北京市第四中学2021-2022学年高一上学期期中考试数学试题 Word版含答案

合集下载

2020-2021学年北京四中高一上学期期中考试数学试题(解析版)

2020-2021学年北京四中高一上学期期中考试数学试题(解析版)

2020-2021学年北京四中高一上学期期中考试数学试题一、单选题1.已知全集为U ,集合{1,2,3,4,5}A =,{3,2}B =-,则图中阴影部分表示的集合为( )A .{3}B .{3,2}-C .{2}D .{2,3}-【答案】C【分析】根据韦恩图得阴影部分表示集合A 与B 的交集,再根据集合交集运算即可. 【详解】解:根据韦恩图得阴影部分表示集合A 与B 的交集, 所以{}{1,2,3,4,5}{3,2}2AB =-=.故选:C. 2.不等式021x x ≤-+的解集是 ( ) A .(1)(12]-∞--,, B .[12]-,C .(1)[2)-∞-+∞,,D .(12]-, 【答案】D【分析】将“不等式21x x -+≤0”转化为“不等式组()()12010x x x ⎧+-≤⎨+≠⎩”,由一元二次不等式的解法求解.【详解】依题意,不等式化为()()12010x x x ⎧+-≤⎨+≠⎩,解得﹣1<x≤2,故选D .【点睛】本题主要考查不等式的解法,关键是将分式不等式转化为二次不等式来求解 3.下列函数中,在区间(0,+∞)上为减函数的是( )A .y =x 2﹣2xB .y =|x |C .y =2x +1D .y =【答案】D【分析】求出每一个选项的函数的单调减区间即得解.【详解】A. y =x 2﹣2x ,函数的减区间为(,1)-∞,所以选项A 不符; B. y =|x |,函数的减区间为(,0)-∞,所以选项B 不符; C.y =2x +1,函数是增函数,没有减区间,所以选项C 不符;D. y =0,+∞),所以选项D 符合. 故选D【点睛】本题主要考查函数的单调区间的判定方法,意在考查学生对这些知识的理解掌握水平.4.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】C【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.5.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A【分析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>.【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A6.已知12,x x 是方程2710x x -+=的两根,则2212x x +=( ) A .2 B .3 C .4 D .5【答案】D【分析】由韦达定理的127x x +=,121=x x ,再根据()2221212122x x x x x x +=+-即可求出. 【详解】12,x x 是方程2710x x -+=的两根,127x x ∴+=,121=x x ,()2221212122725x x x x x x +=+-=-=故选:D.7.设,a b ∈R ,且a b >,则下列结论中正确的是( ) A .1ab> B .11a b< C .||||a b >D .33a b >【答案】D【分析】取特殊值判断ABC ,由幂函数3y x =的单调性判断D. 【详解】当1,1a b ==-时,11ab =-<,11a b>,||||a b = 因为幂函数3y x =在R 当单调递增,a b >,所以33a b > 故选:D8.“2a =”是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:当2a =,则()f x x a=-在[2,)+∞上为增函数,故充分性成立;当函数()f x x a =-在区间[2,)+∞上为增函数,则,故必要性不成立.【解析】充分必要性.9.向一杯子中匀速注水时,杯中水面高度h 随时间t 变化的函数h =f (t )的图象如图所示,则杯子的形状是( )A .B .C .D .【答案】A【解析】由图可知,高度的增长速率是先慢后快,且都是运算增长,所以只有A 满足. 故选A .10.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有 ( ). A .1个 B .2个C .3个D .4个【答案】C【解析】试题分析:由得,由得,∴函数的定义域可以是{02},{02},{022,共3个.. 【解析】函数的定义域和值域.11.已知非零实数,,a b c 满足:a b c >>,下列不等式中一定成立的有( ) ①ab bc >; ②22ac bc ≥; ③a b a bc c+->.A .0个B .1个C .2个D .3个【答案】B【分析】由不等式的性质结合作差法逐个判断即可得解. 【详解】对于①,若a c >,0b <,则ab bc <,故①错误; 对于②,由()2220ac bc c a b -=-≥可得22ac bc ≥,故②正确;对于③,因为2a b a b b c c c +--=,若20b c <,则a b a bc c+-<,故③错误. 故选:B.12.已知a 、b R ∈,则“0a b +=”是“3220a a b a ab a b +--++=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】将代数式322a a b a ab a b +--++因式分解,找出使得3220a a b a ab a b +--++=成立的等价条件,进而可得出结论.【详解】()()()()()322221a a b a ab a b a a b a a b a b a b a a +--++=+-+++=+-+, 对任意的a R ∈,22131024a a a ⎛⎫-+=-+> ⎪⎝⎭,所以,32200a a b a ab a b a b +--++=⇔+=.因此,“0a b +=”是“3220a a b a ab a b +--++=”的充要条件. 故选:C.13.已知{},;min ,,.a ab a b b a b ≤⎧=⎨>⎩设()f x {}2min 6,246x x x =-+-++,则函数()f x 的最大值是( ) A .8 B .7C .6D .5【答案】C【分析】画出函数图像求得解析式,再求最大值即可 【详解】根据题目的定义得,{}2()min 6,246f x x x x =-+-++2226,6246246,6246x x x x x x x x x ⎧-+-+≤-++=⎨-++-+>-++⎩,化简得,()256,0,2()5246,,0(,)2x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦=⎨⎪-++∈-∞⋃+∞⎪⎩,可根据该分段函数做出图像,显然在左边的交点处取得最大值,此时,0x =,得(0)6f =即为所求; 故选:C【点睛】关键点睛:解题关键在于利用定义得到()256,0,2()5246,,0(,)2x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦=⎨⎪-++∈-∞⋃+∞⎪⎩,进而作出图像求解,属于基础题二、双空题14.设全集U =R ,集合{|2},A x x =<集合{|1}B x x =<,则集合UA___________,集合()UA B =___________.【答案】[)2,+∞ ()[),12,-∞+∞【分析】利用集合的交集和并集进行求解即可【详解】{|2},A x x =<}{2UA x x =≥[)2,=+∞;{|1}B x x =<,()U A B =()[),12,-∞+∞;故答案为:①[)2,+∞;②()[),12,-∞+∞15.函数1()1f x x x =+-(1)x >的最小值是_____,此时x =_____. 【答案】3 2【分析】由题知10x ->,又由()1111f x x x =-++-,结合基本不等式即可求解. 【详解】∵1x >, ∴10x ->,由基本不等式可得()12111131f x x x =-+++=-≥=, 当且仅当111x x -=-即2x =时,函数取得最小值3. 故答案为:①3;②2.【点睛】关键点点睛:该题主要考查了利用基本不等式求解最值,在求解的过程中,时刻关注利用基本不等式求最值的三个条件:一正、二定、三相等,考查学生的运算求解能力.16.若函数()2f x x x a =-+为偶函数,则实数a =________,函数()f x 的单调递增区间是___________. 【答案】0 1,02⎛⎫-⎪⎝⎭、1,2⎛⎫+∞ ⎪⎝⎭【分析】由偶函数的定义得出x a x a +=-,等式两边平方可求得实数a 的值,求出函数()f x 在()0,∞+上的增区间和减区间,利用偶函数的基本性质可得出函数()f x 的单调递增区间.【详解】函数()2f x x x a =-+的定义域为R ,且该函数为偶函数,则()()f x f x -=,即()22x x a x x a ---+=-+,所以,x a x a -=+, 等式x a x a -=+两边平方可得222222x ax a x ax a -+=++, 可知0ax =对任意的x ∈R 恒成立,所以,0a =,则()2f x x x =-.当0x >时,()2f x x x =-,则函数()f x 在()0,∞+上的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭. 由于函数()f x 为偶函数,因此,函数()f x 的单调递增区间为1,02⎛⎫- ⎪⎝⎭、1,2⎛⎫+∞ ⎪⎝⎭.故答案为:0;1,02⎛⎫-⎪⎝⎭、1,2⎛⎫+∞ ⎪⎝⎭.【点睛】求函数的单调区间:首先应注意函数的单调区间是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.求函数单调区间的常用方法:根据定义、利用图象、单调函数的性质.三、填空题 17.命题“11,1x x∀<>”的否定是___________. 【答案】11,1x x∃<≤ 【分析】直接根据全称命题的否定为特称命题解答即可; 【详解】解:命题“11,1x x∀<>”为全称命题,又全称命题的否定为特称命题,故其否定为“11,1x x∃<≤” 故答案为:11,1x x∃<≤18.某班共38人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,16人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______. 【答案】12【分析】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人,由此可得(15)(10)1638x x x -+-++=,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数.【详解】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人,由此可得(15)(10)1638x x x -+-++=,解得3x =, 所以1512x -=, 即所求人数为12人,故答案为:12.19.能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.【答案】1,2,3---【解析】试题分析:()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.20.