al des ign of th e c ont ent of t he fr ame she ar wall, in cludi ng the seism ic wa ll she ar spa本科毕业设计外文文献翻译学校代码: 10128学 号:题 目:Shear wall structural design of high-level framework 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程专业(建筑工程方向) 班 级:土木08-(5)班 指导教师: (副教授)nratiodesign, and a concretestructure in themost co mmonly usedframe shear wallstructurethedesign of p oints to note.Keywords: concrete; frameshearwall structure;high-risebuildingsThe wall is amodern high-rise buildings is an impo rtant buildingcontent, the size of theframe shear wall must comply with building regulations. The principle is that the largersizebut the thicknessmust besmaller geometric featuresshouldbe presented to the plate,the force is close to cylindrical.The wall shear wa ll structure is a flatcomponent. Itsexposure to the force along the plane level of therole ofshear and moment, must also take intoaccountthe vertical pressure.Operate under thecombined action ofbending moments and axial force andshear forcebythe cantilever deep beam under the action of the force levelto loo kinto the bottom mounted on the basis of. Shearwall isdividedinto a whole walland theassociated shear wall in theactual project,a wholewallfor exampl e, such as generalhousingconstruction in the gableor fish bone structure filmwalls and small openingswall.Coupled Shear walls are connected bythecoupling beam shear wall.Butbecause thegeneralcoupling beamstiffness is less thanthe wall stiffnessof the limbs,so. Walllimb aloneis obvious.The central beam of theinflection pointtopay attentionto thewall pressure than the limits of the limb axis. Will forma shortwide beams,widecolumn wall limbshear wall openings toolarge component atbothen ds with just the domain of variable cross-section ro din the internalforcesunder theactionof many Walllimb inflection point Therefore, the calcula tions and construction shouldAccordingtoapproximate the framestructure to consider.The designof shear walls shouldbe based on the characteristics of avariety ofwall itself,and differentmechanical ch aracteristicsand requirements,wall oftheinternalforcedistribution and failuremodes of specific and comprehensive consideration of the design reinforcement and structural measures. Frame shear wall structure design is to consider the structure of the overall analysis for both directionsofthehorizontal and verticaleffects. Obtain theinternal force is required in accordancewiththe bias or partial pull normal section forcecalculation.The wall structure oftheframe shear wall structural design of the content frame high-rise buildings, in the actual projectintheuse of themost seismic walls have sufficient quantitiesto meet thelimitsof the layer displacement, the location isrelatively flexible. Seismic wall for continuous layout,full-length through.Should bedesigned to avoid the wall mutations in limb length and alignment is notupand down the hole. The sametime.The inside of the hole marginscolumnshould not belessthan300mm inordertoguaranteethelengthof the column as the edgeof the component and constraint edgecomponents.Thebi-direc tional lateral force resisting structural form of vertical andhorizontalwallconnected.Each other as the affinityof the shear wall. For one, two seismic frame she ar walls,even beam highratio should notgreaterthan 5 and a height of not less than400mm.Midline columnand beams,wall midline shouldnotbe greater tha nthe columnwidthof1/4,in order toreduce thetorsional effect of the seismicaction onthecolumn.Otherwisecan be taken tostrengthen thestirrupratio inthe column tomake up.If theshear wall shearspan thanthe big two. Eventhe beamcro ss-height ratiogreaterthan 2.5, then the design pressure of thecut shouldnotmakeabig 0.2. However, if the shearwallshear spanratioof less than two couplingbeams span of less than 2.5, then the shear compres sion ratiois notgreater than 0.15. Theother hand,the bottom ofthe frame shear wallstructure to enhance thedesign should notbe less than200mmand notlessthanstorey 1/16,otherpartsshouldnot be less than 160mm and not less thanstorey 1/20. Aroundthe wall of the frame shear wall structure shouldbe set to the beam or dark beamand the side columntoform a border. Horizontal distributionofshear walls can from the shear effect,this design when building higher longeror framestructure reinforcement should be appropriatelyincreased, especially in the sensitiveparts of the beam position or temperature, stiffnesschange is bestappropriately increased, thenconsideration shouldbe givento the wallverticalreinforcement,because it is mainly from the bending effect, andtake in some multi-storeyshearwall structurereinforcedreinforcement rate -likelessconstrained edgeofthecomponent or components reinforcement of theedge component.References: [1 sad Hayashi,He Yaming. On the shortshear wall high-rise buildingdesign [J].Keyuan, 2008, (O2).高层框架剪力墙结构设计吴继成摘要: 本文从框架剪力墙结构设计的基本概念人手, 分析了框架剪力墙的构造设计内容, 包括抗震墙、剪跨比等的设计, 并出混凝土结构中最常用的框架剪力墙结构设计的注意要点。
毕业设计英文翻译原文

