某生物制药公司废水处理投标方案

合集下载

制药厂废水处理方案

制药厂废水处理方案

工艺操作过程
• • • • • ① 进水期 回流污泥吸附、氧化作用 ② 反应期 厌氧—缺氧—好氧的交替 ③沉淀期 沉降时间短,效率高 ④排水期 排出污泥占总污泥的30% ⑤闲置期 微生物恢复活性,反硝化进行脱水
SBR反应池容积计算
设计处理流量Q=41.67(m3/h) BOD/COD=0.55 属高浓度易 生化有机废水 设SBR运行每一周期时间为12h,进水1.0h,反应(曝气) (6.0~7.0h)取7h,沉淀3.0h,排水(0.5h~1.0h)取1h。 周期数:n=24/12= 2 SBR 处理污泥负荷设计为 Ns=0.4 kgBOD/(kgMLSS· d) 根据运行周期时间安排和自动控制特点,SBR反应池设置3个。
曝气沉砂池计算
池子总有效容积:V=Qmaxt×60 • 水流断面积:A=Qmax/v1 • (1)池总宽度:B=A/h2,已知h2 • (2)每个池子宽度:设两座沉砂池n=2,b=B/n • (3)池长:L=v/A • (4)每小时所需空气量:设每m3污水所需空气量d=0.2 m3/m3污水,空气密度 1.293 kg/m3,其中氧气占的质量含量为23.3%,q=dQmax3600 • 求得需要的空气量 • (5)沉砂室设计计算:设沉砂斗为沿池长方向的梯形断面渠道,沉砂斗体积 为 Vo=(a+a1)×h3¹ ×L/2,沉砂室坡向沉砂斗的坡度为I=0.1~0.5,沉砂斗侧 壁与水平面的夹角α≤55º,a1=0.5m,h3¹ =0.4m,α=55º ,则砂斗上口宽 a=2h3/tg55º 。 • VO • 超高h1取0.3m,则h3=(b-a1)tg55º /2 • H=h1+h2+h3
水量( 废水种类 m3/d) 庆大霉素 1000 +土霉素
处理要求

某制药厂污水处理方案.doc

某制药厂污水处理方案.doc

某制药厂污水处理方案.制药有限公司50m3/d废水处理工程设计方案..某制药厂有限公司50m3/d废水处理工程目录1 概述11.1 项目背景11.2 设计单位概况11.3 设计依据21.4 设计原则31.5 设计范围32 设计规模及进出水水质42.1 污水来源42.2 设计水量42.3 设计进出水水质43 污水处理系统工艺43.1 水质特点分析43.2 设计思路53.3 污水处理工艺技术确定53.4 工艺流程简述83.5 工艺流程图93.6 处理效果预测103.7 工艺设计的特点114 主要处理构筑物及设备114.1格栅渠114.2调节池124.3 pH调节池134.4 芬顿反应池134.5 混凝沉淀池144.6 A2/O池154.7 二沉池164.8 其他配套构筑物及设备175 二次污染防治XXXX年的发展,企业已初具规模。