某学校运动会上,6名选手参加100米决赛.观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1、2、6道选手中的一位获得第一名;观众丁猜测:4、5、6道的选手都不可能得第一名.比赛后发现并没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,则此人是___________. 【答案】丁【分析】先阅读题意,再结合简单的合情推理逐一检验即可得解.【详解】若甲对,则乙也对,所以甲错;若甲错乙对,则丙也对,所以乙错,即3道的选手得第一名,此时只有丁对 故答案为:丁【点睛】关键点睛:解题关键在于根据题意,进行合情推理即可,属于基础题 21.已知关于x 的不等式32ax a x+≤在区间0,上有解,则实数a 的取值范围是___________. 【答案】()[),03,-∞+∞【分析】由题意可得,当0x >时,2230ax ax -+能成立,分类讨论a 的范围,利用二次函数的性质,求得实数a 的取值范围. 【详解】关于x 的不等式32ax a x+在区间(0,)+∞上有解, 即当0x >时,不等式32ax a x+能成立,即2230ax ax -+能成立. 当0a =时,不等式不成立,故0a ≠.当0a >时,则1x =时,函数223y ax ax =-+的最小值为2124304a a a a-=-,求得3a .当0a <时,二次函数223y ax ax =-+的图象开口向下,满足条件. 综上可得,实数a 的范围为3a 或0a <, 故答案为:()[),03,-∞+∞【点睛】易错点睛:解答本题时要注意审题,本题不是恒成立问题,而是能成立问题,所以等价于当0x >时,不等式2230ax ax -+能成立.即函数2()23f x ax ax =-+的最小值大于零,而不是最大值大于零.四、解答题22.已知0a >,记关于x 的不等式()()10-+<x a x 的解集为P ,不等式11x -≤的解集为Q .(1)若3a =,求集合P ; (2)若Q P ⊆,求a 的取值范围.【答案】(1){}13x x -<<;(2)(2),+∞. 【分析】(1)直接解不等式得解;(2)先化简集合,P Q ,再根据Q P ⊆,得到关于a 的不等式得解. 【详解】(1)由()()310x x -+<,得{}13P x x =-<<; (2){}{}1102Q x x x x =-≤=≤≤. 由0a >,得{}1P x x a =-<<, 又Q P ⊆, 所以2a >,即a 的取值范围是(2),+∞. 23.已知定义在R 上的奇函数21()x mf x x =++,m ∈R . (1)求m ;(2)用定义证明:()f x 在区间[)1,+∞上单调递减; (3)若实数a 满足()22225f a a ++<,求a 的取值范围. 【答案】(1)0m =;(2)证明见解析;(3)()(),20,-∞-+∞.【分析】(1)由()f x 是定义在R 上的奇函数,得到(0)0f =,即可求解; (2)根据函数的单调性的定义,即可证得函数()f x 在[)1,+∞单调递减.(3)结合()f x 在[)1,+∞单调递减,转化为2222a a ++>,即可求解实数a 的取值范围.【详解】(1)由题意,函数()f x 是定义在R 上的奇函数,可得(0)0f =,解得0m =. (2)任取12,[1,)x x ∈+∞且12x x <, 则12221212121122121222222212()(1)()()(),(1)111111()()()(1)x x x x x x f x x f x x x x x x x x x x +-+-++++--==+-=+ 因211x x >>,故221221121,0,10,10x x x x x x >->+>+>,从而21()()0f x f x -<,即21()()f x f x <,所以函数()f x 在[)1,+∞单调递减.(3)由()2222111a a a ++=++≥,又由2(2)5f =, 因为()22225f a a ++<,结合()f x 在[)1,+∞单调递减,可得2222a a ++>, 即220a a +>,解得2a <-或0a >,即实数a 的取值范围()(),20,-∞-+∞.【点睛】含有“f ”的不等式的解法:1、首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式;2、根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 和()h x 的取值应再外层函数的定义域内;3、结合不等式(组)的解法,求得不等式(组)的解集,即可得到结论.24.二次函数()f x 满足(0)1f =,再从条件①和条件②两个条件中选择一个作为已知,求:(1)求()f x 的解析式;(2)在区间[]1,1-上,函数()f x 的图像总在一次函数2y x m =+图像的上方,试确定实数m 的取值范围.条件①:()()12f x f x x +-=;条件②:不等式()4<+f x x 的解集为()1,3-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】条件选择见解析;(1)2()1f x x x =-+;(2)1m <-.【分析】(1)选择①:设出二次函数的解析式,根据条件①,结合待定系数法求出()f x 的解析式;选择②:根据一元二次不等式与二次函数的关系求出()f x 的解析式;(2)由题意可知231x x m -+>,构造函数2()31g x x x =-+,由min ()g x m >得出m的范围.【详解】解(1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0).选择①,则有()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x +-=++++-++=++= 由题意,得22,0,a a b =⎧⎨+=⎩解得1,1,a b =⎧⎨=-⎩故2()1f x x x =-+ 选择②,则()4<+f x x 可化为2(1)30ax b x +--<.由题,方程2(1)3=0ax b x +--的两实根分别为1-和3 所以1132b a --=-+=即21a b +=,及3133a-=-⨯=-即1a =,所以1b =-. 故2()1f x x x =-+(2)由题意,得212x x x m -+>+,即231x x m -+>,对[1,1]x ∈-恒成立.令2()31g x x x =-+,则问题可转化为min ()g x m >又因为g (x )在[1,1]-上递减,所以min ()(1)1g x g ==-,故1m <-【点睛】对于问题(2),在解决不等式的恒成立问题时,可以构造函数,将不等式问题转化为最值问题进行处理.25.区间[],αβ的长度定义为βα-.函数()22()1f x a x ax =+-,其中0a >,区间{}|()0I x f x =≤.(1)求I 的长度;(2)求I 的长度的最大值.【答案】(1)21a a+;(2)12. 【分析】(1)解出()0f x ≤,即可利用区间长度定义求出;(2)利用基本不等式可求出.【详解】解:(1)令2()(1)0f x x a x a ⎡⎤=+-=⎣⎦,解得:10x =,2201a x a=>+, 则{}2|()001a x f x x x a ⎧⎫≤=≤≤⎨⎬+⎩⎭ ,20,1a I a ⎡⎤∴=⎢⎥+⎣⎦, 则I 的长度为22011a a a a -=++; (2)0a >,I ∴的长度211112a a a a =≤=++,当且仅当1a =时等号成立. ∴当1a =时,I 的长度的最大值为12. 26.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t -增长函数.(1)已知函数()g x x =,函数()2h x x =,判断()g x 和()h x 是否为区间[]1,0-上的32-增长函数,并说明理由; (2)已知函数()f x x =,且()f x 是区间[4,2]--上的n -增长函数,求正整数n 的最小值;(3)请在以下两个问题中任选一个作答:(如果两问都做,按(i )得分计入总分) (i )如果对任意正有理数q ,()f x 都是R 上的q -增长函数,判断()f x 是否一定为R 上的单调递增函数,并说明理由;(ii )如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4-增长函数,求实数a 的取值范围.【答案】(1)()g x x =是,()2h x x =不是,理由见解析;(2)9;(3)(i )不是,理由见解析;(ii )()1,1-.【分析】(1)()g x x =用新定义证明,()2h x x =举反例否定. (2)由新定义得出x 的一次不等式恒成立问题求解.(3)(i)构造反例,()1,R x x Q f x x x Q ∈⎧=⎨-∈⎩说明;(ii)由分段函数逐一讨论即可. 【详解】解:(1)()g x x =是;因为[]1,0x ∀∈-,()3330222g x g x x x ⎛⎫⎛⎫+-=+-=> ⎪ ⎪⎝⎭⎝⎭; ()2h x x =不是,反例:当1x =-时,()31111=1224h h h ⎛⎫⎛⎫-+==<- ⎪ ⎪⎝⎭⎝⎭. (2)由题意得,x n x +>对[4,2]x ∈--恒成立等价于2222x nx n x ++>,即220nx n +>对[4,2]x ∈--恒成立因为0n >,所以22nx n +是关于x 的一次函数且单调递增,于是只需280n n -+>, 解得8n >,所以满足题意的最小正整数n 为9.(3)(i )不是构造,()1,R x x Q f x x x Q ∈⎧=⎨-∈⎩,则对任意正有理数q , 若x Q ∈,则x q Q +∈,因此()()f x q x q x f x +=+>=;若R x Q ∈,则R x q Q +∈,因此()11()f x q x q x f x +=+->-=.因此()f x 是R 上的q -增长函数,但()f x 不是增函数.(ii )由题意知2222222,(),2,x a x a f x x a x a x a x a ⎧+≤-⎪=--<<⎨⎪-≥⎩已知任意x ∈R ,(4)()f x f x +≥,因为()f x 在22[,]a a -上递减,所以,4x x +不能同时在区间22[,]a a -上,因此2224()2a a a >--=注意到()f x 在2[2,0]a -上非负,在2[0,2]a 上非正若22244a a <≤,当22x a =-时,24[0,2]x a +∈,此时(4)()f x f x +≤,矛盾因此244a >,即(1,1)a ∈-.当244a >时,下证()f x 为R 上的4-增长函数:①当24x a +≤-,(4)()f x f x +>显然成立②当224a x a -<+<时,2243x a a <-<-,此时2(4)(4)f x x a +=-+>-,22()2f x x a a =+<-,(4)()f x f x +>③当24x a +≥时,22(4)422()f x x a x a f x +=+->+≥因此()f x 为R 上的4-增长函数综上,为使得()f x 为R 上的4-增长函数a 的取值范围是()1,1-.【点睛】此题是新定义题,属于难题;肯定命题时根据所给定义证明,否定结论要举出相应反例,方可获证.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