英文原文1. General description of the SIEMAG disc brake unitThis brake unit is the electro-hydraulic control system of a gearless disc brake for winders. The brake unit operates on the exhaust principle, i.e. the braking force is generated by sets of disc springs and released by hydraulic pressure.The braking force generators with the brake shoes directly act axially on the brake disc. The braking force is generated by sets of disc springs and transmitted onto the brake shoes. The number of brake elements determines the respective braking force required.As soon as the brakes are being released, the brake shoes are lifted form the brake disc with the aid of pressure oil. During the braking, the oil flows back into the tank and the brake shoes are being pressed against the brake disc.The braking force generators type BSFG 408 are s series product supplied by the Swedish firm ASEA-Hagglunds. They have a maximum press-down force of2X7906 kN.For reasons of better system availability, the hydraulic pressure is generated by two regulating pumps that are each driven by an electric motor. Both pumps are started when the system is being switched on. Any failure of a pump will be signaled.The oil filtration is undertaken by a pressure filter‘6.2’provided in front of the braking force generators. Furthermore, two gear pumps that are directly coupled with the regulating pumps, maintain a permanent oil cooling and filtering circuit during system operation (filter‘6.1’and cooler ‘14’). Both filters have an electrical contamination control. The mesh size of the filters is specified by the supplier to be 10μm (see TAS No.3.9.6.4). The equipment includes a controlled electrical tank heating. The fluid level in the tank is monitored as well.The service braking is done with the aid of two electrically controlled proportional pressure relief valves‘43.1’and‘43.2’that are hydraulically connected in series.The safety braking is done with the aid of position-controlled 4/2-way electro valves‘53.1’、‘53.2’、‘39.1’、‘39.2’、‘58.1’、‘58.2’、‘66.1’,and‘66.2’which are electrically actuated in closed-circuit connection.In the event of a safety braking, the directional control valves‘39.1’and‘39.2’are switched off, separating thus the pump pressure from the remaining brake releasing system(hydraulic shunt).During the safety braking, the directional control valves‘6.1’and‘66.2’are acting as pilot valves for the 2/2-way valves‘65.1’and ‘65.2’which again release the pressure relief valves‘64.1’and‘64.2’.The electro valves‘53.1’and‘53.2’operate as outlet valves according to TAS No.3.9.5.9.The mechanically controlled pressure relief valves‘60.1’and‘60.2’are arranged in the outlet line of these valves. They determine the residual pressures in the course of safety braking. These residual pressures (pressure stages 1 and 2) are maintained by bladder-type accumulators.The gas pressure of the respective accumulator used is monitored.The march of pressure is adjusted with the aid of mechanical skids which are adapted to the braking process desired.A hand-operated pump‘48’is provided for assembly purposes, when the controlled main stop cocks‘46.1’and‘46.2’in the outlet line of the brake elements are locked.The position-controlled 4/2-way valves‘63’and the pressure relief valves ‘25.1’and‘25.2’(residual pressure accumulator) are fed by a back-up power supply in open-circuit connection. The valves get open when the solenoids are energized.With the command‘RELEASE BRAKE’,the two residual pressure accumulators are filled through the check valves‘87.1’and‘87.2’.The residual pressure accumulator‘24.1’(pressure stage 1) is connected through the 4/2-way valve‘86’. The residual pressure accumulator‘24.2’(pressure stage 2) is automatically connected by a change-over of the 4/2-way valve‘86’, when the hoisting load changes accordingly.2. Functional description of the electro-hydraulic control system corresponding to the hydraulic drawing No.0905216/12.1 Method of operation of the brake unitThe braking force is the sum of pressing forces per brake shoe, reduced by the forces being generated by the oil pressure in the cylinders of the brake element.The force required for the service braking is achieved by controlling the oil pressure. Two pressure regulating valves‘43.1’and‘43.2’, each being fitted with separate control electronics and function control, are connected in series, permitting thus a stepless adjustment of the valves between a minimum and a maximum pressure. In the case of failure of one brake is applied when the spring forces press the brake shoes against the brake disc without counterpressure. The brake is released when the pressure oil in the cylinders of the brake elements reduces the spring forces to zero and the brake shoes are lifted the brake disc.The brake releasing pressure is generated through the pressure-controlled pumps‘1.1’and‘1.2’which are driven by electric motors‘3.1’and‘3.2’. The pressure regulating valves of the pumps are adjusted in such a way that, as soon as the brake releasing pressure has been reached, the pumps reduce the flow rate from the maximum value to the quantity required