电子科技大学 历年电磁场与电磁波考试大纲

电子科技大学 历年电磁场与电磁波考试大纲
电子科技大学 历年电磁场与电磁波考试大纲

2009年电磁场与电磁波考试大纲

考试科目813电磁场与电磁波考试形式笔试(闭卷)

考试时间180分钟考试总分150分

参考书目《电磁场与电磁波》(第四版) 谢处方高等教育出版社 2006年

一、总体要求

二、内容及比例

第1章矢量分析

1.1 矢量代数

1.1.1 标量和矢量,1.1.2 矢量的加法和减法,1.1.3 矢量的乘法

1.2 三种常用的正交坐标系

1.2.1 直角坐标系,1.2.2 圆柱坐标系,1.2.3 球坐标系

1.3 标量场的梯度

1.3.1 标量场的等值面,1.3.2 方向导数,1.3.3 梯度

1.4 矢量场的通量与散度

1.4.1 矢量场的矢量线,1.4.2 通量,1.4.3 散度,1.4.4 散度定理

1.5 矢量场的环流与旋度

1.5.1 环流,1.5.2 旋度,1.5.3 斯托克斯定理

1.6 无旋场与无散场

1.6.1 无旋场,1.6.2 无散场

1.7 拉普拉斯运算与格林定理

1.7.1拉普拉斯运算,1.7.2 格林定理

1.8 亥姆霍兹定理

第2章电磁场的基本规律

2.1 电荷守恒定律

2.1.1 电荷及电荷密度,2.1.2 电流及电流密度,2.1.3 电荷守恒定律与电流连续性方程

2.2 真空中静电场的基本规律

2.2.1 库仑定律电场强度,2.2.2 静电场的散度与旋度

2.3 真空中恒定磁场的基本规律

2.3.1安培力定律磁感应强度,2.3.2 恒定磁场的散度与旋度

2.4 媒质的电磁特性

2.4.1电介质的极化电位移矢量,2.4.2磁介质的磁化磁场强度,2.4.3 媒质的传导特性

2.5 电磁感应定律和位移电流

2.5.1 法拉第电磁感应定律,2.5.2 位移电流

2.6 麦克斯韦方程组

2.6.1 麦克斯韦方程组的积分形式,2.6.2 麦克斯韦方程组的微分形式,2.6.3 媒质的本构关系

2.7 电磁场的边界条件

2.7.1 边界条件的一般形式,2.7.2 两种特殊情况下的边界条件

第3章静态电磁场及其边值问题的解

3.1 静电场分析

3.1.1 静电场的基本方程和边界条件、3.1.2 电位函数、3.1.4 静电场的能量

3.2 导电媒质中的恒定电场分析

3.2.1 恒定电场的基本方程和边界条件、3.2.2恒定电场与静电场的比拟

3.3 恒定磁场分析

3.3.1 恒定磁场的基本方程和边界条件、3.3.2 矢量磁位和标量磁位、3.3.3 电感、3.3.4 恒定磁场能量

3.4 静态场的边值问题及解的惟一性定理

3.5 镜像法

3.5.1 接地导体平面的镜像、3.5.2 导体球面的镜像

3.6 直角坐标系中的分离变量法

第4章时变电磁场

4.1 波动方程

4.2 电磁场的位函数

4.3 电磁能量守恒定律

4.4 惟一性定理

4.5 时谐电磁场

第5章均匀平面波在无界空间中的传播

5.1 在理想介质中均匀平面波

5.2 电场波的极化

5.3 均匀平面波在导电媒质中的传播

第6章均匀平面波的反射和透射

6.1 均匀平面波对分界平面的垂直入射

6.3 均匀平面波对理想介质分界平面的斜入射

6.4 均匀平面波对理想导体平面的斜入射

第7章导行电磁波

7.1 导行电磁波概论

7.2 矩形波导

第8章电磁辐射

8.1 滞后位

8.2 电偶极子的辐射

基本要求:

① 理解梯度、散度和旋度的概念,掌握其运算方法与规律。

② 理解电荷、电流及电流连续性方程的概念,理解电场和磁场的概念,掌握电场强度与磁感应强度的积分公式,会计算一些简单源分布所产生的场。

③ 掌握静电场的基本方程与基本性质,掌握标量电位及其微分方程,理解静电场的惟一性定理及其重要意义,了解电介质的极化现象及其极化电荷分布,掌握静电场的边界条件,掌握恒定电场的基本方程与边界条件,会计算电容、电阻以及电场能量。