多年来,公司一直重视科技进步和技术创新工作,取得较为满意的成绩。

随着国家对新药研发行为的整顿和规范,新药研发的难度和研发成本将越来越大,研发周期越来越长。

同时,国家从政策上限制低水平重复,鼓励原创新药的研制,提高了新药研制门槛,鼓励企业采用技术创新拥有自己的知识产权。

因此,随着国家药品注册政策的变化和调整,企业的新药研究的战略思路和品种的发展方向需重新审视和规划。

某制药厂有限公司主要生产头孢地尼、盐酸头孢甲肟、阿戈美拉汀、米力农、盐酸纳美芬和硫酸氢氯吡格雷。

工艺产生的废水经过蒸发浓缩除去其中的水,浓缩后的釜残作为危险品废物处理。

所产生的污水主要为设备清洗水和冲刷地坪水以及生活用水。

公司受某制药厂有限公司委托,并根据业主提供的工程要求和数据,同时与业主进行了讨论,结合公司多年的水处理经验,编制设计方案如下,供有关部门评审。

1.2 设计单位概况1.3 设计依据《室外排水设计规范》GB50014-多年来,公司一直重视科技进步和技术创新工作,取得较为满意的成绩。

随着国家对新药研发行为的整顿和规范,新药研发的难度和研发成本将越来越大,研发周期越来越长。

某公司医药化工废水处理技术方案

某公司医药化工废水处理技术方案

某公司医药化工废水处理技术方案某公司医药化工废水处理技术方案一、项目概述本项目是某医药化工公司的废水处理技术方案,主要处理生产过程中产生的废水。

废水含有高浓度的有机物和氨氮,需进行预处理和深度处理,达到国家相关标准后排放。

二、废水水质分析废水水质分析结果如下:1. 总氮:142 mg/L2. 氨氮:46 mg/L3. 总磷:6.1 mg/L4. 悬浮物:51 mg/L5. 化学需氧量(COD):680 mg/L三、技术方案针对废水水质分析结果,我们提出以下废水处理技术方案:1. 初级处理在初级处理中,主要采用物理化学方法去除废水中的悬浮物和大分子有机物。

首先进行调节pH值至7-8,使废水中的碱性物质与酸性物质中和,利于后续处理。

然后进行格栅去除废水中的大颗粒杂质,再对废水进行调节和混合,加入凝聚剂(PAC)和絮凝剂(PAM),使有机物和悬浮物凝固成团,最终形成絮状物。

通过沉淀池将絮状物与水分离,得到初步处理后的水,该水进入中级处理。

2. 中级处理中级处理过程中采用生物处理技术,利用微生物净化废水中的氮、磷等有机物。

该技术包括水解酸化反应器、好氧池和厌氧池。

(1) 水解酸化反应器该技术主要用于废水中有机物的水解酸化反应,通过水解酸化预处理中的有机物,提供更好的条件被微生物降解。

水解酸化反应器主要由调节罐和反应器组成。

首先在调节罐中加入生物菌剂,然后将初级处理后的废水加入反应器,操作时间为8-12小时。

水解反应产生的有机酸对中性氮、磷等有机物有很好的溶解作用,便于后期生物降解。

(2) 好氧池在好氧池中,将水解反应产生的溶解性有机物经过二次氧化,变成H2O和CO2,利用好氧微生物对氨氮、亚硝酸氮、硝酸氮等进行硝化作用,同时也可生长一定量的放线菌和蓝藻。

(3) 厌氧池该池主要通过厌氧微生物对硝酸根和硫酸盐进行反应,产生硫化氢等物质,可对COD有一定的去除作用。

3. 深度处理经过中级处理后的废水,进入深度处理阶段,采用精密滤池技术,对中级处理后的废水进行微过滤脱除难分解有机物以及残存的SS等物质,经过消毒处理,达到国家相关标准后进行排放。

某医药企业废水处理方案

某医药企业废水处理方案

第一章、工程概况及设计单位简介 (3)1.1工程概况 (3)1.2设计单位 (3)第二章、设计依据 (3)2.1设计依据及规范 (3)第三章、设计原则 (4)第四章、设计处理规模及排放标准 (5)4.1设计废水处理规模 (5)4.2设计废水水质状况 (5)4.3废水经处理后达到中水回用标准 (5)第五章、废水处理工艺流程设计 (5)5.1废水处理工艺流程 (5)5.2废水处理主要工艺流程说明 (6)5.3废水处理主要核心处理工艺说明 (7)5.3.1催化微电解 (7)5.3.2催化氧化机理 (9)5.3.3A/0 生化 (10)第六章、废水处理预期效果 (10)第七章、废水处理主要构筑物及设备设计参数 (10)7.1主要构筑物设施设计参数 (10)7.2主要配套设备设施设计参数 (12)第八章、污水处理站总图布置 (15)-1 - / 15- 1 -9.2 强电158.1总体布置原则 (15)第九章、公用工程 (15)9.1给排水及消防 (15)9.1.1给水 (15)9.1.2排水 (15)9.1.3消防 (15)第十章、用电负荷及电气控制 (16)10.1用电负荷 (16)10.2电气控制 (16)第十一章、工程经济分析 (16)11.1工程预算 (17)11.2运行成本估算 (19)11.3水处理直接运行成本为 (19)第十二章、工程安装调试运行 (19)12 . 1设备安装 (19)12.2管道施工及验收应遵循以下规范 (19)12.3系统调试 (19)12.4运行管理 (19)第十三章、环境效益分析 (20)第十四章、技术服务和质量保证体系 (20)14.1全面质量控制(TQC (20)14.2工程质量承诺 (21)14.3售后服务 (21)第一章、工程概况及设计单位简介1.1工程概况略1.2设计单位简介:第二章、设计依据2.1设计依据及规范(1)建设单位提供的污水水质、水量和要求等基础资料(2)《污水综合排放标准》GB8978-2002(3)《低压配电装置及线路设计规范》GB50054-92(4)《电力装置的继电保护和自动装置设计规范》GB50062-92(5)《室外排水设计规范2006年修订》GB50014-2006(6)《建筑给水排水设计规范》GB50015-2003(7)《给水排水工程结构设计规范》GB50069-2002(8)《鼓风曝气系统设计规程》CECS114 2000(9)《给水排水工程结构设计规范》GB50069-2002(10)《建筑地基基础设计规范》GB50007-2002(11 )《工业企业厂界噪声标准》GB12348-90(12)《中华人民共和国环境保护法》1989年12月(13)《中华人民共和国水污染防治法》1984 年5 月(14)《中华人民共和国水污染防治实施细则》1989年7月第二章、设计原则1•将污染源管理、污水达标处理、总量控制与清洁生产等方面有机结合,确保废水达标排放。

