有理数专题--相反数的性质
(完整版)有理数的性质及其运算知识点汇总

(完整版)有理数的性质及其运算知识点汇总有理数的性质及其运算知识点汇总一、有理数性质有理数是可用两个整数的比表示的数,包括正整数、负整数和零。
有理数的性质如下:1. 有理数可以进行加法、减法、乘法和除法运算。
2. 有理数的加法和乘法满足交换律和结合律。
3. 有理数的乘法满足分配律。
4. 有理数的加法、减法和乘法仍然是有理数。
5. 有理数可以用小数形式表示。
二、有理数运算知识点1. 有理数的加法有理数的加法满足以下规则:- 两个正有理数相加,结果仍为正有理数。
- 两个负有理数相加,结果仍为负有理数。
- 正有理数和负有理数相加,结果为它们的差的绝对值的符号与较大绝对值的符号相同。
2. 有理数的减法有理数的减法可以转化为加法运算,规则如下:- 减去一个有理数等于加上这个有理数的相反数。
3. 有理数的乘法有理数的乘法满足以下规则:- 正有理数乘以正有理数,结果仍为正有理数。
- 负有理数乘以负有理数,结果仍为正有理数。
- 正有理数乘以负有理数,结果为它们的积的符号为负。
- 任何数乘以零,结果为零。
4. 有理数的除法有理数的除法可以转化为乘法运算,规则如下:- 除以一个有理数等于乘以这个有理数的倒数(除数不为零)。
5. 有理数的运算顺序有理数的运算顺序遵循以下规则:1. 先计算括号中的内容。
2. 然后按照先乘除,后加减的顺序计算。
3. 如果有多个乘法或除法,按照从左到右的顺序进行。
6. 有理数的小数形式表示有理数可以用小数形式表示,其中:- 有限小数是按照小数位数为限的。
- 循环小数是具有重复循环数字的。
以上是有理数的性质及其运算知识点的汇总,希望对你有所帮助。
专题01 有理数篇(解析版)-2023年中考数学必考考点总结

知识回顾微专题专题01有理数2023年中考数学必考考点总结考点一:有理数之正数和负数1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
1.(2022•西宁)下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣5【解答】解:A .0既不是正数也不是负数,故A 不符合题意;B.>0,故B 不符合题意;C .﹣(﹣5)=5>0,故C 不符合题意;D .﹣<0,故D 符合题意.故选:D .2.(2022•贵阳)下列各数为负数的是()A .﹣2B .0C .3D .5【分析】根据小于0的数是负数即可得出答案.【解答】解:A .﹣2<0,是负数,故本选项符合题意;B .0不是正数,也不是负数,故本选项不符合题意;C .3>0,是正数,故本选项不符合题意;D .>0,是正数,故本选项不符合题意;故选:A .3.(2022•益阳)四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .31【分析】利用零大于一切负数来比较即可.【解答】解:根据负数都小于零可得,﹣<0.故选:A .4.(2022•雅安)在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .3【分析】比0小的是负数.【解答】解:∵﹣<0,故选A .5.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃【分析】根据上升与下降表示的是一对意义相反的量进行表示即可.【解答】解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C .6.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元【分析】根据正数与负数时表示具有相反意义的量直接得出答案.【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B .7.(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2kmB .﹣1kmC .1kmD .+2km知识回顾微专题【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km 记做“+2km ”,那么向西走1km 应记做﹣1km .故选:B .8.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C .9.(2022•柳州)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.【分析】根据正负数的意义求解.【解答】解:由题意,水位上升为正,下降为负,∴水位下降2m 记作﹣2m .故答案为:﹣2m .10.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.考点二:有理数之相反数1.相反数的定义:只有符号不同的两个数互为相反数。
有理数知识点总结归纳

第二章《有理数及其运算》知识梳理正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2018-2019学年度 人教版七年级上册第一章《有理数》(1.2.3相反数)教案