④ 了解分离变量法解题的基本步骤,能够用分离变量法求解直角坐标中的一些简单的二维边值问题,掌握镜像法解题的基本原理,会用镜像法求解一些典型问题。

⑤ 掌握恒定磁场的基本方程与基本性质,了解矢量磁位及其微分方程,理解静电场的惟一性定理及其重要意义,了解磁介质的磁化现象及其磁化电流分布,掌握恒定磁场的边界条件,会计算电感以及电场能量。

⑥ 掌握电磁感应定律以及位移电流的概念,牢固掌握麦克斯韦方程并理解其深刻含义,掌握电磁场的边界条件,理解坡印廷定理意义和坡印廷矢量的概念,了解电磁波动方程和动态位。

⑦ 掌握正弦电磁场复数表示方法,掌握平面电磁波在理想介质和导电媒质中的传播规律,理解

电磁波的极化概念,掌握平面波在两种不同媒质分界面上的反射与折射规律。

⑧ 了解导行电磁波的分析方法,掌握电磁波在矩形波导中的传播特性。

⑨ 理解滞后位的概念,理解电偶极子的辐射特性。

三、题型及比例

选择题:~% 简答题:~%

填空题:~% 计算题:~%

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

2-2 已知真空中有三个点电荷,其电量及位置分别为: ) 0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。 解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则 21=r ,32=r ,23=r 。 利用点电荷的场强公式r e E 2 04r q πε= ,其中r e 为点电荷q 指向场点 P 的单位矢量。那么, 1q 在P 点的场强大小为0 2 1 011814πεπε= = r q E ,方向为 ()z y r e e e +- =2 11。 2q 在P 点的场强大小为0 2 2 022121 4πεπε= = r q E ,方向为 ()z y x r e e e e ++- =3 12。 3q 在P 点的场强大小为0 2 3 033414πεπε= = r q E ,方向为y r e e -=3 则P 点的合成电场强度为 ?? ???????? ??++???? ??+++- =++=z e e e E E E E y x 312128141312128131211 0321πε 2-4 已知真空中两个点电荷的电量均为6102-?C ,相距为2cm , 如习题图2-4所示。试求:①P 点的电位;②将电量为6102-?C 的点电荷由无限远

处缓慢地移至P 点时,外力必须作的功。 解 根据叠加原理,P 点的合成电位为 ()V 105.24260?=? =r q πε? 因此,将电量为C 1026 -?的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ? 2-6 已知分布在半径为a 的半圆周上的电荷线密度 πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。 解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即 习题图2-4 习题图2-6

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波课后答案(杨儒贵第二版)-2

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ?= ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律 介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E

线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量: 孤立带电体的能量:Q C Q W e 2 1 212 Φ== 离散带电体的能量:∑ == n i i i e Q W 1 2 1Φ 分布电荷的能量:l S V W l l S S V e d 21 d 2 1d 2 1ρ ?ρ?ρ??? ? = = =

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

电磁场与电磁波课后习题答案(杨儒贵)(第二版) 全套 第一章 题 解 1-1 已知三个矢量分别为 z y e e e A x 32-+=; z y e e e B x 23++=;z e e C x -=2。试求①|| |,| |,|C B A ;②单 位矢量c b a e e e , ,;③B A ?;④B A ?;⑤C B A ??)(及 B C A ??)(;⑥B C A ??)(及C B A ??)(。 解 ① ()1432122222 2=-++=++=z y x A A A A 1421322222 2=++=++=z y x B B B B ()51022 22222=-++=++=z y x C C C C ② ()z y e e e A A A e x a 32141 14-+= == ()z y e e e B B B e x b 23141 14++= == ()z e e C C C e x c -= == 25 1 5 ③ 1623-=-+=++=?z z y y x x B A B A B A B A ④ z y z y z y x z y x z y B B B A A A e e e e e e e e e B A x x x 51172 1 3 321 --=-==? ⑤ ()z y z y e e e e e e C B A x x 223111 2 5117 +-=---=??

因 z y z y z y x z y x C C C A A A e e e e e e e e e C A x x x x x 4521 2 321 ---=--==? 则 ()z y z y e e e e e e B C A x x 13862 1 3 452 +--=---=?? ⑥ ()()()152131532=?+?-+?-=??B C A ()()()1915027=-?-++?=??C B A 。 1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证 βαβαβαsin sin cos cos )cos(+=- 证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为 ααsin cos A A y e e A x += ββsin cos B B y e e B x += 已知()βα-=?c o s B A B A ,求得 ()B A B A B A β αβαβαsin sin cos cos cos += - 即 βαβαβαsin sin cos cos )cos(+=- 1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P , )3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。试问:①该三角形是否是直角三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为 z y e e P 21-=; z y x e e e P 342-+=; z y x e e e P 5263++= 那么,由顶点P 1指向P 2的边矢量为 z e e P P x -=-412 同理,由顶点P 2指向P 3的边矢量由顶点P 3指向P 1的边

