第四章_流动阻力与水头损失

合集下载

流体力学第四章 流动阻力及能量损失

流体力学第四章 流动阻力及能量损失

d
d
d
d1 d2
d
S2
S1
S1
【例】 有一长方形风道长 l 40m,截面积A= 0.5×0.8m2
,管壁绝对粗糙度 K= 0.19mm,输送t=20℃的空气,流
量Q 21600m3/h,试求在此段风道中的沿程损失。
【解】 平均流速
当量直径
V Q 21600 15 A 3600 0.5 0.8
and 2(If λ=0.02) ?
【例 】 圆管直径 d m20m0,管长 l 10m0,0输送运动黏度
cm2/s的石油1,.6流量
m3/h,求沿Q程损 1失44。
【解】 判别流动状态
Vd 1.270.2
Re
1587.5 2000
1.6104
为层流
式中 V
4Q
d 2
4 144 36003.14 0.22
第四章 流动阻力及水头损失
本章主要研究恒定流动时,流动阻力和水 头损失的规律。对于粘性流体的两种流态—— 层流与紊流,通常可用下临界雷诺数来判别, 它在管道与渠道内流动的阻力规律和水头损失 的计算方法是不同的。对于流速,圆管层流为 旋转抛物面分布,而圆管紊流的粘性底层为线 性分布,紊流核心区为对数规律分布或指数规 律分布。对于水头损失的计算,层流不用分区, 而紊流通常需分为水力光滑管区、水力粗糙管 区及过渡区来考虑。
式中: ——沿程阻力系数。 •物理意义:圆管层流中,沿程水头损失与断面平均流速的一次
方成正比,而与管壁粗糙度无关。 •适用范围: 1.只适用于均匀流情况,在管路进口附近无效。 2.推导中引用了层流的流速分布公式,但可扩展到紊流,紊流 时l值不是常数。
四、圆管流的起始段
图中起始段长度l’:从进

流动阻力与水头损失 工程流体力学.ppt

流动阻力与水头损失  工程流体力学.ppt

uz t
uz x
dx dt
uz y
dy dt
uz z
dz dt
f 1 p 2u u +u • u
dt
质量力 压差力
粘性力
当地加 速度力
迁移加速度
§4-4 相似原理与量纲分析
一、量纲基本概念
单位(unit) :量度各种物理量数值大小的标准量,称单位。如长度
单位为m或cm等。——“量”的表征。
工程流体力学
第四章 流动阻力与水头损失
§4-1管路中流动阻力产生的原因及分类
一、阻力产生的原因 1)流体质点与管壁之间的摩擦撞击 2)管壁的粗糙度,引起涡流 3)管路的长度
湿周 R
水力半径
=2R
A Rh X
§4-1管路中流动阻力产生的原因及分类
一、流动阻力的分类
沿程水头损失 水头损失
局部水头损失
vc ——上临界流速
O
lgvc lgvc’ lgv
层 流: 过渡流: 紊 流:
v vc
vc v vc
v vc
临界雷诺数 雷诺数 Re vd
υ
Re c 2000 ——下临界雷诺数 Rec 14000 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: 过渡流: 紊 流:
Re Re c Re c Re Rec Re Rec
如:速度:dim v=LT-1;加速度dim a=LT-2;力dim F=MLT-2;
动力粘度dim =ML -1 T-1
• 量纲公式:
dim q LTM
• 量纲一的量(无量纲数、纯数,如相似准数):=0,=0,=0,即
dim q=1,如、及组合量Re等。
Re vd ,