1.2.3相反数[学习目标]识记相反数的定义,理解相反数在数轴上的特征。
运用相反数的特征求一个数a 的相反数。
[学习重点与难点] 重、难点: 理解相反数的意义 [学案设计] (一)、忆一忆数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
(二)、学一学1、自学课本第10、11的内容并填空: 相反数的概念:只有( )不同的两个数,我们称它们互为相反数,零的相反数是( )。
概念的理解:互为相反数的两个数分别在原点的( ),且到原点的( )相等。
一般地,数a 的相反数是a -,a -不一定是负数。
在一个数的前面添上“—”号,就表示这个数的相反数,如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个( )数 ( 填正或负 )-(-3)是(-3)的相反数,所以-(-3)=3,相反数是指两个数之间的特殊的关系。
如:“-3是一个相反数”这句话是不对的。
2、例1 : 求下列各数的相反数: (1)-5 (2)21 (3)0 (4)3a(5)-2b (6) a-b (7) a+2 3、例2 判断:(1)-2是相反数 ( ) (2)-3和+3都是相反数 ( ) (3)-3是3的相反数 ( ) (4)-3与+3互为相反数 ( )(5)+3是-3的相反数 ( ) (6)一个数的相反数不可能是它本身 ( ) 4、 问题:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 5、例3 化简下列各数中的符号:(1))312(-- (2)-(+5) (3)[])7(--- (4)[]{})3(+-+-(三)、练一练1.只有__________的两个数,叫做互为相反数.0的相反数是_______. 2.+5的相反数是______;______的相反数是-2.3;531-与______互为相反数. 3.若x 的相反数是-3,则______=x ;若x -的相反数是-5.7,则______=x . 4.化简下列各数的符号:()____6=+-,()____3.1=--,()[]____3=-+-. 5.下列说法中正确的是………………………………………………………………〖 〗 A .-1是相反数B .313-与+3互为相反数C .25-与52-互为相反数D .41-的相反数为41(四)、自主检测1.若3.2+=a ,则_________=-a ;若31-=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a . 2.数轴上离开原点4.5个单位长度的点所表示的数是______,它们是互为______. 3.下列说法正确的是…………………………………………………………………〖 〗 A .-5是相反数B .32-与23互为相反数C .-4是4的相反数D .21-是2的相反数4.下列说法中错误的是………………………………………………………………〖 〗 A .在一个数前面添加一个“-”号,就变成原数的相反数B .511-与2.2互为相反数 C .31的相反数是-0.3 D .如果两个数互为相反数,则它们的相反数也互为相反数6.下列说法中正确的是………………………………………………………………〖 〗 A .符号相反的两个数是相反数B .任何一个负数都小于它的相反数C .任何一个负数都大于它的相反数D .0没有相反数7.下列各对数中,互为相反数的有…………………………………………………〖 〗(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),⎪⎭⎫ ⎝⎛--31与⎪⎭⎫⎝⎛++31.A .6对B .5对C .4对D .3对8. 数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。
相反数、绝对值ppt课件

数学史导入
符号类型,并且也载入了书本中,成为表达绝对值的一种方式,这种 表达方式为“| |”,既简单也很直接,并且在计算机中使用也很直观, 当然在使用的时候也是有相关规定的。
自主探究
1.请同学们阅读教材27页,思考下列问题:
3与-3有什么关系? 3与- 2
32,5与-5呢?你还能列举一组
这样的数吗?你发现了什么?由此你能得到什么结论
典例精讲
【题型一】求一个数的相反数或绝对值 例1:-2 024的相反数是 2 024 ,绝对值是 2 024 。 变式1:如果a与100互为相反数,那么a= -100 。 变式2:已知一个数的绝对值是4,那么这个数是 ±4 。
【题型二】对绝对值性质的理解
例2:若a≥0,则|a|等于( C )
A.0
和-5米来表示,这两个量除了符号不同,还有什么特点吗?
成语导入 “南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来, 有人预言他无法到达目的地,他却说“我的马很快,车的质量也很 好”,请问他能到达目的地吗?
数学史导入 绝对值这个概念是七年级接触的第一个最具代数特征的数学概念, 这个概念的确立距今已经一百多年。绝对值概念的产生是基于解析 几何的需要,也就是说目的是表达数轴或坐标系条件下的距离概念, 而这个概念的产生距离正负数的出现足足晚了1 400多年,绝对值的 概念是由德国著名数学家魏尔斯特拉斯首先引用的。绝对值符号来 源于计算机,在计算机中为了能更好的进行表达,研究出了不少的 符号,而这种符号的应用就成为一大关键。在1841年魏尔斯特拉斯 首次使用了这种符号,至此之后该符号不仅成为计算机专用的
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:相反数(重点) 符号不同,数量相等的两个数,我们称其中一个数为另一个数的 相反数,也称这两个数互为相反数。特别地,0的相反数是0。
有理数的相关概念-相反数和绝对值(教案)