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁场与电磁波理论(第二版)(徐立勤曹伟)第3章习题测验解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+ 0202εερA -=Φ?-= (2) () x y z E A e yz e xz e xy Φ=-?=-++ 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++?? 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+ -=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+- 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+V /m 。试求0z <时的D 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+ 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第7章习题解答

第7章习题解答 7.6 如题7.6图所示相距为a 的平板金属波导,当/0y ??=时,沿z 方向可传播 TEM 模、TE 模和TM 模。试求:(1)各种模式的场分量;(2)各种模式的传播常数;(3)画出基本模式的场结构及其导体表面的传导电流。 解:(1) 各种模式的场分量 对TEM 模,在均匀波导横截面上的分布规律与同样边界条件下的二维静态场的分布规律是完全一样的。对静电场情况,无限大平板之间的电场强度为均匀电场0E ,则对应的TEM 模中电场为 j t 0e kz x x x E e E e E -== 利用平面波电场与磁场关系,即 j 0t t w 1 e 120π kz z y E H e E e Z -= ?= 对TE 模,0=z E ,而z H 满足的导波方程为 22t c 0z z H k H ?+= 式中2 2 2 c k k γ=+,2 2t 2x ??=?,则上式变成 22c 2 d 0d z z H k H x += 因此波动方程的解为 c c sin cos z H A k x B k x =+ 由0=x 时 0=??x H z 可得到0=A ;由a x =时0=??x H z 可得到c sin 0k x =,即c m k a π= 。因此 πcos z m m x H H a = 式中m H 取决于波源的激励强度。由于波沿着z 方向传播,则j z k γ=,因此 z k ==利用各横向场分量与纵向场分量之间关系可以得到 j 22c c 0 j ππj sin e z x k z z y m E H m m x E H k x k a a ωμωμ-=?==-? j 22c c j j ππsin e 0z k z z z z x m y k H k m m x H H k x k a a H -?=- =?= 对TM 模,0=z H ,而z E 满足的导波方程为 22c 2 d 0d z z E k E x += 因此波动方程的解为 c c sin cos z E A k x B k x =+ 由0=x 时0=z E 可得到0=B ;由a x =时0=z E 可得到c sin 0k x =,即c m k a π=。因此 πsin z m m x E E a = 式中m E 取决于波源的激励强度。利用各横向场分量与纵向场分量之间关系可以得到

电磁场与电磁波第四版课后思考题答案

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。 2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 2.6简述 和 所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 2.8简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2 ) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=??E 0=??E ερ/=??E 0= ??E ??=?V S dV S d E ρε01 0=??B J B 0μ=??0 =??B J B 0μ=??0 μI l d B C 0μ?= ? P ??=-p ρn sp e ?=P ρE P E D εε=+=0

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波(第二版).

电磁场与电磁波第二章分章节复习 第二章:静电场 1、导体在静电平衡下,齐体内的电荷密度(B )。 A.为常数 B.为零 C.不为零 D.不确定 2、电介质极化后,其内部存在(D)。 A.自由正电荷 B.自由负电荷 C.自由正负电荷 D.电偶极子 3、在两种导电介质的分界面处,电场强度的(A)保持连续。 A.切向分量 B.幅值 C. 法向分量 D.所有分量 4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。 A.εoεr B.1/εoεr C. εr D.1/εr 5.导体的电容大小(B)。 A.与导体的电势有关 B.与导体的电势无关 C.与导体所带电荷有关 D.与导体间点位差有关 6、两个点电荷对试验电荷的作用力可表示为两个力的 ( D )。 A.算术和 B.代数和 C.平方和 D.矢量和 7、介质的极化程度取决于:( D )。 A. 静电场 B. 外加电场 C. 极化电场 D. 外加电场和极化电场之和 8、电场强度的方向(A)。 A.与正电荷在电场中受力的方向相同。 B.与负电荷在电场中受力的方向相同。 C.与正电荷在电场中受力的方向垂直。 D.垂直于正负电荷受力的平面。 9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D); A.Q1Q2/2π B. Q1Q2/2πa C. Q1Q2/4πa D.0 10、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。 A.导体板上的电荷 B.平板间的介质 C.导体板的几何形状 D.两个导体板的距离 填空题: 1、静止电荷所产生的电场,称之为静电场。

相关文档
最新文档