北京2021-2022学年高一上学期期中考试化学试题含解析

北京2021-2022学年高一上学期期中考试化学试题含解析

试卷主标题姓名:__________ 班级:__________考号:__________一、选择题(共21题)1、 下列我国古代的技术应用中, 不涉及 氧化还原反应的是 A .煅烧贝壳B .钻木取火C .古法炼铁D .火药爆炸A . AB . BC . CD . D2、 下列物质中, 不属于 电解质的是 A . Cu B .C .D . NaOH3、 当光束通过下列分散系时,能观察到丁达尔效应的是 A . NaCl 溶液 B . 蔗糖溶液 C . CuSO 4 溶液 D . AgI 胶体4、 下列关于物质分类的叙述中, 不正确 的是 A . H 2 SO 4 属于酸 B . 石灰水属于纯净物 C . NO 属于氧化物 D . NaHCO 3 属于盐5、 下列关于金属钠的描述中, 不正确 的是A . 有银白色金属光泽B . 在空气中燃烧只生成氧化钠C . 具有很强的还原性D . 在空气中燃烧发出黄色火焰6、 核外电子数相同、所显电性和所带电量也相同的微粒称为等电子等质子体。

下列各组内的两种微粒属于等电子等质子体的是 A . Na + 、 Mg 2+ B . O 2- 、 Mg 2+ C . F - 、 Cl - D . Na + 、 NH 4 +7、 在强酸性的无色溶液中,能够大量共存的离子组是A . Cu 2+ 、 Cl —、 Ba 2+ 、 Na +B . K + 、、 Na + 、 Cl —C . K + 、 Ba 2+ 、 OH —、D . Mg 2+ 、 Na + 、 Cl —、8、某溶液中仅含有 Na + 、 Mg 2+ 、 SO 、 Cl - 四种离子其物质的量浓度之比为c (Na + ) :c (Mg 2+ ) :c (Cl - )=3 : 5 : 5 ,若 Na + 浓度为3mol·L -1 。

则 SO 的浓度为A .2mol·L -1B .3mol·L -1C .4mol·L -1D .8mol·L -19、下列反应的离子方程式书写不正确的是A .碳酸钠溶液与足量盐酸反应:+2H + =CO2 ↑+H2OB .碳酸氢钠溶液与足量盐酸反应:+H + =CO2 ↑+H2OC .氢氧化钡溶液与硫酸铜溶液反应: Ba 2+ + =BaSO4↓D .铁与稀盐酸反应: Fe+2H + =Fe 2+ +H2↑10、 NA代表阿伏加德罗常数,下列说法中,正确的是A .在同温同压时,相同体积的任何气体单质所含的原子数目相同B .在常温常压下, 17g 氨气所含电子数目为 10NAC . 11.2L 氮气所含的原子数目为 NAD .1mol·L -1 Na2 SO4溶液中含有 2molNa +11、下列关于粗盐提纯的说法中不正确的是A .滤去不溶性杂质后,将滤液转移至蒸发皿中加热浓缩B .除去粗盐中的 Mg 2+ 应加入过量的 KOH 溶液,然后过滤C .除杂试剂 Na2 CO3溶液应该在 BaCl2溶液之后加入D .粗盐提纯的最后一步应向滤液中加入盐酸,调节溶液至中性12、对于化学反应 A+B=C+D 的下列说法中,正确的是A .若 A 和 C 是单质,B 和 D 是化合物,则该反应一定是置换反应B .若生成物C 和D 分别为盐和水,则该反应一定是中和反应C .若 A 是可溶性碱, B 是可溶性盐,则 C 和D 不可能是两种沉淀D .若 A 、 B 、 C 、 D 都是化合物,则该反应一定是复分解反应13、下列实验目的和操作对应不正确的是实验目的实验操作A 用豆浆做豆腐向煮沸的豆浆中加入盐卤 ( 含 NaCl 、 MgCl2、 CaCl 2等 ) 溶液B 除去 Na2CO3溶液中的NaHCO3向混合液中加入适量 NaOH 溶液C 检验某溶液中含待测液中先加入氯化钡溶液,再加入盐酸,有白色沉淀生成D 检验某溶液中含 Cl —待测液中先加入 AgNO3溶液,再加入稀硝酸,有白色沉淀生成A . AB . BC . CD . D14、往和的混合溶液中加入一定量的铁粉,充分反应后,有金属析出,过滤、洗涤后往滤渣中加入稀盐酸,有无色气体放出,则滤液中的溶质是A .和B .和C .和D .15、有四瓶无色溶液,他们分别是:①稀盐酸②稀硫酸③氢氧化钠溶液④硫酸钠溶液。

2021-2022学年高一上学期期中考试数学试卷含答案解析

2021-2022学年高一上学期期中考试数学试卷含答案解析
第 7 页 共 16 页
为( )
A.7
B.15
C.31
D.63
【解答】解:∵M﹣N={x|x∈M 且 x∉N},集合 A={1,2,3,4},
∴B={(x,y)|x∈A,y∈A}={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,
3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},
2021-2022 学年高一上学期期中考试数学试卷
一.选择题(共 8 小题,满分 40 分,每小题 5 分) 1.(5 分)命题 p:“∃n∈N,则 n2>2n”的否定是( )
A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∀n∈N,n2<2n 2.(5 分)某中学为了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读
B.y=lg10x
C.y t
D.y
t t
【解答】解:对于 A,函数 y=10lgx=x(x>0),与 y=x(x∈R)的定义域不同,不是同
一函数;
对于 B,函数 y=lg10x=x(x∈R),与 y=x(x∈R)的定义域相同,对应关系也相同,是
同一函数;
对于 C,函数 y t x(x∈R),与 y=x(x∈R)的定义域相同,对应关系也相同,是
①函数 y t 的最小值为 2;②若 a>b,则 ac2>bc2;③若 ac2>bc2,则 a>b;④ t
若 a>b,则 < .
其中正确命题为( )
A.①
B.②
C.③
D.④
11.(5 分)已知集合 P={x|﹣2<x≤5},Q={x|k﹣1≤x≤k+1},当 k∈M 时,P∩∁RQ=P

