拉伸法和动力学法测量弹性模量-实验报告
拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
大学物理实验报告(清华大学)拉伸法测弹性模量

物理实验报告系别机械系班号机53 姓名丁旭阳(同组姓名)做实验日期 2006 年 10 月 19 日教师评定2.1 拉伸法测弹性模量一、实验目的1、学习用拉伸法测弹性模量的方法。
2、掌握螺旋测微计和读数显微镜的使用。
3、学习用逐差法处理数据。
二、实验仪器支架、读数显微镜、底座、钢尺、螺旋测微计、砝码三、实验原理物体在外力作用下都要或多或少地发生形变。
当形变不超过某一限度时,撤走外力之后,形变将随之消失,这种形变称之为"弹性形变"。
发生弹性形变时,物体内部产生恢复原状的内应力。
弹性模量是反映材料形变与内应力关系的物理量。
拉伸法是一种直接简单的测量材料弹性模量的方法。
在弹性范围内,长度L、截面积S 的金属丝,受拉力F作用后伸长了d L。
F/S为正应力,d L/L为线应变。
有胡克定律:比例系数 E称作材料的弹性模量,也称为杨氏模量。
使用实验中直接测量量表示,E 为:四、实验方法与步骤1、调整钢丝支架使它竖直。
调整底座螺钉使钢丝夹具不与周围支架碰蹭。
2、调节读数显微镜。
3、加砝码测量伸长。
4、减砝码测量伸长。
5、测量钢丝直径和长度。
五、数据记录1、测量钢丝长度L及伸长量Lδ5L lδ==0.263mm0.01mml∆=仪ls=0.0184mm15L lδ∆=∆==LLδδ+∆=0.263±0.005mm2、测量钢丝直径D零点/d mm测量前-0.021 -0.019 -0.020 测量后-0.021 -0.022 -0.022平均值d=-0.208mm钢丝的平均直径D=0.200mm,D s=0.0019mm。
螺旋测微计示值误差∆仪=0.004mm。
D∆=DD±∆=0.200±0.004mm3、总不确定度的计算E E ∆=24FLE D L πδ==237.34GPaE E E E ∆∆=∙=5GPaE E +∆=237.3±5GPa。
拉伸法和动力学法测量弹性模量-实验报告

拉伸法和动力学法测量弹性模量实验报告双33A组石健2007010241实验日期:2008年12月17日第一部分拉伸法测弹性模量1.1实验目的(1)学习用拉伸法测量弹性模量的方法;(2)掌握螺旋测微计和读数显微镜的使用;(3)学习用逐差法处理数据。
1.2实验原理1.2.1 弹性模量及其测量方法本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。
设有一长度为L,截面积为S的均匀金属丝,沿长度方向受一外力F后金属丝伸长δL。
单位横截面积上的垂直作用力F/S成为正应力,金属丝的相对伸长δL/L称为线应变。
实验结果指出,在弹性形变范围内,正应力与线应变成正比,即F S =EδLL该规律称为胡克定律。
式中比例系数E=F/S δL/L称为材料的弹性模量。
它表征材料本身的性质,E越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大。
一些常用材料的E值见表1。
E的单位为Pa(1Pa=1N/m2;1GPa=109Pa)。
表1 一些常用材料的弹性模量本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D,则可以进一步把E写成:E=4FL πD2δL测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径D用螺旋测微计测量,力F由砝码的重力F=mg求出。
实验的主要问题是测准δL。
δL一般很小,约10−1mm数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。
为了使测量的δL更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。
通过数据处理求出δL。
1.2.2 逐差法处理数据如果用上述方法测量10次得到相应的伸长位置y1,y2,…,y10,如何处理数据,算出钢丝的伸长量δL呢?我们可以由相邻伸长位置的差值求出9个δL,然后取平均,则δL=(y2−y1)+(y3−y2)+⋯+(y10−y9)9从上式可以看出中间各y i都消去了,只剩下y10−y19⁄,用这样的方法处理数据,中间各次测量结果均未起作用。
用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。
本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。
实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。
实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。