医药废水处理工程设计方案

医药废水处理工程设计方案

医药废水处理工程设计方案1. 引言医药废水是指由医药生产、医疗机构和研究单位排放的含有药品残留物、微生物和有机物质的废水。

由于医药废水的复杂性和对环境的潜在危害,正确处理和处理医药废水成为一项重要任务。

本设计方案旨在提供一种有效的医药废水处理工程设计方案。

2. 设计目标本设计方案的主要目标是实现医药废水的高效处理,达到以下要求:- 减少药物残留物的浓度,以降低对环境的污染风险;- 去除废水中的微生物和有机物质,以防止对水体生态系统的影响;- 确保处理过程的安全性和可持续性。

3. 设计方案根据医药废水的特点和处理要求,我们提出以下设计方案:3.1. 前处理前处理是医药废水处理的第一步,旨在去除废水中的固体悬浮物、油脂和其他可溶解污染物。

常用的前处理方法包括沉淀、过滤和颗粒吸附等。

3.2. 生物处理生物处理是医药废水处理的核心步骤,通过利用微生物去降解废水中的有机物质和药物残留物。

常用的生物处理方法包括活性污泥法、厌氧处理和生物膜反应器等。

在设计过程中,需确保维持合适的生物和适宜的环境条件,以促进微生物的生长和降解效果。

3.3. 深度处理深度处理是为了进一步去除废水中的微量杂质和药物残留物。

常用的深度处理方法包括活性炭吸附、高级氧化和膜分离等。

根据具体情况,可以选择单一的深度处理方法或结合多种方法进行处理。

3.4. 二次处理二次处理是为了确保处理过程的安全性和可持续性,在深度处理后对废水进行进一步处理。

常用的二次处理方法包括消毒、pH调节和余泽处理等。

4. 设计参数设计参数是设计方案中的关键要素,对工程运行和效果产生重要影响。

根据医药废水的特性和处理要求,需要确定以下设计参数:- 废水流量;- 废水组成和药物残留物浓度;- 处理工艺和装置的尺寸和容量;- 生物中微生物的负荷和生长条件;- 深度处理方法的投加剂量和处理时间;- 二次处理方法的消耗品使用量和操作条件。

5. 结论本设计方案提供了一种高效的医药废水处理工程设计方案。

制药生产废水处理方案

制药生产废水处理方案

.
制药厂制药废水处理工程设计方案
一、工程概况
某制药厂的废水主要是生产青霉素所产生的高浓度有机废水。

该类废水的主要特点是有机物浓度高,成分复杂,含有石油类、胺类、酸类、破乳剂等污染物。

除此之外,水中还含有难以降解的大分子苯环物质和浓度很高的SO42-及其盐类,这些物质将严重抑制微生物对水中有机物的生物降解。

因此,正确选用适合该类废水的处理工艺是废水处理成功与否的关键。

二、设计水量和水质
1.设计处理水量
设计处理水量为6000m3/d(一期工程)。

2.设计水质
(1)原水水质
CODcr5000mg/L SS 2400mg/L
BOD5 2750mg/L PH值 8~10
(2)处理后要求达到的水质标准
CODcr≤300 mg/L 石油类≤10mg/L
BOD5≤60 mg/L PH值 6~9
SS ≤150 mg/L
三、设计处理工艺流程
处理工艺流程如图1所示。