2021-2022学年高一上学期期中考试数学试卷及答案解析

2021-2022学年高一上学期期中考试数学试卷及答案解析

2021-2022学年高一上学期期中考试数学试卷一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 23.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .35.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M6.已知a =312,b =log 2√3,c =log 92,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a7.函数y =4xx 2+1的图象大致为( ) A .B .C.D.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅10.函数f(x)是定义在R上的奇函数,下列命题中正确的有()A.f(0)=0B.若f(x)在[0,+∞)上有最小值﹣1,则f(x)在(﹣∞,0]上有最大值1C.若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数D.若x>0时,f(x)=x2﹣2x,则当x<0时,f(x)=﹣x2﹣2x11.如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积不超过80m2D.若浮萍蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则2t2=t1+t3 12.若集合A={x∈R|ax2﹣3x+2=0}中只有一个元素,则a的取值可以是()A.92B.98C.0D.1三.填空题(共4小题,满分20分,每小题5分)13.若函数f(x)的定义域为[﹣2,2],则函数f(3﹣2x)的定义域为.14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表:销售单价/元6789101112日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为元/桶时能获得最大利润.15.不等式0.1x﹣ln(x﹣1)>0.01的解集为.16.对于函数f(x),若在定义域存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x﹣m•2x﹣3是定义在R上的“局部奇函数”,则实数m的取值范围为.四.解答题(共6小题,满分70分)17.(10分)(1)已知a ≤2,化简:√(a −2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?21.(12分)定义在R上的奇函数f(x)是单调函数,满足f(3)=6,且f(x+y)=f(x)+f(y)(x,y∈R).(1)求f(0),f(1);(2)若对于任意x∈[12,3]都有f(kx2)+f(2x﹣1)<0成立,求实数k的取值范围.22.(12分)已知函数f(x)=2x−12x,g(x)=(4﹣lnx)•lnx+b(b∈R).(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;2021-2022学年高一上学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2解:命题p :∀x ∈N ,x 3>x 2的否定形式是特称命题; ∴¬p :“∃x ∈N ,x 3≤x 2”. 故选:D .3.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:p :|m +1|<1等价于﹣2<m <0,∵幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减, ∴m 2﹣m ﹣1=1,且m <0, 解得m =﹣1,∴p 是q 的必要不充分条件, 故选:B .4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .3解:∵幂函数f (x )=x 2m ﹣1的图象经过点(2,8),∴22m ﹣1=8,∴m =2, 故选:C .5.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M解:①当n =2m ,m ∈Z 时,x =4m +1,m ∈Z , ②当n =2m +1,m ∈Z 时,x =4m +3,m ∈Z , 综合①②得:集合N ={x |x =4m +1或x =4m +3,m ∈Z }, 又集合M ={x |x =4n +1,n ∈Z }, 即M ⫋N , 故选:A . 6.已知a =312,b=log 2√3,c =log 92,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a解;∵a =312∈(1,2),b=log 2√3>log 2√2=12,∵log 2√3<log 22=1, ∴12<b <1,c =log 92<log 93=12, 则a >b >c , 故选:A . 7.函数y =4xx 2+1的图象大致为( ) A .B.C.D.解:函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(﹣x)=−4xx2+1=−f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3解:①a2+3﹣2a=(a﹣1)2+2>0恒成立,所以a2+3>2a,故①正确;②a2+b2﹣2a+2b+2=(a﹣1)2+(b﹣1)2≥0,所以a2+b2≥2(a﹣b﹣1),故②正确;③x2+y2≥2xy,当且仅当x=y时等号成立,故③不正确.故恒成立的个数是2.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅解:在A 项中,依题意可得a =0,且3b +3=0,解得b =﹣1,此时不等式为﹣x +3>0,解得x <3,故A 项错误;在B 项中,取a =1,b =2,可得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 项正确; 在C 项中,依题意可得a <0,且{−1+3=−ba −1×3=3a ,解得{a =−1b =2,符合题意,故C 项正确.在D 选中,当x =0时,ax 2+bx +3=3>0,可得其解集不为∅,故D 选错误; 故选:BC .10.函数f (x )是定义在R 上的奇函数,下列命题中正确的有( ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值﹣1,则f (x )在(﹣∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为减函数D .若x >0时,f (x )=x 2﹣2x ,则当x <0时,f (x )=﹣x 2﹣2x 解:根据题意,依次分析选项:对于A ,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ),当x =0时,有f (0)=﹣f (0),变形可得f (0)=0,A 正确,对于B ,若f (x )在[0,+∞)上有最小值﹣1,即x ≥0时,f (x )≥﹣1,则有﹣x ≤0,f (﹣x )=﹣f (x )≤1,即f (x )在(﹣∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为增函数,C 错误,对于D ,设x <0,则﹣x >0,则f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,则f (x )=﹣f (﹣x )=﹣(x 2+2x )=﹣x 2﹣2x ,D 正确, 故选:ABD .11.如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过80m 2D .若浮萍蔓延到2m 2,4m 2,8m 2所经过的时间分别是t 1,t 2,t 3,则2t 2=t 1+t 3 解:图象可知,函数过点(1,3), ∴a =3,∴函数解析式为y =3t , ∴浮萍每月的增长率为:3t+1−3t3t=2×3t 3t=2,故选项A 正确,∵函数y =3t 是指数函数,是曲线型函数,∴浮萍每月增加的面积不相等,故选项B 错误, 当t =4时,y =34=81>80,故选项C 错误,对于D 选项,∵3t 1=2,3t 2=4,3t 3=8,∴t 1=log 32,t 2=log 34,t 3=log 38, 又∵2log 34=log 316=log 32+log 38,∴2t 2=t 1+t 3,故选项D 正确, 故选:AD .12.若集合A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,则a 的取值可以是( ) A .92B .98C .0D .1解:∵A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,∴若a =0,方程等价为﹣3x +2=0,解得x =23,满足条件. 若a ≠0,则方程满足△=0,即9﹣8a =0,解得a =98.故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.若函数f (x )的定义域为[﹣2,2],则函数f (3﹣2x )的定义域为 [12,52] . 解:∵函数f (x )的定义域为[﹣2,2], ∴由﹣2≤3﹣2x ≤2,解得12≤x ≤52.∴函数f (3﹣2x )的定义域为[12,52].故答案为:[12,52].14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表: 销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为 11.5 元/桶时能获得最大利润. 解:由表可知,销售单价每增加1元,日均销售就减少40桶. 设每桶水的价格为(6+x )元,公司日利润为y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280=﹣40(x −112)2+1490, 所以当x =5.5时,y 取得最大值,所以每桶水定价为11.5元时,公司日利润最大. 故答案为:11.5.15.不等式0.1x ﹣ln (x ﹣1)>0.01的解集为 (1,2) . 解:设函数f (x )=0.1x ﹣ln (x ﹣1), ∵y =0.1x 和y =﹣ln (x ﹣1)均为减函数, ∴函数f (x )为减函数,∵f (2)=0.01,且函数的定义域为(1,+∞), ∴原不等式等价于f (x )>f (2), ∴1<x <2,∴不等式的解集为(1,2). 故答案为:(1,2).16.对于函数f (x ),若在定义域存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则实数m 的取值范围为 [﹣2,+∞) .解:根据题意,由“局部奇函数”的定义可知:若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则方程f (﹣x )=﹣f (x )有解; 即4﹣x ﹣m •2﹣x ﹣3=﹣(4x ﹣m •2x ﹣3)有解;变形可得4x +4﹣x ﹣m (2x +2﹣x )﹣6=0,即(2x +2﹣x )2﹣m (2x +2﹣x )﹣8=0有解即可;设2x +2﹣x =t (t ≥2),则方程等价为t 2﹣mt ﹣8=0在t ≥2时有解;设g (t )=t 2﹣mt ﹣8=0,必有g (2)=4﹣2m ﹣8=﹣2m ﹣4≤0, 解可得:m ≥﹣2,即m 的取值范围为[﹣2,+∞); 故答案为:[﹣2,+∞).四.解答题(共6小题,满分70分) 17.(10分)(1)已知a ≤2,化简:√(a−2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927. 解:(1)∵a ≤2, ∴√(a −2)2+√(a +3)33+(14)−12, =2﹣a +a +3+2=7;(2)3−log 32+log 610⋅(lg2+lg3)+log 927, =12+log 610⋅lg6+32, =12+1+32=3.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.解:(1)∵集合A ={x |1≤x <5},B ={x |2<x <8}∴A ∪B ={x |1≤x <8},(∁U A )={x |x <1或x ≥5},(∁U A )∩B ={x |5≤x <8}(2)∵“x ∈C ”为“x ∈A ”的充分不必要条件,C ={x |a <x ≤a +3}∴C ⫋A ,∴{a +3<5a ≥1,解得1≤a <2,故a的取值范围是[1,2).19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.解:(1)当a=4时,f(x)=x−2x+4x=x+4x−2,当x∈(0,+∞)时,f(x)=x+4x−2≥2√x×4x−2=2,当且仅当x=4x即x=2时等号成立,所以f(x)的最小值为2.(2)根据题意可得x2﹣2x+a>0在x∈(0,+∞)上恒成立,等价于a>﹣x2+2x在x∈(0,+∞)上恒成立,因为g(x)=﹣x2+2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,所以a>1.(3)f(x)=x+ax−2,设0<x1<x2<√a,f(x1)﹣f(x2)=x1﹣x2+ax1−a x2=(x1﹣x2)(1−ax1x2)=(x1−x2)(x1x2−a)x1x2,∵0<x1<x2<√a,∴x1x2<a,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,√a)单调递减,同理可证f(x)在(√a,+∞)单调递增,当0<a≤4时,0<√a≤2,函数f(x)在[2,+∞)上单调递增,f(x)min=f(2)=a 2,当a>4时,√a>2,函数f(x)在[2,√a)上单调递减,在(√a,+∞)上单调递增,f(x)min=f(√a)=2√a−2.所以f(x)min={a2(0<a<4)2√a−2(a>4).20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%. 某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 解:(Ⅰ)由题意可知,每吨厨余垃圾平均加工成本为yx=x 2+3200x+40,x ∈[70,100],而x2+3200x +40≥2√x 2⋅3200x+40=2×40+40=120,当且仅当x2=3200x,即x =80时,每吨厨余垃圾的平均加工成本最低.因为80<100,所以此时该企业处理1吨厨余垃圾处于亏损状态.(Ⅱ)若该企业采用补贴方式①,设该企业每日获利为y 1,y 1=100x −(12x 2+40x +3200)+2300=−12x 2+60x −900=−12(x −60)2+900, 因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为850元. 若该企业采用补贴方式②,设该企业每日获利为y 2,y 2=130x −(12x 2+40x +3200)=−12x 2+90x −3200=−12(x −90)2+850, 因为x ∈[70,100],所以当x =90吨时,企业获得最大利润,为850元.结论:选择方案一,当日加工处理量为70吨时,可以获得最大利润;选择方案二,当日加工处理量为90吨时,获得最大利润, 由于最大利润相同,所以选择两种方案均可.21.(12分)定义在R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y )(x ,y ∈R ). (1)求f (0),f (1);(2)若对于任意x ∈[12,3]都有f (kx 2)+f (2x ﹣1)<0成立,求实数k 的取值范围. 解:(1)因为R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y ).令x =y =0可得f (0)=2f (0), 所以f (0)=0,令x =1,y =1,可得f (2)=2f (1),令x =2,y =1可得f (3)=f (1)+f (2)=3f (1)=6, 所以f (1)=2;(2)∵f (x )是奇函数,且f (kx 2)+f (2x ﹣1)<0在x ∈[12,3]上恒成立, ∴f (kx 2)<f (1﹣2x )在x ∈[12,3]上恒成立,且f (0)=0<f (1)=2; ∴f (x )在R 上是增函数,∴kx 2<1﹣2x 在x ∈[12,3]上恒成立, ∴k <(1x )2−2(1x )在x ∈[12,3]上恒成立, 令g(x)=(1x )2−2(1x )=(1x −1)2−1. 由于12≤x ≤3,∴13≤1x≤2.∴g (x )min =g (1)=﹣1,∴k <﹣1,即实数k 的取值范围为(﹣∞,﹣1). 22.(12分)已知函数f (x )=2x −12x ,g (x )=(4﹣lnx )•lnx +b (b ∈R ). (1)若f (x )>0,求实数x 的取值范围;(2)若存在x 1,x 2∈[1,+∞),使得f (x 1)=g (x 2),求实数b 的取值范围;解:(1)f(x)>0⇔2x−12x>0,∴2x>2﹣x,∴x>﹣x,即x>0.∴实数x的取值范围为(0,+∞).(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B.∵f(x)=2x−12x在[1,+∞)上单调递增,∴A=[32,+∞).∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4(b∈R).∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,依题意可得A∩B≠∅,∴b+4≥32,即b≥−32.∴实数b的取值范围为[−32,+∞).。