for maintaining the releasing the pressure. This means in other words that the pumps only deliver the quantity of oil that is demanded to replace any oil losses from leakage and to maintain the pressure adjusted on the pressure regulating valves‘43.1’and‘43.2’.When starting the safety braking, the circuit of the electro-hydraulic brake control system (including pump motors) is cut off. The 4/2-way valves ‘53.1’,‘53.2’,‘39.1’and‘39.2’are thus de-energized and the pump circuit is separated form the brake elements and the pressure accumulators‘24’. The service brake valves‘43.1’and‘43.2’remain energized through a back-up current supply. The residual pressure is as high as to ensure the winder retardation being below the rope slip limit.The hand-operated pump‘48’is only connected for the start-up operation and stored separately.2.2 Operating states2.2.1 Starting the systemThe winder is at standstill and the brake applied. The control voltage and the voltage for the pump motors‘3.1’and‘3.2’is available. The electrical monitoring system signals the system to be trouble-free and all preconditions for starting the pumps‘1.1’and‘1.2’fulfilled (please see also item 2.3.1), which means that the safety circuit is closed as well.The 4/2-way valves‘39.1’and‘39.2’are energized by starting the pump motors‘3.1’and‘3.2’,thus opening the cross section between pumps and brake elements. The safety brake valves ‘53.1’、‘53.2’、‘58.1’、‘58.2’、‘66.1’and‘66.2’close.The pumps‘1.1’and‘1.2’are now connected through the pressure regulating valves‘43.1’and‘43.2’with the brake elements. The coils of these valves are de-energized, i.e. the valves are open, permitting the oil to return without pressure form the pumps‘1.1’and‘1.2’through the pressure regulating valves into the tank.2.2.2 Releasing the service brakeWith the command‘RELEASE BRAKE’, the coils of the pressure regulating valves‘43.1’and‘43.2’are fed with the maximum valve of regulable current, and the valves retain the maximum releasing pressure adjusted. The pumps‘1.1’and‘1.2’thus feed the oil through the valves‘39.1’and‘39.2’to the brake element. The accumulators for the residual pressure‘24.1’and‘24.2’are also filled through the operating pumps. The brake elements are released as soon as the maximum releasing pressure has been reached. The pressure-controlled pumps then reduce the flow rate to the quantity required for compensating all oil loses form leakage. The releasing pressure is maintained by the pressure regulating valves‘43.1’and‘43.2’.The pressure switches‘34.1’/‘34.2’monitor the filling of the bladder-type accumulators for residual pressure‘24.1’/‘24.2’.With this operating state, the valves‘53.1’and‘53.2’are closed and the outlets of the hydraulic safety circuit thus locked.2.2.3 Service brakingDuring the service braking, the pressure regulating valves‘43.1’and‘43.2’are steplessly controlled. This reduces the releasing pressure in conformity with the position of the brake lever. The oil displaced form the brake elements as well as the excess oil form the pumps‘1.1’and‘1.2’flows back through the pressure regulating valves‘43.1’and‘43.2’into the tank.These proportional pressure regulating valves comprise a pilot control valve and a main valve. They are operated by parallel control of the pilot control valves with the main valves connected in series.This means in other words that both proportional pressure regulating valves are always active in the pilot control circuit. However, the main pressure regulating function is always fulfilled by that valve which is nearer to the pressure source. Only in the event of a failure this function is performed by the subsequent valve.The power supply to the control electronics of each regulating valve is additionally backed up by a battery ensuring, in the event of a total power failure or wire brakeage, that at least one regulating valve remains operative.The buffered voltage supplies are monitored for a failure of the buffering in the electrical and electronical circuits of the brake control system.2.2.4 Safety brakingAs soon as the safety circuit is actuated, the pump motors‘3.1’and‘3.2’and the entire electrical control system, except the control of the service brake regulating valves, are de-energized.The oil draining pressure is released through the pressure relief valves ‘64.1’and‘64.2’by de-energizing the solenoid valves‘66.1’and‘66.2’. The releasing pressure in the brake elementsand in the conduits is thus rapidly reduced to that value at which the brake shoes touch the brake discs without pressing force.The de-energized valves‘39.1’and‘39.2’(hydraulic shunt) isolate the pumps‘1.1’and‘1.2’form the brake elements and, at the same time, connect the brake elements with the residual pressure accumulator ‘24.1’and‘24.2’.The hydraulic pressure is further reduced the residual pressure lever through the directional control valves‘53.1’and‘53.2’, the throttling valves ‘56.1’and‘56.2’as well as the cam-controlled pressure relief valves‘60.1’and‘60.2’connected in parallel.The opening time of the above valves