制药厂生产废水处理设计方案

制药厂生产废水处理设计方案

制药厂生产废水处理设计方案1.高浓度:制药厂生产过程中使用的化学药品和原料通常都具有高浓度,因此废水中的有机物和无机盐含量较高。

2.多种有机物:废水中含有各种有机物,如溶剂、有机酸、有机碱等,其中含有的化学药品还可能有毒性。

3.高COD和BOD:废水中的化学需氧量(COD)和生化需氧量(BOD)浓度较高,对环境有一定的污染。

4.高PH值:废水的PH值通常较高,需要经过调整才能进一步处理。

5.高色度:废水中的有机物会使水体呈现出深色,影响美观。

1.预处理:包括固体分离、调整PH值和异味去除等步骤。

a.固体分离:废水中的悬浮物和固体颗粒需要通过沉淀、过滤等方式进行去除。

b.调整PH值:废水中的PH值通常较高,可以通过加入酸或碱来进行调整,一般将其调至中性范围。

c.异味去除:废水中可能含有异味物质,需要经过适当的处理去除。

2.生化处理:利用生物活性池进行生化降解,去除COD和BOD等有机物。

a.常规的生物活性池:通过由反应釜、曝气系统和填料组成的池体,利用厌氧和好氧条件下的微生物降解有机物。

b.高级氧化技术:如臭氧处理、紫外线光解法等,可用于去除难降解的有机物。

3.深度处理:进一步去除有机物和无机盐等污染物,使废水达到排放标准。

a.活性炭吸附:将废水通过活性炭吸附柱进行处理,去除残余的有机物和色度。

b.膜分离技术:如微滤、超滤和反渗透等,可用于去除悬浮物、细菌和溶解性盐等。

4.回用处理:对废水进行再处理,使其达到回用标准,用于生产中再利用。

a.捕捉有用物质:通过离子交换等技术,将废水中的有用成分分离出来,用于再生产中。

b.进一步净化:使用更高级的处理技术,如电化学氧化、微生物燃料电池等,去除更微量的污染物。

5.污泥处理:由于废水处理过程中产生的污泥含有大量的有机物和无机盐,需要专门处理。

a.浓缩和脱水:通过离心机、压滤机等设备将污泥进行浓缩和脱水,减少处理量。

b.热解和焚烧:对污泥进行热解或高温焚烧,将有机物破坏,并转化为无害物质。

某制药厂废水处理方案设计

某制药厂废水处理方案设计

1本工程概况该生物制药厂位于中国南部某城镇,全年最高气温40 ℃ ,最低12 ℃ ,年平均气温:20℃左右。

夏季主导风向为东南风,冬季西北风为主。

该镇地形由南向北略有坡度,平均坡度为0.5 ‰,地面平整,。

规划污水处理厂位于主厂区的南方,面积约6500 m 2。

地坪平均绝对标高为 4.80 米。

工业污水的时变化系数为 1.3。

要求出水水质符合《生物制药工业污染物排放标准》(GB19821-2005)。

1.1 设计原则(1) 根据生物制药生产排放废水的特点,选择成熟的工艺路线,既要做到技术可靠确保处理后出水达标排放,出水稳定,还要设备简单、操作方便、易于维护检修,日常运行维护费用低。