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京2024-2025学年度第一学期期中考试(答案在最后)高一年级数学学科本试卷共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.一、选择题(每题4分,共48分)1.已知集合{}12A x Z x =∈-≤<,则下列说法正确的是()A .0A⊆B .0A∉C .3A∈D .1A-∈2.记命题:0,3p x x ∃>≥,则p ⌝为()A .0,3x x ∀><B .0,3x x ∀≤<C .0,3x x ∃≤≥D .0,3x x ∃><3.集合{}0,1的真子集有()个A .1B .2C .3D .44.已知实数,a b c ,在数轴上对应的点如图所示,则下列式子中正确的是()A .b a c a -<+B .2c ab<C .c cb a>D .b c a c<5.下列函数中,在区间(0,)+∞上单调递减的是()A .1y x x=-B .y =C .2xy -=D .22y x x=-6.“12x -<<”是“12x>”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.已知偶函数()f x 在区间(,1]-∞-上单调递减,则下列关系式中成立的是()A .5()(3)(2)2f f f -<<B .5(3)((2)2f f f <-<C .5(2)(3)(2f f f <<-D .5(2)((3)2f f f <-<8.若函数(0,1)xy a a a =>≠且的值域为(0,1],则函数log a x 的图象大致是()A .B .C .D .9.已知函数()21xf x x =--,则不等式()0f x >的解集是()A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,+-∞∞ )10.设 1.2 1.23log 6,2,0.5a b c ===,则()A .b a c <<B .c b a<<C .c a b<<D .a c b<<11.已知函数()f x =R ,则实数a 的取值范围为()A .[0,1]B .[0,1)C .(0,1]D .(0,1)12.设集合A 是集合N *的子集,对于i N *∈,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在N *的两个不同子集,A B ,使得任意i N *∈都满足()0i A B ϕ= 且()1i A B ϕ= ;②任取N *的两个不同子集,A B ,对任意i N *∈都有()()()i i i A B A B ϕϕϕ=⋅ ;③任取N *的两个不同子集,A B ,对任意i N *∈都有()()()i i i A B A B ϕϕϕ=+ .其中所有正确结论的序号是()A .①②B .②③C .①③D .①②③二、填空题(每题5分,共30分)13.函数1()1f x x =-的定义域为________.14.已知函数3()27log x f x x =+,则13f ⎛⎫= ⎪⎝⎭________.15.若()g x 在R 上是增函数,能够说明“()y xg x =在R 上也是增函数”是假命题的一个()g x 的解析式()g x =________.16.函数221,1()2,1x x f x x x x ⎧-≤⎪=⎨->⎪⎩的值域为________.17.已知下列四个函数:1,,ln ,x y x y y x y e x====.从中选出两个函数分别记为()f x 和()g x ,若()F x =()()f x g x +的图象如图所示,则()F x =________.18.已知函数2,(),x a x a f x x x a+≤⎧=⎨>⎩.若存在非零实数0x ,使得00()()f x f x -=-成立,则实数a 的取值范围为________.三、解答题(每题12分,共72分)19.已知集合{}{}3,15A x a x a B x x x =≤≤+=<->或.(Ⅰ)若2a =-,求集合()()R R B A ;I 痧(Ⅱ)若A B A = ,求a 的取值范围.20.分别求下列关于x 的不等式的解集:(Ⅰ)2610x x --<;(Ⅱ)2(2)20x a x a +--≤.21.为打赢打好脱贫攻坚战,实现建档立卡贫困人员稳定增收,某地区把特色养殖确定为脱贫特色主导产业,助力乡村振兴.现计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留1.5米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为x 米,如图所示.(I )将两个养殖池的总面积y 表示为x 的函数,并写出定义域;(Ⅱ)当温室的边长x 取何值时,总面积y 最大?最大值是多少?22.已知函数()2,f x x x a a R =--∈.(I )当2a =时,直接写出函数()f x 的单调递增区间;(Ⅱ)当2a >时,求函数()f x 在区间[1,2]上的最小值.23.已知()y f x =是定义在[-3,3]上的奇函数,当[3,0]x ∈-]时,1()()94xx af x a R =+∈.(I )求()y f x =在(0,3]上的解析式;(Ⅱ)当1[1,2x ∈--时,不等式11()34x x m f x -≤-恒成立,求实数m 的取值范围.24.若集合A 具有以下性质:①0,1A A ∈∈;②若,x y A ∈,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“好集”.(I )分别判断集合{}1,0,1B =-,有理数集Q 是否是“好集”,并说明理由;(Ⅱ)设集合A 是“好集”,求证:若,x y A ∈,则x y A +∈;(Ⅲ)对任意的一个“好集”A ,分别判断下面命题的真假,并说明理由.命题p :若,x y A ∈,则必有xy A ∈;命题q :若,x y A ∈,且0x ≠,则必有yA x∈.参考答案一、选择题DACDC ,BDBDC ,BA 二、填空题13.{}1x x ≠或写为(,1)(1,)-∞+∞ 14.215.x (答案不唯一)16.(1,+-∞)17.1x e x+18.1[2,4-三、解答题19.(I )(1,5](Ⅱ)(,4)(5,)-∞-+∞ 20.(I )11(,)32-(Ⅱ)2a <-时,解集为[2,a -];2a =-时,解集为{}2;2a >-时,解集为[a -,2].21.解:(I )依题意得温室的另一边长为1500x米.因此养殖池的总面积1500(3)(5)y x x=--,因为150030,50x x->->,所以3300x <<.所以定义域为{}3300x x <<.(Ⅱ)15004500(3)(5)1515(5)151515153001215y x x x x =--=-+≤-=-=,当且仅当45005x x=,即30x =时上式等号成立,当温室的边长x 为30米时,总面积y 取最大值为1215平方米.22.解:(1)当2a =时,(2)2,2()22(2)2,2x x x f x x x x x x --≥⎧=--=⎨--<⎩,22(1)3,2()(1)1,2x x f x x x ⎧--≥⎪=⎨---<⎪⎩,由二次函数的性质知,单调递增区间为(-∞,1],[2,+∞).或写为(-∞,1),(2,+∞)(Ⅱ)∵2a >,x ∈[1,2]时,所以2()()22f x x a x x ax =--=-+-228(24a a x -=-+,当3122a <≤,即23a <≤时,min ()(2)26f x f a ==-;当322a >,即3a >时,min ()(1)3f x f a ==-;∴min26,23()3,3a a f x a a -<≤⎧=⎨->⎩.23.(I )因为()y f x =是定义在[-3,3]上的奇函数,x ∈[-3,0]时,1()()94x xaf x a R =+∈,所以001(0)094a f =+=,解得1a =-,所以x ∈(-3,0]时,11()94x xf x =-当(0,3]x ∈时,[3,0)x -∈-,所以11()9494x x x x f x ---=-=-,又()()49xxf x f x =--=-,即()y f x =在(0,3]上的解析式为()49xxf x =-,(Ⅱ)因为1[1,2x ∈--时,11()94x xf x =-,所以11()34x x m f x -≤-可化为11119434x x x x m --≤-,整理得13(334xx m ⎛⎫≥+⋅ ⎪⎝⎭,令13()334xxg x ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭,根据指数函数单调性可得,所以()g x 也是减函数.所以11max13()(1)3734g x g --⎛⎫⎛⎫=-=+⋅= ⎪ ⎪⎝⎭⎝⎭,所以7m ≥,故实数m 的取值范围是[7,+∞).24.解:(I )集合B 不是“好集”.理由是:假设集合B 是“好集”.因为1,1B B -∈∈,所以112B --=-∈.这与2B -∉矛盾.有理数集Q 是“好集”.因为0,1Q Q ∈∈,对任意的,x y Q ∈,有x y Q -∈,且0x ≠时,1Q x∈.所以有理数集Q 是“好集”.(Ⅱ)因为集合A 是“好集”,所以0A ∈.若,x y A ∈,则0y A -∈,即y A -∈.所以()x y A --∈,即x y A +∈.(Ⅲ)命题,p q 均为真命题.理由如下:对任意一个“好集”A ,任取,x y A ∈,若,x y 中有0或1时,显然xy A ∈.下设,x y 均不为0,1.由定义可知:111,,1x A x x-∈-.所以111A x x -∈-,即1(1)A x x ∈-.所以(1)x x A -∈.由(Ⅱ)可得:(1)x x x A -+∈,即2x A ∈.同理可得2y A ∈.若0x y +=或1x y +=,则显然2()x y A +∈.若0x y +≠且1x y +≠,则2()x y A +∈.所以2222()xy x y x y A =+--∈.所以12A xy∈.由(Ⅱ)可得:11122A xy xy xy=+∈.所以xy A ∈.综上可知,xy A ∈,即命题p 为真命题.若,x y A ∈,且0x ≠,则1A x∈.所以1y y A x x=⋅∈,即命题q 为真命题.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷(答案在最后)注意事项1.本试卷共四页,共23道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.出题人:高一备课组审核人:高一备课组一、选择题共12小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,{02}A B x x ==<<,则A B = ()A.{1}B.{1,2}C.{0,1,2}D.{02}x x <≤【答案】A 【解析】【分析】根据交集的运算方法即可计算.【详解】∵集合{}1,2,{02}A B x x ==<<,∴A B = {1}.故选:A .2.设命题2:N,25p n n n ∃∈>+,则p 的否定为()A.2N,25n n n ∀∈>+B.2N,25n n n ∀∈≤+ C.2N,25n n n ∃∈≤+ D.2N,25n n n ∃∈<+【答案】B 【解析】【分析】由特称命题的否定为将存在改任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题,则原命题的否定为2N,25n n n ∀∈≤+.故选:B 3.方程组221{9x y x y +=-=的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【答案】D 【解析】【分析】消元法解方程组即可求解【详解】解方程组221{9x y x y +=-=,得()2219x x --=,解得54x y =⎧⎨=-⎩,故方程组的解集为{(5,-4)},故选:D.【点睛】本题考查解二元二次方程组及列举法表示集合,注意解集是点集的形式,是基础题4.已知全集U =R ,集合{}2M x x =>,{}13N x x =<<,那么下面的维恩图中,阴影部分所表示的集合为()A.{}2x x > B.{}2x x ≤ C.{}2x x > D.{}1x x ≤【答案】D 【解析】【分析】根据并集和补集的知识求得正确答案.【详解】{}|1M N x x => ,阴影部分表示集合为(){}|1M N x x ⋃=≤R ð.故选:D 5.不等式302xx -<+的解集为()A.{|2}x x <-B.{|23}x x -<< C.{|2x x <-或3}x > D.{|3}x x >【答案】C【分析】将不等式作等价转换,再求解集即可.【详解】30(2)(3)02xx x x -<⇒+->+,故解集为{|2x x <-或3}x >.故选:C 6.函数26()f x x x=-零点所在的一个区间是()A.(2,1)-- B.(0,1)C.(1,2)D.(2,)+∞【答案】C 【解析】【分析】根据零点存在性定理判断即可.【详解】令26()0f x x x=-=,解得:1360x =>,只有一个零点.而()611501f =-=>,()624102f =-=-<,由零点存在性定理知,函数26()f x x x=-零点所在的一个区间是(1,2).故选:C.7.下列函数中,在区间(0,1)上是增函数的是()A.||y x = B.3y x=- C.1y =-D.24y x =-+【答案】A 【解析】【分析】运用增函数定义,结合函数图像判断即可.【详解】对于A,区间()0,1,y x x ==,在()0,1单调递增,A 正确;对于B,区间()0,1,3y x =-,在()0,1单调递减,B 错误;对于C,区间()0,1,1y =-()0,1单调递减,C 错误;对于D,区间()0,1,24y x =-+,在()0,1单调递减,D 错误.故选:A.8.如果函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,那么()A.f (2)<f (1)<f (4)B.f (1)<f (2)<f (4)C.f (4)<f (2)<f (1)D.f (2)<f (4)<f (1)【答案】A【分析】根据给定条件可得函数()f x 图象对称轴为2x =,再借助对称性、单调性即可比较判断作答.【详解】因函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,则其图象对称轴为2x =,且()f x 在[2,)+∞上递增,于是得(2)(3)(4)f f f <<,而(1)(3)f f =,所以(2)(1)(4)f f f <<.故选:A9.已知0a >,0b >,且28a b +=,那么ab 的最大值等于A.4 B.8C.16D.32【答案】B 【解析】【分析】利用基本不等式可求得ab 的最大值.【详解】由基本不等式可得82a b =+≥8ab ≤,当且仅当2a b =时,等号成立,因此,ab 的最大值为8.故选:B.【点睛】本题考查利用基本不等式求最值,考查计算能力,属于基础题.10.