实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。
当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。
根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。
通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。
实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。
实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。
根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。
实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。
根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。
实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。
例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。
2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。
3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。
弹性参数测定实验报告(3篇)

第1篇一、实验目的1. 熟悉弹性参数测定的基本原理和方法;2. 掌握测定材料的弹性模量、泊松比等弹性参数的实验步骤;3. 培养实验操作技能和数据分析能力。
二、实验原理弹性参数是描述材料在受力后发生形变与应力之间关系的物理量。
本实验采用拉伸试验方法测定材料的弹性模量和泊松比。
1. 弹性模量(E):在弹性范围内,应力(σ)与应变成正比,比值称为材料的弹性模量。
其计算公式为:E = σ / ε其中,σ为应力,ε为应变成分。
2. 泊松比(μ):在弹性范围内,横向应变(εt)与纵向应变(εl)之比称为泊松比。
其计算公式为:μ = εt / εl三、实验仪器与材料1. 仪器:材料试验机、游标卡尺、引伸计、应变仪、万能试验机、数据采集器等;2. 材料:低碳钢拉伸试件、标准试样、引伸计、应变仪等。
四、实验步骤1. 准备工作:将试样安装到材料试验机上,调整好试验机夹具,检查实验设备是否正常;2. 预拉伸:对试样进行预拉伸,以消除试样在安装过程中产生的残余应力;3. 拉伸试验:按照规定的拉伸速率对试样进行拉伸,记录拉伸过程中的应力、应变等数据;4. 数据处理:根据实验数据,计算弹性模量和泊松比;5. 结果分析:对比实验结果与理论值,分析误差产生的原因。
五、实验结果与分析1. 弹性模量(E)的计算结果:E1 = 2.05×105 MPaE2 = 2.00×105 MPaE3 = 2.03×105 MPa平均弹性模量E = (E1 + E2 + E3) / 3 = 2.01×105 MPa2. 泊松比(μ)的计算结果:μ1 = 0.296μ2 = 0.293μ3 = 0.295平均泊松比μ = (μ1 +μ2 + μ3) / 3 = 0.2943. 结果分析:实验结果与理论值较为接近,说明本实验方法能够有效测定材料的弹性参数。
实验过程中,由于试样安装、试验机夹具等因素的影响,导致实验结果存在一定的误差。
弹性模量的测量实验报告

弹性模量的测量实验报告一、实验目的1、掌握测量弹性模量的基本原理和方法。
2、学会使用相关实验仪器,如拉伸试验机等。
3、加深对材料力学性能的理解,培养实验操作能力和数据处理能力。
二、实验原理弹性模量是描述材料在弹性变形阶段应力与应变关系的比例常数,通常用 E 表示。
对于一根长度为 L、横截面积为 S 的均匀直杆,在受到轴向拉力 F 作用时,其伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(σ = F/S)与应变(ε =ΔL/L)成正比,比例系数即为弹性模量E,即 E =σ/ε =(F/S)/(ΔL/L) = FL/(SΔL)。
在本实验中,通过测量施加的拉力 F、试件的初始长度 L、横截面积 S 和伸长量ΔL,即可计算出弹性模量 E。
三、实验仪器1、拉伸试验机:用于施加拉力并测量力的大小。
2、游标卡尺:测量试件的直径,以计算横截面积。
3、钢尺:测量试件的长度。
四、实验材料选用圆柱形的金属试件,如钢材。
五、实验步骤1、测量试件尺寸用游标卡尺在试件的不同部位测量其直径,测量多次取平均值,计算横截面积 S =π(d/2)^2,其中 d 为平均直径。
用钢尺测量试件的初始长度 L。
2、安装试件将试件安装在拉伸试验机的夹头上,确保试件与夹头同轴,且夹持牢固。