(2) 在保证处理效果前提下,充分考虑城市寸土寸金的现实,尽量减少占地面积,降低基建投资。

平面布置和工程设计时,布局力求合理、通畅、美观,合乎工程建设标准。

(3) 具有一定的自动控制水平,在确定自控程度时兼顾经济合理性。

(4)整个处理系统建设时施工方便、工期短;运行时能耗低。

1.2 设计范围根据对生物制药废水特点的分析和处理出水水质要求,经论证选择技术上可行、经济上合理的处理方案,然后确定具体的、符合实际的工艺流程。

对所选流程中的主要构筑物进行工艺计算,主要设备进行选型。

根据任务书要求,进行合理的平面布置。

确定自动控制及监测方案,进行初步的技术经济分析,包括工程投资和人员编制、成本分析等。

附必要的图纸。

1.3设计水质水量根据所给资料该厂处理工程设计水量为3400t/d,处理水质执行《生物制药工业污染物排放标准》(GB19821-2005)表1 进水水质及排放标准水质指标COD(㎎∕L)BOD(㎎∕L)SS(㎎∕L)PH 值进水水质13162 6412 2199 6.5~8.5设计出水水质≤300 ≤200 ≤200 6~91.4 废水处理方案的确定该厂废水中的BOD/COD值正常,约0.50,有利于进行生物处理。

且较之物化处理,化学处理工艺成熟,处理效率高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某生物工程有限公司污水处理工程设计方案目录1 概述 (2)1.1 企业概况 (2)1.2 中药生产污水的特点 (2)2设计依据 (2)3设计原则 (3)4废水水质水量及治理目标 (3)5治理工艺的选择 (3)5.1工艺流程选择 (3)5.2工艺特点 (5)5.3工艺流程说明 (5)6工艺单元选择的成熟性和先进性 (6)6.1 水解酸化 (6)6.2 SBR生化工艺 (7)6.3 工程实践 (8)7处理构建筑物设计及主要设备选型 (8)8处理效果 (11)9平面布置 (12)10劳动定员 (12)11经济效益分析 (12)11.1工程投资 (12)11.2运行费用 (15)11.2.1污水处理运行成本 (15)11.2.2回用水运行成本 (16)12售后服务 (16)1 概述1.1 企业概况某生物工程有限公司是以生产中药为主的现代化生物制药企业,生产厂一期工程占地113亩。

总投资1.824亿元,拥有国内先进设备260余台(套)。

建设符合国家GMP要求6条生产线。

可年产胶囊2亿粒,颗粒750吨,片剂3亿片,丸剂300吨。

1.2 中药生产污水的特点中药生产的前处理车间将经过洗、淘、漂、切、干燥等过程的合格原药送入提取车间进行水提或醇提,提取液经蒸发浓缩得浸膏半制品再送至各有关剂型车间。

由此产生的生产废水包括洗涤水、药汁流失液以及变更药物品种易生产的冲洗生产设备废水。

主要由药材煎出的各种成分及酒精等有机溶剂引起的污染。

每一味中草药的有机成分相当复杂,生产过程又多为间歇式操作,从而造成了浓度较高、成分复杂且多变的有机废水,这是中药生产废水的一个特点。

废水中的主要成分为糖类、甙类、蒽醌、木质素、生物碱、鞣质、蛋白质、色素等的水解产物。

2设计依据1)某生物工程有限公司污水处理招标要求(2005/11/24传真);2)《国家污水综合排放标准》(GB8978-96);3)《室外排水设计规范》(GBJ14-87);4)《地面水环境质量标准》(GHZB1-1999)。

3设计原则1) 工艺可靠、灵活、卫生、安全、节能、综合运行成本低廉,操作管理方便、节省投资且能保证长期稳定运行的原则。

2) 电气设备尽可能采用简易半自动化控制、最大限度减轻劳动强度。

3) 在设计中充分考虑二次污染的简易控制,采用简易隔噪防振脱臭等措施,保持良好的环境卫生。

4) 可根据用户要求,设施建成半地下结构。

4废水水质水量及治理目标污水处理量:500m3/d污水水质指标:COD=1500mg/LBOD=400 mg/LSS=600 mg/L污水处理后排放指标:COD≤100 mg/LBOD≤20 mg/LSS≤70 mg/LPH=6~95治理工艺的选择5.1工艺流程选择该公司是以生产中成药为主的制药厂,根据该公司提供的生产废水水质,属有机废水,采用生化法处理该废水是行之有效的。

但废水中BOD5/COD=0.27,图1 工艺流程图废水的可生化性较差,因为中药生产所排废水中除含有一般有机物外,还含有单宁、甙类、蒽醌、生物碱等结构比较复杂、难于好氧生物降解的有机物。