已知,,,R a b c d ∈,则“a c b d +>+”是“a b >且c d >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质,分析条件间的推出关系判断充分、必要性.【详解】当3,2,0,2a b c d ==-==时,a c b d +>+,但c d >不成立,充分性不成立;若a b >且c d >,则必有a c b d +>+,必要性成立;所以“a c b d +>+”是“a b >且c d >”的必要不充分条件.故选:B11.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]--C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在 腊语 上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.12.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足:()()()123f x f x f x ==.则123x x x ++的取值范围是()A.11,66⎛⎤⎥⎝⎦B.11,63⎛⎫⎪⎝⎭C.2026,33⎛⎫⎪⎝⎭ D.2026,33⎛⎤⎥⎝⎦【答案】B 【解析】【分析】根据解析式画出函数草图,结合零点的情况及一次、二次函数性质得236x x +=、1703x -<<,即可得答案.【详解】由解析式,可得如下()f x 图象,令()()()123f x f x f x k ===,要满足题设,则34-<<k ,若123x x x <<,则236x x +=,令343x +=-,则73x =-,故1703x -<<,综上,123x x x ++范围是11,63⎛⎫⎪⎝⎭.故选:B二、填空题共5小题,每小题5分,共25分.13.函数()2f x x =-的定义域是_______.【答案】[)2,+∞【解析】【分析】函数()2f x x =-的定义域满足20x -≥,解得答案.【详解】函数()2f x x =-的定义域满足20x -≥,解得2x ≥,故函数定义域为[)2,+∞.故答案为:[)2,+∞14.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________.【答案】14-.【解析】【分析】由于函数是奇函数,所以11(()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111(()224f ==,因为()f x 是定义在R 上的奇函数,所以111((224f f -=-=-,故答案为:14-15.设函数22y x ax =+在区间(2,)+∞上是增函数,则实数a 的取值范围是______.【答案】2a ≥-【解析】【分析】由题意可知,(2,)+∞为函数单调递增区间的子集,根据子集关系可以求得.【详解】由函数22y x ax =+可知,对称轴为x a =-,因为在区间(2,)+∞上是增函数,则2a -≤,解得2a ≥-,故实数a 的取值范围是2a ≥-.故答案为:2a ≥-16.命题“2[1,2],10x x ax ∀∈-+<”为假命题的一个充分不必要条件是______.【答案】52a <(答案不唯一)【解析】【分析】问题化为1[1,2],x a x x∃∈≤+为真命题,利用对勾函数的单调性求最大值,即可得52a ≤,结合充分不必要条件写出一个符合要求的参数范围即可.【详解】由题设,1[1,2],x a x x ∀∈>+为假命题,故1[1,2],x a x x∃∈≤+为真命题,又1y x x =+在[1,2]x ∈上递增,则max 52y =,只需52a ≤即可,所以,原命题为假命题的一个充分不必要条件是52a <.故答案为:52a <(答案不唯一)17.设函数()()()2,1,242, 1.a x f x x x a x a x ⎧-<⎪=-⎨⎪--≥⎩①若0a =,则(1)2f =;②若1a =,则()f x 的最小值为1-;③存在实数a ,使得()f x 为R 上的增函数;④若()f x 恰有2个零点,则实数a 的取值范围是1,1[2,)2⎡⎫+∞⎪⎢⎣⎭.其中所有正确结论的序号是______.【答案】②③④【解析】【分析】①当0a =时,1x =代入()4()(2)f x x a x a =--中求值即可;②当1a =时,得到21,<1()24(1)(2),1x f x x x x x ⎧-⎪=-⎨⎪--≥⎩.分情况讨论求出各段最小值,最后得到()f x 的最小值.③保证两端都要增,端点考虑即可;④分类讨论,结合二次函数性质可解.【详解】①当0a =时,1x =代入()4()(2)f x x a x a =--中,得到(1)4(10)(10)42f =⨯-⨯-=≠,所以①错误.②当1a =时,21,<1()24(1)(2),1x f x xx x x ⎧-⎪=-⎨⎪--≥⎩.当<1x 时,则21x ->,,所以0<222<x-,1()1f x -<<.当1x ≥时,2231()4(1)(2)4(32)4()24f x x x x x x ⎡⎤=--=-+=--⎢⎥⎣⎦.对于二次函数2314()24y x ⎡⎤=--⎢⎥⎣⎦,对称轴为32x =,在32x =时取得最小值3()12f =-.综上,可得()f x 的最小值为1-,所以②正确.③当1x <时,22()22f x a a x x -=-=---是增函数.当1x ≥时,22()4()(2)432f x x a x a x ax a ⎡⎤=--=-+⎣⎦,其对称轴为32ax =.要使()f x 在R 上是增函数,则24(1)(12)21312a a a a ⎧-≤--⎪⎪-⎨⎪≤⎪⎩.解24(1)(12)21a a a -≤---,即281120a a -+≥,解得115711571616a a +-><或.解312a ≤得23a ≤.显然交集有元素.故存在a 能同时满足这两个条件使得函数在R 上单调递增,所以③正确.④当<1x 时,令2()02f x a x =-=-,则22a x =-,2(2)x a =-,22x a=-.若221x a=-<,即02a <<时,函数()f x 在<1x 时有一个零点.当1x ≥时,()4()(2)f x x a x a =--,令()0f x =,则x a =或2x a =.若1a <且21a ≥,即112a ≤<时,()f x 在1x ≥时有一个零点,结合1x <时的情况,此时()f x 恰有2个零点.若1a ≥,要使()f x 恰有2个零点,则21a >且22a a =-(无解)或者21a >且222a a=-(无解)或者1a >且21a >且221a-≥(即2a ≥).综上,实数a 的取值范围是1[,1)[2,)2+∞ ,所以④正确.故答案为:②③④.三、解答题共6小题,共77分.解答应写出文字说明,演算步骤或证明过程.18.关于x 的一元二次方程()22230x k x k +++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若12111x x +=-,求k 的值.【答案】(1)3(,)4-+∞(2)3【解析】【分析】(1)根据一元二次方程的性质,结合0∆>,即可求解;(2)根据题意,利用根与系数的关系,求得2121223,x x k k x x +=--=,结合12111x x +=-,列出方程,求得k 的值,即可求解.【小问1详解】由一元二次方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,则满足()222340k k ∆=+->,解得34k >-,即实数k 的取值范围为3(,)4-+∞.【小问2详解】因为方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,由(1)知34k >-,且2121223,x x k k x x +=--=,因为12111x x +=-,可得12121x x x x +=-,即1212x x x x +=-,可得223k k --=-,即223k k +=,解得3k =或1k =-,因为34k >-,所以3k =.19.设全集R U =,集合{}2|20A x x x =--<,集合{|||1}B x x m =->,其中R m ∈.(1)当1m =时,求()U A B A B ⋂⋃,ð;(2)若A B ⊆,求m 的取值范围.【答案】(1){|10}A B x x =-<< ,(){12}U A B x =-<≤ ð;(2)3m ≥或2m ≤-.【解析】【分析】(1)由题设得{|12}A x x =-<<,{|0B x x =<或2}x >,根据集合交并补运算求集合;(2)根据包含关系有12m -≥或11m +≤-,即可求参数范围.【小问1详解】由题设{}|(2)(1)0{|12}A x x x x x =-+<=-<<,{|1B x x m =<-或1}x m >+,当1m =时,{|0B x x =<或2}x >,故{|10}A B x x =-<< ,且{|02}U B x x =≤≤ð,故(){12}U A B x =-<≤ ð.【小问2详解】由A B ⊆,则12m -≥或11m +≤-,可得3m ≥或2m ≤-.20.已知函数2()(2)2f x x a x a =-++.(1)当0a =时,分别求出函数()f x 在[1,2]-上的最大值和最小值;(2)求关于x 的不等式()0f x <的解集.【答案】(1)最大值为(1)3f -=,最小值为(1)1f =-;(2)答案见解析.【解析】【分析】(1)根据二次函数的图象及性质确定区间上的最大值和最小值即可;(2)分类讨论求含参一元二次不等式解集.【小问1详解】由题设2()2f x x x =-,开口向上且对称轴为1x =,结合二次函数的图象,在[1,2]-上最大值为(1)3f -=,最小值为(1)1f =-.【小问2详解】由题意2(2)2()(2)0x a x a x a x -++=--<,当2a <时,解集为(,2)a ;当2a =时,解集为∅;当2a >时,解集为(2,)a .21.已知函数21()x f x x+=.(1)判断函数的奇偶性,并加以证明;(2)用定义证明()f x 在(0,1)上是减函数;(3)若函数()y f x m =-在12,3⎡⎤⎢⎥⎣⎦上有两个零点,求m 的范围.(直接写出答案)【答案】(1)()f x 是奇函数,理由见解析(2)答案见解析(3)5(2,]2【解析】【分析】(1)对于本题,需要先求出()f x -,然后与()f x 和()f x -进行比较.(2)利用函数单调性的定义,设12,(0,1)x x ∈且12x x <,然后计算12()()f x f x -,根据其正负判断函数的单调性.(3)函数()y f x m =-在1[,3]2上有两个零点,等价于()y f x =与y m =的图象在1[,3]2上有两个交点,需要先分析()f x 在1[,3]2上的单调性和值域,从而确定m 的范围.【小问1详解】函数21()x f x x+=的定义域为(,0)(0,)-∞+∞ ,关于原点对称.22()11()()x x f x f x x x-++-==-=--.根据奇函数的定义,对于定义域内任意x ,()()f x f x -=-,所以函数()f x 是奇函数.【小问2详解】设12,(0,1)x x ∈且12x x <.则222212122112121211(1)(1)()()x x x x x x f x f x x x x x +++-+-=-=,对分子进行化简:222212211222111212212112(1)(1)()()()(1)x x x x x x x x x x x x x x x x x x x x +-+=+--=-+-=--.因为12,(0,1)x x ∈,所以12(0,1)x x ∈,1210x x ->,210x x ->,120x x >.所以21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >.所以()f x 在(0,1)上是减函数.【小问3详解】1,32x ⎡⎤∈⎢⎥⎣⎦时,211()2x f x x x x+==+≥,当且仅当1x =取得最小值.当121,[,1)2x x ∈时,且12x x <,121[,1)4x x ∈,1210x x ->,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >,则当1)[1,2x ∈()f x 单调递减;当12,(1,3]x x ∈时,且12x x <,12(1,9]x x ∈,1210x x -<,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=<,即12()()f x f x <,则当(1,3]x ∈,()f x 单调递增;并且215()11524()112222f +===,(1)2f =,23110(3)33f +==.因为函数()y f x m =-在1[,3]2上有两个零点,所以5(2,]2m ∈.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【解析】【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.23.设函数()f x 是定义在R 上的函数,对任意的实数,x y 都有()(1)(1)f x y f x f y +=+⋅-,且当0x >时()f x 的取值范围是(0,1).(1)求证:存在实数m 使得()1f m =;(2)当0x <时,求()f x 的取值范围;(3)判断函数()f x 的单调性,并予以证明.【答案】(1)证明见解析;(2)(1,)+∞;(3)()f x 单调递减,证明见解析.【解析】【分析】(1)令1x y ==结合题设可得(0)1f =,即可证;(2)令y x =-得到1(1)(1)f x f x --=+,若10t x =+>,结合已知即可求范围;(3)令1x x y =+>21x x =+,应用函数单调性定义求证即可.【小问1详解】令1x y ==,则(11)(11)(11)(2)(2)(0)f f f f f f +=+⋅-⇒=,当0x >时()f x 的取值范围是(0,1),即(2)0f ≠,故(0)1f =,显然存在0m =,使()1f m =,得证;【小问2详解】令y x =-,则()(1)(1)f x x f x f x -=+⋅--,即(1)(1)(0)1f x f x f +⋅--==,若10t x =+>,则10x t --=-<,故1(1)(1)f x f x --=+,即1()()f t f t -=,而()(0,1)f t ∈,则()(1,)f t -∈+∞,当0x <时,()f x 取值范围是(1,)+∞;【小问3详解】()f x 单调递减,证明如下:令1x x y =+>21x x =+,则1210x x y -=->,所以1212()()()f x f x f x x =⋅-,则12212()()()[()1]f x f x f x f x x -=--,由题设及(2)知,212()0,()10f x f x x >--<,则12())0(f x f x -<,即12()()f x f x <,所以()f x 单调递减,得证.。