determines the threshold time, it can be adjusted through the throttling valves‘59.1’and‘59.2’in a range of 0.2 and 1.0 s. The minimum pressure valve of the open valves‘60.1’and‘60.2’is equivalent to the residual pressure valve and is limited by the final position of the mechanical cam plate.The residual pressure valve is reached after a prolon-gated threshold time of approx.0.1s.For a fine adjustment of the threshold curve and as an additional safety measure ,two throttling valves‘57’are provided for the respective residual pressure value. These components permit the pressure reduction characteristic (braking curve) to be variably adjusted (depending on requirements) and reproduced at any time.The capacity of the residual pressure accumulator is adapted to the maximum braking time of the winder, under consideration of the opening cross sections of the valves ‘57’and of the leakage rate of all valves. The time of maintaining residual pressure is abt.50% longer than the maximum braking time.When the winder comes to a standstill, a time element is started. After abt.2s, the valve‘63’is opened by a starting pulse and the residual pressure reduced to zero. At the same time, the residual pressure accumulator not needed is discharged through the pressure relief valve‘25.1’or‘25.2’(the valve is energized for a short moment).The possibility of adjusting and reproducing the braking curve between application pressure and residual pressure is of particular importance since, within this period, rope vibrations may occur which, with Koepe winders, may cause a slipping of ropes.The valves‘58’,‘65’,and‘66’as well as‘53’and‘39’are monitored for their position and, prior to the start of the winder releasing the safety brake checked for conformity.Furthermore, the starting and end positions of all curves are checked for conformity and thus also for correct functioning.During the safety braking, the pressure relief valves‘43.1’and‘43.2’remain operative.2.2.5 Releasing the safety brakeSince the control system including the pump motors is de-energized as soon as safety braking is started, the brake control system is in a resting state. The system is depressurized and the brake applied.The power required for the pump motors‘3.1’and‘3.2’and the control system is available.The system can be started when1. the electrical monitoring system does not signal any failure.2.all prerequisites for starting the pumps‘1.1’and‘1.2’are fulfilled.3.conformity of the valves‘39’、‘53’、‘58’、65‘、65’、‘66’and‘89’is given.The system is started and the brake released as described under items 2.2.1and 2.2.2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Center Lathe4.1 INTRODUCTIONLathe is the oldest machine tool invented, starting with the Egyptian tree lathes. In the Egyptian tree lathe, one end of the rope wound round the workpiece is attached to a flexible branch of a tree while the other end is pulled by the operator, thus giving the rotary motion to the workpiece. This primitive device has evolved over the last two centuries to be one of the most fundamental and versatile machine tools with a large number of uses in all manufacturing shops.The principal form of surface produced in a lathe is the cylindrical surface. This is achieved by rotating the workpiece while the single point cutting tool removes the material by traversing in a direction parallel to the axis of rotation and termed as turning as shown in Fig.4.1.The popularity of the lathe due to the fact that a large variety of surfaces can be produced.Different types of lathes are used in manufacturing shops. Some of them are:(a)Centre lathe(b)Tool room lathes(c)Special purpose lathes(d)Copying lathe(e)Gap bed lathe(f)Capstan and turret lathes(g)Automatic lathesThe centre lathe is the most common lathe which derives its name from the way a workpiece is clamped by centres in a lathe, though this is not the only way in which the job is mounted. This is sometimes also called as engine lathe in view of the fact that early lathes were driven by steam engines. This is generally used for more general applications and thus the construction of the machine tool is more rigid.The tool room lathe is generally meant for applications of tool making, where the accuracy desired is much higher than that is normally required for general productionwork. Also the range of sizes and materials handled would normally be large. Thus the machine would have a higher range of speeds and feeds along with greater rigidity. The range of accessories and attachments would generally be larger.Special purpose lathes are developed from the centre lathe to cater to special forms of application which cannot be handled by the conventional centre lathe.Capstan and turret lathes and automatic lathes cater to high rate production and thus are used for special application purposes. These lathes have the special feathers to help in improving the production rate and also work unattended if necessary, They have been discussed in detail in the next chapter.4.2 CONSTRUCTIONAL FEA TURES OF A CENTRE