实践证明,废水中好氧法难于降解的有机物可在某种厌氧菌作用下降解,本方案选择以厌氧法+好氧法相结合的处理工艺,即水解酸化+SBR (简称ASBR法)。

它结合了厌氧处理工艺能耗低、污泥产量低,好氧处理工艺出水水质好的优点,避免了单纯厌氧工艺出水达不到排放标准,单纯好氧工艺能耗大、污泥产量高、运行费用高等缺点,在投资、处理成本和效果方面都具有较大的优越性。

设计处理工艺流程见图1。

5.2工艺特点本设计工艺与其他工艺相比,具有以下优点:1)工艺简明,处理效果稳定可靠,运行成本低;2)污泥产生量少,小水量情况下几乎为零,污泥处理费用低甚至没有;3)操作管理方便,装置可实现半自动化控制,污水站定员少,劳动强度低;4)处理水量可在100~750m3/d范围内任意调节,不影响处理水质。

5.3工艺流程说明污水处理系统制药混合废水经管道(沟渠)收集,经格栅除去大漂浮物后,再经机械除渣机除去小颗粒的悬渣,自流入调节水解酸化池(该池对水质水量冲击负荷能起调节作用;池中设置某种生物催化剂,该催化剂为某种工业废料,价廉易得,它可以促进大分子难降解有机物的分解,改善废水可生化性),用泵将其送入SBR 池进行生物好氧反应,SBR池出水经沉淀过滤池过滤然后排放。

沉淀过滤池中的沉渣经泵打入污泥浓缩池浓缩,SBR池剩余污泥(一般很少)回流入调节水解酸化池,调节水解酸化池设一污泥泵(起搅拌及排泥作用, 少量的剩余污泥泥排入污泥浓缩池)。

经污泥浓缩池浓缩后的污泥,用槽车不定期运走。

低噪音罗茨风机提供气源,由可变微孔曝气器曝气供氧,大幅度提高氧气的传质效率。

系统配置有加药装置,在水质波动的情况下,可在沉淀过滤池前采取加药混凝,以强化处理效果,保证水质达标;当进水水质正常时,可不加药,以节约药费。

回用水系统沉淀过滤池出水部分进入回用水池储存,保证回用水所需水源,经回用水输送泵加压,同时消毒机产生的杀菌剂(二氧化氯)由安装在泵出口管上水射器吸入,并充分混合,消毒杀菌后的水进入屋顶水箱再通过管网供应各用水点。

输送泵的开停由屋顶水箱水位开关自动控制,消毒机(二氧化氯发生器)与泵采用自锁同步自动运行。

6工艺单元选择的成熟性和先进性6.1 水解酸化水解酸化是兼氧厌氧技术,兼性菌(主要是产酸菌)在缺氧或厌氧条件下,将废水中诸如单宁、甙类、蒽醌、生物碱等结构比较复杂的大分子有机物分解成小分子中间产物。

同时,部分有毒物质及一些带色基团的分子键被打开,降低了废水中有毒物质的浓度。

厌氧生物反应分为水解、酸化、产乙酸、产甲烷四个阶段,完成整个厌氧过程需时很长,但其中水解、酸化阶段反应条件温和、速率快,本方案即将厌氧过程控制在此阶段,作为一种预处理手段,水解酸化并没有很大程度降低废水中的COD Cr和BOD5,而是使废水中结构复杂的大分子有机物,在生物催化剂作用下降解转变为结构简单的小分子有机物,即废水中的不溶性的复杂大分子有机物降解成小分子溶解性底物,溶解性有机物再转化为有机酸、醇、二氧化碳、各种低级有机酸及氢等,废水的毒性得以降低,可生化性得以提高,为后续生物接触氧化反应器提供了优质底物,给好氧过程创造了条件。

6.2 SBR生化工艺SBR法可有效地克服普通好氧活性污泥的缺点,它在一个反应池内完成进水-曝气-沉淀-排放等所有的反应操作过程,在不同时间里完成有机物氧化、硝化、脱氮、磷的吸收和释放等生化过程,不需设置二次沉淀池。

SBR是一种简易高效低能耗的污水生化处理法。

SBR法的运行工艺是以间歇操作为主要特征。

所谓序列间歇式有两种含义:一是运行操作在空间上是按序排列,间歇的。

由于污水大都连续排放且流量波动很大, SBR生化池一般采用两个或多个并联运行。

污水按序列进入每个反应器,它们运行时的相对关系是有次序排列的,也是间歇的;二是每个SBR 的运行操作,在时间上也是按次序排列的,间歇的,一般可分为进水、反应、沉淀、排水、闲置五个阶段,称为一个运行周期。