北京市第四中学2021-2022学年高一上学期期中考试物理试题 Word版含答案

北京市第四中学2021-2022学年高一上学期期中考试物理试题 Word版含答案

北京四中2021-2022学年上学期高中一班级期中考试物理试卷(试卷满分为100分,考试时间为100分钟)一、选择题(本大题共14小题;每小题3分,共42分。

在每小题给出的四个选项中,有一个选项或多个选项正确。

全部选对的得3分,选不全的得2分,有选错或不答的得0分。

)1. 下列物理量都是矢量的是A. 路程和位移B. 瞬时速度和速度变化量C. 平均速度和加速度D. 速度变化率和速率2. 作用在同一个物体上的两个共点力,一个力的大小是2N,另一个力的大小是10N,它们合力的大小可能是A. 6NB. 8NC. 10ND. 12N3.已知力F1、F2的合力为F,下列能反映三者关系的矢量图是4. 如图所示,用光电计时装置可以测出气垫导轨上滑块的瞬时速度。

已知固定在滑块上的遮光板的宽度为3.0cm,遮光板经过光电门的遮光时间为0.11s,则滑块经过光电门位置时的速度大小为A. 0.27m/sB. 27m /sC. 0.037m/sD. 3.7m/s5. 关于加速度,下列说法正确的是A. 物体运动时速度越大,其加速度就越大B. 物体运动时速度变化量越大,其加速度就越大C. 物体运动时速度变化越快,其加速度就越大D. 物体运动时速度变化率越大,其加速度就越大6. 如图所示,轻弹簧的两端各受20N拉力F的作用,弹簧伸长了10cm(在弹性限度内).那么下列说法中正确的是A. 弹簧所受的合力为零B. 该弹簧的劲度系数k为200N/mC. 弹簧所受的合力为20ND.依据公式k=F/x,弹簧的劲度系数k会随弹簧弹力F的增大而增大7. 如图所示,将两个完全相同的均匀长方体物块A、B叠放在一起置于水平地面上。