3、加载测量缓慢启动拉伸试验机,逐渐施加拉力 F,记录下不同拉力下试件的伸长量ΔL。
加载过程应均匀缓慢,避免冲击。
4、数据记录记录每次施加的拉力 F 和对应的伸长量ΔL,至少测量 5 组数据。
5、实验结束实验完成后,缓慢卸载拉力,取下试件。
六、实验数据处理1、计算应变根据测量得到的伸长量ΔL 和初始长度 L,计算应变ε =ΔL/L 。
2、计算应力由施加的拉力 F 和横截面积 S,计算应力σ = F/S 。
3、绘制应力应变曲线以应力为纵坐标,应变为横坐标,绘制应力应变曲线。
4、计算弹性模量在应力应变曲线的弹性阶段,选取线性较好的部分,计算其斜率,即为弹性模量 E 。
拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
动力学法测弹性模量实验报告

动力学法测弹性模量实验报告实验一:用动力学法测弹性模量实验目的:1.掌握用动力学法测弹性模量的基本原理和方法;2.了解实际材料的弹性特性和应力-应变关系。
实验器材:1.弹簧振子2.弹簧3.负载盘4.不锈钢丝5.拉力计6.密度砝码7.记录纸及钢尺8.电子计时器实验原理:弹性模量是材料的一种基本力学性质,其定义为单位面积内材料拉伸或压缩所产生的应力与应变之比。
常用的弹性模量有剪切模量、压缩模量和杨氏模量等。
本实验主要测量杨氏模量,通过测量钢丝振子在同样拉力作用下的振动周期,从而计算出杨氏模量。
实验步骤:1.将弹簧振子转换为竖直放置的状态,用螺母将拉力计固定在试验台上,并按照实验要求调整负载盘的高度;2.将电子计时器置于振动台下方,以方便记录测量数据;3.不断调整负载盘的负载,直到弹簧振子达到稳定振动;4.应根据所选取的$h$值,使用恒力法或恒周期法进行实验。
-对于恒力法,可以将振动台恒定在一定高度,固定负载盘的负载,同时测量弹簧振子下方的加速度,重复多次取平均值。
-对于恒周期法,通过调整负载盘的负载来改变振动自由振动的周期,并记录下来。
5.根据实验测量值,计算出弹簧振子的振动频率,并按照公式计算出杨氏模量。
实验结果与分析:通过实验测量的振动周期和负载,可以得到如下数据:$$\begin{align*}T_1 &= 0.42\,s, \quad F_1 = 20\,N \\T_2 &= 0.38\,s, \quad F_2 = 30\,N \\T_3 &= 0.34\,s, \quad F_3 = 40\,N \\T_4 &= 0.30\,s, \quad F_4 = 50\,N \\\end{align*}$$根据经典弹性理论,可以得到振动周期与弹性系数之间的关系:$$T = 2\pi\sqrt{\frac{m}{k}}$$其中,$T$为周期,$m$为弹簧的质量,$k$为弹性系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
= 0.0447935 ∴ ∆������= 0.0447935������ = 0.0862 × 1011Pa ∴ ������ ± ∆������= (192.50 ± 8.62)GPa
第二部分 动力学法测弹性模量
2.1 实验目的
(1) 学习一种更实用,更准确的测量弹性模量的方法; (2) 学习用实验方法研究与修正系统误差。
1.3 实验仪器
实验装置如图 1 所示。
图 1 测量弹性模量的实验装置 -3-
1.4 数据处理
1. 测钢丝长度������及其伸长量������������
仪器编号 2 ;钢丝长度������= 999 mm
序 号 ������������ (������������ = ������������)/N
=
������
2
������������ ln������
∆������ 2 +
������ ������������ ln������
2
∆������ 2 +
������
2
������������ ln������
∆������ 2 +
������ ������ ������������
2
ln������
2.2 实验原理
如图 2 所示,一根细长棒(长度比横向尺寸大很多)的横振动(又称弯曲振动)满足动力学方
程:
������2������ ������������ ������4������
z
������������2 + ������������ ∙ ������������4 = 0
y
棒的轴线沿������方向,式中������为棒上距左端������处截面的������
������1, ������2, ������3, ������4, ������5一组,������6, ������7, ������8, ������9, ������10为另一组。讲两组中相应的数据想见得出 5 个������������ ,������������ = 5������������,则
如果用上述方法测量 10 次得到相应的伸长位置������1, ������2, … , ������10,如何处理数据,算出钢丝的伸长
-2-
量������������呢?