在一个运行周期内,各个阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据污水水质、出水水质与运行功能要求灵活掌握。

比如在进水阶段,根据进水时间和曝气时间的关系进行划分,可分为:(1)限制曝气:进水阶段不曝气;(2)非限制曝气:进水和曝气同步;(3)半限制曝气:进水一定时间后开始曝气;(4)脉冲曝气:按一定规律间断或脉冲方式曝气。

不论何种方式,为了生物脱氮,也可曝气后搅拌、沉淀以后再次曝气或曝气与搅拌交替运行。

剩余污泥可以在闲置阶段排放,也可以在排水阶段或反应阶段后期排放。

对单一SBR池来说,不存在空间上控制的限制,只要在时间上进行有效的控制与变换,便能达到多功能的要求,非常灵活。

SBR池是典型的完全混合反应器,器内混合液呈完全混合状态,但底物与微生物浓度在时间上则呈现较理想的推流过程,生化反应推动力大、效率高、水力停留时间(HRT)短、运行方式灵活,容易实现好氧(DO=2~6)—缺氧(DO=0,NOx>0)—厌氧(DO=0,NOx=0)状态交替的环境;又能在好氧期加大曝气量,延长HRT和污泥龄,强化硝化反应和聚磷菌过量摄磷的过程;也可在缺氧期投加碳源(原污水)加快反硝化过程;还可在充水期维持厌氧状态,促使聚磷菌释放磷等,同时实现除磷脱氮。

SBR池本身就是一个生物选择器,其高浓度进水、同一池中不同的运行工序及灵活多变的运行方式,对池中的微生物进行了选择,使引起膨胀的丝状菌处于劣势,而且耐冲击负荷的菌胶团得到了优化。

调试好的SBR池中活性污泥相当稳定,无污泥膨胀之虞。

6.3 工程实践略。

7处理构建筑物设计及主要设备选型1)格栅池:尺寸为3.0×2.0×1.4m格栅采用回转机械格栅,截留较粗悬浮物。

主要设备:HG型回转机械格栅,0.75kw,栅条间隙10mm2)除渣机池:尺寸为3.0×2.0×1.4m除毛除渣机用于去除细小悬浮物,减小后续处理负荷。

主要设备:CM2000-800型除毛除渣机,0.75kw,梯形不锈钢筛条,间距1mm3)调节水解酸化池:尺寸为15.6×5.0×4.5m池体为砼结构,1座(分3格),平均停留时间为14 .4h。

配有鼓风曝气系统和污泥泵,对废水进行预曝气和搅拌。

均化废水水质和水量,确保处理装置连续平稳运行。

在调节池中适当部位设置独特的生物水解酸化系统,在生物催化剂的作用下,对大分子的有机物进行水解和酸化作用,为本公司专有技术。

主要设备和材料:生物催化剂(某种工业废料):75 m3;污泥泵40QW12-15-1.5,1.5kw,2台(带自耦装置,1用1备) ;提升泵:100WQ100-15-7.5,7.5KW,2台(带自耦装置,1用1备);曝气器:DYW-Ⅲ型,数量:50个。

4)SBR池:尺寸为10.0×6.0×4.5m采用可变微孔曝气器曝气供氧,氧利用率为20%以上;排水装置为虹吸式滗水器。

钢筋砼结构,数量 2座(共壁);单池有效容积: 240m3。

主要设备和材料:曝气器:DYW-Ⅲ型,数量:240个;虹吸式滗水器:2台,最大排水能力125 m3/h;罗茨风机:BK5009,风量11. 5m3/min,风压4.0m水柱,功率15千瓦,数量2台(1用1备)。

5)沉淀过滤池尺寸为4.0×4.0×5.0m利用重力沉淀和加药混凝和过滤去除出水中和悬浮物。

当废水水质波动时,投加混凝剂,吸附未彻底生物降解的有机物,再经沉淀和过滤处理,保证出水达标排放,还可保证达到回用水水质要求,当进水水质正常时,可不加药,以节约药费。

钢砼结构,1座。

相关文档
最新文档