两物块的重力均为20N。

现用弹簧秤竖直向上拉物块A,当弹簧秤示数为10N时,下列说法中正确的是A. 物块A对物块B的压力大小为10NB. 物块B对地面的压力大小等于20NC. 地面与物块B之间存在静摩擦力D. 物块A与物块B之间存在静摩擦力8. 下图为A、B两人在同始终线上运动的位移图象,下列关于图象的分析正确的是A. 0~2 s 内,A 、B 两人同向而行 B .0~2 s 内,A 的速度比B 的速度大 C .0~5 s 内,A 走的路程比B 走的路程少 D. 0~5 s 内,A 的位移比B 的位移大9. 如图所示为直升飞机由地面垂直起飞过程的速度时间图象,则关于飞机的运动,下面说法正确的是A. 0~5s 内飞机做匀加速直线运动B. 5~15s 内飞机在空中处于悬停状态C. 15~20s 内飞机匀减速下降D. 0~25s 内飞机上升的最大高度为300m10. 汽车以20m /s 的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加 速度大小为5m /s 2,则它关闭发动机后通过x=37.5m 所需的时间为 A. 3s B. 4s C. 5s D. 6s 11. 已知两个共点力的合力为50N ,分力1F 的方向与合力F 的方向成30°角,分力2F 的大小为30N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京四中2021-2022学年上学期高中一班级期中考试数学试卷试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分 考试时间:120分钟 卷(Ⅰ)一、选择题:(本大题共10小题,每小题5分,共50分) 1. 设集合A={1,2,6},B={2,4},则A ∪B= A. {2}B. {1,2,4}C. {1,2,4,6}D. {2,4}2. 函数y=224x -的定义域为A. (-2,2)B. (-∞,-2)∪(2,+∞)C. [-2,2]D. (-∞,-2] ∪[2,+∞)3.43662log 2log 98+-=A. 14B. -14C. 12D. -124. 若函数f (x )= 2312325x x x x ⎧--≤≤⎪⎨-<≤⎪⎩,则方程f (x )=1的解是A.2或2B.2或3C.2或4 D. ±2或45. 若函数f (x )=x 3,则函数y=f (-2x )在其定义域上是A. 单调递增的偶函数B. 单调递增的奇函数C. 单调递减的偶函数D. 单调递减的奇函数 6. 若432a =,b=254,c=3log 0.2,则a ,b ,c 的大小关系是A. a<b<cB. c<b<aC. b<a<cD. c<a<b7. 函数2343x xy -+-=的单调递增区间是A. (-∞,2]B. [2,+∞)C. [1,2]D. [1,3]8. 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽搁了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请同学画出自行车行进路程s (千米)与行进时间x (秒)的函数图象的示意图,你认为正确的是9. 已知(10)xf x =,则f (5)= A. 510B. 105C.5log 10D. lg510. 某同学在争辩函数()||1xf x x =+(x ∈R)时,分别给出下面几个结论:①函数f (x )是奇函数;②函数f (x )的值域为(-1,1);③函数f (x )在R上是增函数;其中正确结论的序号是 A. ①② B. ①③ C. ②③ D. ①②③二、填空题:(本大题共6小题,每小题4分,共24分) 11. 若集合A=[0,2],集合B=[1,5],则A ∩B=_________. 12. 函数y=2x-4的零点是_________. 13. 函数f (x )=3log (21)x -(x ∈[1,2])的值域为______________.14. 函数f (x )=3x-1,若f[g (x )]=2x+3,则一次函数g (x )=______________.15. 若函数f (x )= (0,1)x a a a >≠的反函数的图象过点(2,-1),则a=_______.16. 若函数21()2x xf x a +=-是奇函数,则使f (x )>3成立的x 的取值范围是_______.三、解答题(本大题共3小题,共26分) 17. (本小题满分6分)已知:函数f (x )=(x-2)(x+a )(a ∈R),f (x )的图象关于直线x=1对称. (Ⅰ)求a 的值;(Ⅱ)求f (x )在区间[0,3]上的最小值.18. (本小题满分10分)某家庭进行理财投资,依据长期收益率市场猜测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么安排资金能使投资获得最大收益,最大收益是多少万元?19. (本小题满分10分)已知:函数f(x)= log(1)log(1)a ax x+--(a>0且a≠1).(Ⅰ)求函数f(x)的定义域;(Ⅱ)推断函数f(x)的奇偶性,并加以证明;(Ⅲ)设a=12,解不等式f(x)>0.卷(Ⅱ)1. 设集合A=2{|0}x x x-=,B={x|x-2=0},则2{|(x)(2)0}x x x--≠=A.)(BACR⋂ B.BACR⋃)( C. )(BCAR⋃ D. )(BACR⋃2. 已知函数f(x)=21311log[()2()2]33-⋅-x x,则满足f(x)<0的x的取值范围是A. (-∞,0)B. (0,+∞)C. (-∞,-1)D. (-1,+∞)3. 下表是某次测量中两个变量x,y的一组数据,若将y表示为关于x的函数,则最可能的函数模型是x 2 3 4 5 6 7 8 9y 0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型4. 用二分法求方程213x x+=0,1),则下一步可确定这个根所在的区间为_________.5. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)= 22x x-,假如函数g(x)=f(x)-m恰有4个零点,则实数m的取值范围是________.6. 函数f(x)=(1)xaa log x++(a>0且a≠1)在区间[0,1]上的最大值与最小值之和为a,则a的值是___________.7. 已知函数f(x)=2x bx c-+,若f(1-x)=f(1+x),且f(0)=3.(Ⅰ)求b,c的值;(Ⅱ)试比较()f(c)m mf b与(m∈R)的大小.8. 集合A是由满足以下性质的函数f(x)组成的:对于任意x≥0,f(x)∈[-2,4]且f(x)在[0,+∞)上是增函数.(Ⅰ)试推断1()2f x x=与21()46()2=-⋅xf x(x≥0)是否属于集合A,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数f(x),证明:对于任意的x≥0,都有f(x)+f(x+2)<2f (x+1).【参考答案】 卷(Ⅰ)CABCDBACDD11. [1,2]; 12. 2; 13. [0,1];14. 2433x +; 15. 12;16. (0,1)17. 解:2()(2)()(2)2f x x x a x a x a =-+=---, (Ⅰ)函数f (x )图象的对称轴为x=22a-=1,则a=0;3分(Ⅱ)由(Ⅰ)得22()2(1)1f x x x x =-=--, 由于x=1∈[0,3],所以min()f x =f (1)=-1.6分18. 解:(Ⅰ)投资债券类稳健型产品的收益满足函数:y=kx (x>0), 由题知,当x=1时,y=0.125,则k=0.125,即y=0.125x ,2分投资股票类风险型产品的收益满足函数:y=k(x>0), 由题知,当x=1时,y=0.5,则k=0.5,即4分(Ⅱ)设投资债券类稳健型产品x 万元(0≤x ≤20),则投资股票类风险型产品20-x 万元, 由题知总收益0≤x ≤20),6分2222t 2011510.125(20t )0.5(2)3,8228t x t y t t t t =≤≤=-=-+=-++=--+令则max 2,16,y 3()t x ===当即时万元9分答:投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元.10分19. 解:(Ⅰ)由题知:1010x x +>⎧⎨->⎩,解得:-1<x<1,所以函数f (x )的定义域为(-1,1);3分(Ⅱ)奇函数,证明:由于函数f (x )的定义域为(-1,1),所以对任意x ∈(-1,1), f (-x )=log (1)log (1())a a x x -+---=[log (1)log (1)]a a x x -+--=-f (x )所以函数f (x )是奇函数;6分(Ⅲ)由题知:1122log (1)log (1),x x +>-即有101011x x x x +>⎧⎪->⎨⎪+<-⎩,解得:-1<x<0,所以不等式f (x )>0的解集为{x|-1<x<0}.10分卷(Ⅱ)D CD4.1(0,)2; 5. 0<m<1;6. 12;7. 解:(Ⅰ)由已知,二次函数的对称轴x=2b=1,解得b=2,又f (0)=c=3, 综上,b=2,c=3;4分(Ⅱ)由(Ⅰ)知,f (x )=x 2-2x+3,所以,f (x )在区间(-∞,1)单调递减,在区间(1,+∞)单调递增. 当m>0时,3m>2m>1,所以f (2m)<f (3m).当m=0时,3m =2m =1,所以f (2m )=f (3m). 当m<0时,3m<2m<1,所以f (2m)>f (3m).10分8. 解:(Ⅰ)1f ()/∈x A,2f ()x A∈,理由如下:由于1f (49)=5>4,1f (49)∉[-2,4],所以1f (x )∉A.对于21f ()46()(0),2=-⋅≥x x x由于1()2xy =在[0,+∞)上是减函数,且其值域为(0,1], 所以21()46()2=-⋅xf x 在区间[0,+∞)上是增函数. 所以2()f x ≥f (0)=-2,且2()f x =146()2-⋅x<4, 所以对于任意x ≥0,f (x )∈[-2,4]. 所以2()f x ∈A 6分(Ⅱ)由(Ⅰ)得:2131(2)46()4()222++=-⋅=-⋅x x f x ,f (x+1)=4-116()2+⋅x =4- 3·1()2x,所以2f (x+1)-[f (x )+f (x+2)]=2[4-3·1()2x ]-[4-6·1()2x +4-32·1()2x ]=32·1()2x>0,所以对于任意的x ≥0,都有f (x )+f (x+2)<2f (x+1).10分。

相关文档
最新文档