LA THEA typical centre lathe is shown in Fig.4.2.The headstock is towards the left-most end on the spindle. The spindle is hollow and is sufficiently rigid to provide accurate rotary motion and maintains perfect alignment with the lathe axis. A live centre fits into the Morse taper in the spindle hole for the purpose of locating the workpiece axis.The main gear box provides the necessary spindle speeds considering the range of materials to be turned in the lathe. The headstock also houses the feed gear box to provide the various feed rates and thread cutting ranges.The tailstock is towards the right-most end on the bed, which provides a tailstock spindle for the purpose of locating the long components by the use of centers. The tailstock is movable on the inner guideways provided on the bed to accommodate the different lengths of workpieces, It also serves the purpose of holding tools such as centre drill, twist drill, reamer, etc. for making and finishing holes in the components which are located in line with the axis of rotation.The third major element in the lathe mechanism is the carriage which provides the necessary longitudinal motion to the cutting tool to generate the necessary surfaces. This also houses the cross-slide for giving the motion (cross feed) to the cutting tool in a direction perpendicular to the axis of rotation, the compound slide which provides an auxiliary slide to get the necessary special motion for specific surfance generations and the tool post which allows for the mounting of the cutting tool.Fig.4.2 General view of a centre lathe showing various mechanisms and features The motion from the spindle motor is communicated to the carriage through a lead screw. Engagement of the lead screw with the carriage is through the use of a half nut. Though the lead screw could be used for feeding the cutting tool in a direction parallel to the axis of rotation ,many a time a separate feed rod is provided for this function. The main reason is that the lead screw is more accurate and is used only for thread cutting ,such that it maintains its accuracy. For routine feeding, the feed rod is used.4.2.1 Lathe SpecificationsIn order to specify a lathe, a number of parameters could be used based on the specific application. However, the major elements used for specification should invariably be based on the components that would be manufactured in the lathe. Thus the following are the basic elements generally specified for the capability of the lathe machine(Fig.4.3).(i)Distance between centres—this would be specifying the maximum length ofthe job that can be turned in the lathe.(ii)Swing over the bed—this specifies the maximum diameter of the job that can be turned in the lathe machine, generally restricted to small length jobs.(iii)Swing over the cross slide—this specifies the maximum diameter of the job that can be turned in the lathe machine with the job across the cross slide, which is generally the case.Though the above gives the basic capacity of the machine as shown in Fig.4.3,there are a number of other factors that should also be specified to fully describe the lathe machine. They are:(a)horse power of the motor(b)cutting speed range(c)feed range(d)screw cutting capacity(e)accuracy achievable(f)spindle nose diameter and hole size.Typical specifications of some centre lathes are given in Table4.1.Further specifications would be based on the accessories used with the machine tool and their respective capabilities.4.3AIDS FOR SUPPORT AND LOCA TIONThe work holding devices normally used should have the following provisions:(i) suitable location,(ii) effective clamping, and(iii) support when required.The most common form of work holding device used in a lathe is the chuck. Chucks come in various forms with varying number of jaws. Of these the 3-jaw chuck or the self centring chuck as shown in Fig.4.4 is the most common one. The main advantage of this chuck is the quick way in which the typical round job is centred. All the three jaws mesh with the flat scroll plate. Rotating the scroll plate through a bevel pinion moves all the three jaws radially inward or outward by the same amount. Thus ,the jaws are able to centre any job whose external locating surface is cylindrical or symmetrical ,like hexagonal. Though it is good for quick centring ,it has limitations in terms of the gripping force accuracy which is gradually lost due to the wearing of the mating parts.The independent jaw chuck has four jaws, which can be moved in their slots which are independent of each other(Fig.4.5),thus clamping any type of configuration. Since each of these jaws can be moved independently any irregular surface can be effectively centred. Better accuracy in location can be maintained because of the independent movement. However more time is spent in fixturing a component in a 4-jaw compared to the 3-jaw chuck. This is generally used for heavy workpieces and for any configuration.The jaws in a 4-jaw chuck can be reversed for clamping large diameter workpieces as shown in Fig.4.6.The