3.空间观念:借助数轴,让学生直观地理解绝对值的概念,培养空间观念和几何直观。
4.问题解决:通过实际问题的引入,使学生能够运用相反数和绝对值知识解决问题,提高解决问题的能力和数学应用意识。
5.沟通交流:在小组讨论和课堂互动中,培养学生清晰表达观点、倾听他人意见的能力,增强合作交流素养。
三、教学难点与重点
-难点四:理解相反数和绝对值在不同情境下的应用,如符号的转换、距离的计算等。
-突破方选择合适的数学工具解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的相关概念-相反数和绝对值》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和距离的概念?”(例如,温度的变化,数轴上的移动)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相反数和绝对值的奥秘。
有理数的相关概念-相反数和绝对值(教案)
一、教学内容
本节课选自七年级数学上册《有理数》章节,主要内容包括:
1.相反数的定义:相反数是指两个数绝对值相等,符号相反的数。如,+3的相反数是-3,-4的相反数是+4。
2.相反数的性质:一个数的相反数加上该数等于0。
3.绝对值的定义:绝对值是指一个数在数轴上对应的点到原点的距离。如,|+3|=3,|-3|=3。
1.教学重点
-重点一:相反数的定义及其性质。理解相反数的概念,掌握一个数的相反数就是符号相反的数,且它们的和为零。
-举例:强调+3和-3互为相反数,且(+3)+(-3)=0。
有理数——相反数

相反数知识讲解一、相反数1.相反数的定义只有符号不同的两个数叫做互为相反数.一般地,a和a−互为相反数,特别地,0的相反数是0.这里,a表示任意一个数,可以是正数、负数,也可以是0.注意:定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.2.代数意义只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0.相反数必须成对出现,不能单独存在.单独的一个数不能说是相反数.3.几何意义一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.4.相反数的性质任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数;0的相反数仍是0.【拓展】(1)一般地,数a的相反数是a−,这里a表示任意一个有理数,a可以使正数、负数或者0.(2)若a与b互为相反数,则0=a;+b反之,若0=a,则a与b互为相反数+b【解题方法归纳】要表示一个数的相反数,只要在这个数的前面添上一个“-”.5.多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号).【例1】____________的两个数,叫做互为相反数;零的相反数是_________.【例2】2的相反数是( )A.2B.21C.-2D.21− 【例3】与6的和为0的数是_________.【例4】数轴上B A ,两点分别在原点的两旁,并且与原点的距离相等,已知点A 表示的数是-10,则点B 表示的数为_________.【例5】如图,如果数轴上B A ,两点表示的数互为相反数,那么点B 表示的数为( ).A.2B.-2C.3D.-3【例6】已知数b a ,在数轴上的位置如图所示,请在数轴上标出b a −−,的位置,并用“<”号把b a b a −−,,,连接起来【例7】若m −是正数,则m 是___________数,m 是m −的________.【例8】下列说法中正确的有( )①3−和3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是14.3−;⑤一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个或更多【例9】m −的相反数是_____,1+−m 的相反数是_____,b a n m +−+的相反数是_____.【例10】a −的相反数是2,则=a _____;若73+m 与10−互为相反数,则=m _____;1+−m 的相反数_____.【例11】当=x _____时,代数式54−x 与93−x 的值互为相反数.【例12】如果131+a 与372−a 互为相反数,那么a 的值为_____. 【例13】若0,0=+=+p n n m ,且0=−q m ,则( )A.p 与q 相等B.m 与p 互为相反数C.m 与n 相等D.n 与q 相等考点三:多重符号的化简【例14】下列各对数中,不是相反数的是( ).A. [])3()3(−−−−+与B.[]1)1(−−++与C.8)8(−−−−与D.[])2.5(2.5−+−−与【例15】如果a表示有理数,那么下列说法中正确的是()A.a+和)−互为相反数 B.a+和a−一定不相等(a−C.a−一定是负数D.)+一定相等(a+(a−−和)考点四:相反数与立方体综合【例16】如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形C、内分别填上适当的数,使得将这A、B个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在CB、内的三个数依次为().A、A.1,2,0−B.2,1,0C.2,0,1−D.1,0,2−。
有理数基本概念(相反数、倒数、绝对值).讲义学生版