我们可以由相邻伸长位置的差值求出 9 个������������,然后取平均,则
������������ =
������2 − ������1
拉伸法和动力学法测量弹性模量
实验报告
双 33A 组 ----
20070102 - 实验日期:2008 年 12 月 17 日
-1-
第一部分 拉伸法测弹性模量
1.1 实验目的
(1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。
1.2 实验原理
+
������3 − ������2 9
+⋯+
������10 − ������9
从上式可以看出中间各������������都消去了,只剩下������10 − ������1 9,用这样的方法处理数据,中间各次测量
结果均未起作用。
为了发挥多次测量的优越性,可以改变一下数据处理的方法,把前后数据分成两组,
,则边界条件有
4
个,即
d3������ d������3
= 0,
������ =0
d2������ d������2
= 0,
������ =0
d3������ d������3 = 0
������ =������
d2������ d������2 = 0
������ =������
������为棒长。将通解带入边界条件得
1.2.1 弹性模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸
长的形变(称拉伸形变)。设有一长度为������,截面积为������的均匀金属丝,沿长度方向受一外力������后金属 丝伸长������������。单位横截面积上的垂直作用力������/������成为正应力,金属丝的相对伸长������������/������称为线应变。实 验结果指出,在弹性形变范围内,正应力与线应变成正比,即
序号
1
2
3
������������ /mm
0.208
0.205
0.204
-4-
4 0.205
5 0.203
6 0.205
钢丝的平均直径������= 0.2225 mm,������������= 1.528×10-3 mm
2
Δ������ = Δ仪 + ������������ 2 = 0.0042 + 1.528 × 10−3 2 = 4.2819 × 10−3mm ∴ ������ ± Δ������ = (0.2225 ± 0.0043)mm
x
方向位移,������为该棒的弹性模量,������为材料密度,������为棒的
x
������x
图 2 细长棒的弯曲振动
-5-
横截面积,������为某一截面的惯性矩 ������ = z2dS 。
S
该方程的通解为
式中
������ ������, ������ = ������1ch������������ + ������2sh������������ + ������3cos������������ + ������4sin������������ ������cos(������������ + ������)
= 1.305 mm
9 0.200×9×9.80 10 0.200×10×9.80
2.833 3.085
2.825 3.114
标准偏差 ������������ = 0.0253 mm
11 ∴ ������������ = 5 ������ = 5 × 1.305 = 0.2616mm 不确定度计算:
1.280
5 0.200×5×9.80
1.802
1.809
1.283
1.305
1.294
6 0.200×6×9.80 7 0.200×7×9.80 8 0.200×8×9.80
2.060 2.348 2.584
2.056 2.345 2.583
15 ������ = 5 ������������
������ =1
∆������������ 2
=
∆������ ������
2
+
∆������ ������
2
+
2∆������ ������
2
+
∆������������ ������������
ቤተ መጻሕፍቲ ባይዱ
2
=
0.5% 2 +
32 999 +
2 × 4.2819 × 10−3 0.2225
2
+
5.7969 × 10−3 0.2616
������������ =
������6 − ������1
+
������7 − ������2
+
������8 − ������3 5×5
+
������9 − ������4
+
������10 − ������5
这种数据处理的方法称为逐差法,其优点是充分利用的所测数据,可以减小测量的随机误差,
而且也可以减少测量仪器带来的误差。因此是实验中常用的一种数据处理的方法。
=
1 5
������������
=
5.7969
×
10−3 mm
∴ ������������ ± Δ������������ = (0.2616 ± 0.0058)mm 2. 测钢丝直径������ 测定螺旋测微计的零点������(单位为 mm)
测量前-0.015,-0.020,-0.015,
测量后-0.019,-0.015,-0.021;平均值������ =-0.0175mm
cos������������ ∙ ch������������ = 1
用数值解法可求得满足上式的一系列根������������ ������,其值为������������ ������ =0,4.730,7.853,10.966,14.137,„。 其中������0������ = 0的根对应于静止状态。因此将������1������ = 4.730记作第一个根,对应的振动频率称为基振
由以上数据可求出:������
=
4������������ ������������2������������
=
������
×
4 × 0.2 × 9.8 × 0.999 0.22252 × 0.2616 × 10−3
=
1.9250
×
1011 Pa
=
192.50GPa
3. 总不确定度的计算
∆������ ������
2
2
Δ������������+5 仪 + Δ������������仪 = 2 × 0.01mm
2
所以Δ������ = Δ������仪 + ������������ 2 =
2 × 0.01 2 + 0.02532 = 0.02898mm
又因为������������
=
1 5
������,所以Δ������������