soft jaws are sometimes used in these chucks for clamping surfaces of a component whose surface is already finished and which is likely to be disfigured by the surface of the normal jaws used in them.The three-jaw and four-jaw chucks are normally suitable for short components. However a long component supporting at only one end would make it to deflect under the influence of the cutting force .In such cases the long workpieces are held between centres. The workpiece ends are provided with a centre hole as shown in Fig.4.7.Through these centre holes the centres mounted in the spindle and the tail stock would rigidly locate the axis of the workpiece.Centres as shown in Fig.4.7would be able to locate the central axis of the workpiece, however would not be able to transmit the motion to the workpiece from the spindle. For this purpose ,generally a carrier plate and a dog as shown in Fig.4.8 would be used. The centre located in the spindle is termed as live centre while that in the tailstock is termed the dead centre. The shank of the centre is generally finished with a Morse taper which fits into the tapered hole of the spindle or tailstock.The live centre rotates with the workpiece, and hence it remains soft. The dead centre does not rotate, and hence it is hardened as it forms the bearingsurface .However, in case of heavier workpieces the relative movement between the workpiece and the dead centre causes a large amount of heat generated.In such cases ,a revolving centre is used. In this the centre is mounted in a roller bearing and it thus rotates freely ,reducing the heat generated at the tailstock end .In cases where a facing operation is to be carried out with centres, a half centre is sometimes used.Some of the precautions to be observed during the use of centres are:(i) The centre hole in the work must be clean and smooth and have an angle of 600 bearing surface, large enough to be consistent with the diameter of the work. For heavier work this may be made 780 or 900 .(ii)The bearing must take place on the countersunk surfaces and not on the bottom of the drilled hole.When the job becomes very long, then it is likely to deflect because of its own weight as well as sue to the cutting force acting away from the supports provided at both the ends. A steady is used for supporting the workpiece at the maximum deflection point. The details of sample calculations for similar situations are shown in Chapter 14.Sometimes a steady is fixed to the carriage ,so that it moves with the tool ,thus effectively compensating for the acting cutting force.For odd shaped components a face plate is more widely used where the locating and clamping surfaces need not be circular. This has radial slots on the plate as shown in Fig.4.9 for the purpose of locating the component and clamped by means of anystandard clamps. The method is somewhat similar to the clamping of workpieces on a milling machine table using the T-slots on the table. However ,in view of the fact the face plate rotates ,the component is likely to be off centre. This would cause vibrations due to the mass unbalance. A balancing mass would therefore have to be provided as shown in Fig.4.9. Sometimes angle plates along with the face plate may have to be used for typical components where the locating surface is perpendicular to the plane of the face plate as shown in Fig.4.9.For holding components with locating holes for the purpose of generating external surfaces, a man-drel is generally used. V arious types of mandrels used are shown in Fig .4.10.The above types of work holding devices are more useful for general purpose work. However, for production work using the above work holding devices would lead to considerable time being spent in locating and holding individual workpieces. In production machine tools it is therefore necessary to use work holding devices which require very less time for clamping purposes. A collet is one such device whichManufacturing Technology: Metal Cutting and Machine Tools93provides good clamping accuracy with very little time required for clamping and unclamping.A collet has a sleeve as the holding part which is slit along the length at a number of points along the circumference as shown in Fig.4.11.When uniform pressure is applied along the circumference of the sleeve, these segments elastically deflect and clamp the component located inside Since the deflection of the sleeve is in the elastic range it springs back once the clamping pressure is removed thus releasing the component located inside This clamping method is very accurate and fast in operation and holds the work uniformly over the entire circumference .However, the size range in which a collet becomes operational is very small in view of the limit on the elastic deformation allowed. Thus a large number of chucks need to be maintained in the inventory to cater to the variety of diameters to be worked in the machine tool This is normally used for large-scale production where saving in terms of the locating and clamping time is desirable.。