内容 基本要求略高要求较高要求有理数 理解有理数的意义会比较有理数的大小数轴能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系 会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题板块一、正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.例题精讲中考要求有理数基本概念及运算用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km可以用负数表示为3km-.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.【例1】⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为.⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示.⑶某地区5月平均温度为20C︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是.⑷向南走200-米,表示.【巩固】珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为【例2】下列说法正确的是()A.a-一定是负数B.一个数不是正数就是负数C.0-是负数D.在正数前面加“-”号,就成了负数【巩固】下列个数中:1330.70125---,,,,,中负分数有个;负整数有个;自然数有个【例3】检查篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:最接近标准质量的是_______号篮球;质量最大的篮球比质量最小的篮球重_______克.【巩固】 若a -是负数,则a【例4】 ⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号).【巩固】 ⑴下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等 ⑵两数相加,其和小于其中一个加数而大于另一个加数,那么( ) A .这两个加数的符号都是正的 B .这两个加数的符号都是负的 C .这两个加数的符号不能相同 D .这两个加数的符号不能确定板块二、倒数【例5】 ⑴(2010朝阳二模)6的倒数是( )A .6-B .16± C .61- D .61⑵(2010东城二模)5-的倒数是( )A .-5B .5C .15-D . 15⑶(2010房山二模)4-的倒数是( )A. 4B. -4C. 14-D. 14⑷ (2010宣武二模)7-的倒数为( )A.7B.17C.17- D.7- ⑸ (2010顺义二模)5的倒数是( )A .5-B .15C D .5 ⑹(2010西城二模)2010-的倒数是( )A. 2010B. 20101-C. 20101D. -2010 【巩固】 有理数a 等于它的倒数,有理数b 等于它的相反数,则20022003a b += 【巩固】 若0a b +=,c 和d 互为倒数,m 的绝对值为2,求代数式2a bm cd a b c++-+-的值【例6】 在一列数123...a a a ,,中,已知112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”⑴ 求234a a a ,,的值⑵ 根据以上计算结果,求202007a a ,的值板块三 数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变. ⑶数轴的画法及常见错误分析 ①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点: ③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大. 正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π. 利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.【例7】 数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .【巩固】 如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【例8】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【巩固】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( )A .A 点B .B 点C .C 点D .D 点【巩固】在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远【例9】⑴数轴上点A对应的数为3-,那么与A相距1个长度的点B所对应的数是_________.⑵数轴上的点A、B分别表示数3-和2,点C是A、B的中点,则点C所表示的数是_________.⑶一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是_________.【巩固】数轴上有一点到原点的距离是5.5,那么这个点表示的数是_________.【巩固】数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【巩固】已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B所对应的,两点,A B数为【例10】一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?【例11】初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.⑴将5个队按由低分到高分的顺序排序;⑵把每个队的得分标在数轴上,并将代表该队的字母标上;⑶从数轴上看A队与B队相差多少分?C队与E队呢?【巩固】在数轴上,点A和点B都在与154-对应的点上,若点A以每秒3个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,则7秒之后,点A和点B所处的位置对应的数是什么?这时线段AB的长度是多少?【例12】在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为【巩固】数轴上表示整数的点称为整点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数的性质
1.如果一个数大于它的相反数,那么这个数一定是
2.甲做题时画一个数轴,数轴上原有一点A,其表示的数量-3,由于一时疏忽把数轴上的原点标错了位置,使A 点正好落在-3相反数的位置,想一想,借助于数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度
3.数轴上点A表示—5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C各表示什么数?
4.若数轴上的两个点A和B表示的两个数互为相反数,并且这两点间的距离是7,则这两个点A和B所表示的数分别是和。
5.数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是。
6.已知点A与点B相距12个单位长度,在点A与点B之间有一个点C,点A到点C与点B到点C的距离相等,且点C在数轴对应的数是-3,求点A与点B分别对应的数轴的数是什么?
7.一个有理数在数轴上对应的点为A,将A点向左移动3个单位长度,再向右移动5个单位长度得到点B,点B 所对应的数和点A对应的数的绝对值相等,求点 A的对应的数是什么?
8.已知︱3a-6︱=3 ,求a的值
9.若-19与2x+5互为相反数,求x 的值
10.如果-3x+4与2x-1互为相反数,求x 的值
11.如果
135-x 的相反数是4x-3,求x 的值
12.如果53
4+-x 的相反数是它本身,求x 的值
13.如果2︱3x-8︱的相反数是2(8-3x ),求x 的取值范围
14.若3(a-2)2与4︱b+x ︱互为相反数,且a+b=-1,求x 的值
15.已知︱x ︱=3,︱y ︱=2,且︱x-y ︱与(x-y )互为相反数,求2x+3y 的值
16.若5(a -3)2 与8(12+3b )2 互为相反数,求b a 的值。