流动阻力和水头损失

流动阻力和水头损失
添加标题
加强设备维护:定期对管道和设备进行清洗和维护,保 持其良好的运行状态,以减少流动阻力和水头损失。
流动阻力和水头损失的 应用领域
水利工程领域的应用
添加 标题
水力发电:流动阻力和水头损失是水力发电的重要因素,通过优化水力发电站的设计和运行,可以降低流动 阻力和水头损失,提高发电效率。
添加 标题
动阻力
水头损失的测量方法
压差计法:通过测量管道进出口压差来计算水头损失 流速仪法:通过测量管道内流速来计算水头损失 能量方程法:通过建立能量方程来计算水头损失 示踪剂法:通过在水中加入示踪剂来测量水头损失
流动阻力和水头损失的联合测量方法
测量原理:基于伯努利方程和流动阻力公式 测量步骤:准备测量仪器、进行测量、记录数据 测量仪器:压力计、流量计、温度计等 注意事项:确保测量仪器的准确性和可靠性,选择合适的测量位置
灌溉工程:在灌溉工程中,流动阻力和水头损失会影响灌溉水的流量和灌溉效率。通过改进灌溉系统设计和 运行方式,可以降低流动阻力和水头损失,提高灌溉效率。
添加 标题
水利枢纽工程:水利枢纽工程是调节水资源的重要设施,流动阻力和水头损失会影响水利枢纽工程的调节效 果。通过优化水利枢纽工程的设计和运行,可以降低流动阻力和水头损失,提高调节效果。
减小水头损失的措施
减小流速:降 低水流速度可 以减小水头损

改变流道:通 过改变水流通 道的形状和尺 寸,可以减小
水头损失
增加阻力:通 过增加水流阻 力,可以减小
水头损失
采用新型材料: 采用新型材料 可以减小水流 阻力,从而减
小水头损失
流动阻力和水头损失的联合减小措施
添加标题
优化管道设计:选择适当的管径和长度,减少弯曲和急 转弯,以降低流动阻力和水头损失。

流体力学课件第四章流动阻力和水头损失

流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*

8
§4-4 圆管中的层流

层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系

均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态

两种流态
v小
' c
v小
v > vc
v大 v大

临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类

沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。

第4章 水头损失

第4章  水头损失
1 1 u = ∫ u dt t1 0
t
于是流场的紊流中某一瞬间, 于是流场的紊流中某一瞬间,某 一点瞬时速度可用下式表示. 一点瞬时速度可用下式表示.
第4章 水头损失 14
圆管有效截面上的平均流速
p f πr04 p f 2 qV V = = = r0 2 A 8 lπr0 8 l
u max =
p f 4 l
r02
V=
1 u max 2
即圆管中层流流动时,平均流速为最大流速的一半. 即圆管中层流流动时,平均流速为最大流速的一半. 工程中应用这一特性, 工程中应用这一特性,可直接从管轴心测得最大流速 从而得到管中的流量, 从而得到管中的流量,这种测量层流的流量的方法是 非常简便的. 非常简便的.
2l
r (6-24) τ =τ0 r 0
上式表明,在圆管的有效截面上, 上式表明,在圆管的有效截面上,切 应力与管半径r的一次方成比例 的一次方成比例, 应力与管半径 的一次方成比例,为直 线关系,在管轴心处r=0时τ = 0 . 线关系,在管轴心处 时
第4章 水头损失 16
五,沿程损失hf 流体在等直径圆管中作层流流动时,流体与管 沿程损失 流体在等直径圆管中作层流流动时,
第四章 流动阻力和水头损失
4.1 流动阻力的两种类型 4.2 两种流态及其判断 4.3圆管层流和圆管紊流 圆管层流和圆管紊流 4.4 沿程水头损失 4.5 局部水头损失
第4章 水头损失
1
流动阻力的两种类型
理想流体: 理想流体: 运动时没有相对运动,流速是均匀分布, 运动时没有相对运动,流速是均匀分布,无流速梯度和 粘性切应力,因而, 粘性切应力,因而,也不存在能量损失 .
p1 p2 h f = z1 + z 2 + ρg ρg

土力学第四章 流动阻力和水头损失

土力学第四章  流动阻力和水头损失

漩涡区中产生了较大的能量损失
漩涡区
C A C
D B
漩涡体形成、运转和分裂
漩涡区中产生了较大的能量损失
C A C
D B
流速分布急剧变化
漩涡区中产生了较大的能量损失
C A
D B
C 漩涡的形成,运转和分裂;流速分布急剧变化, 都使液体产生较大的能量损失。 这种能量损失产生在局部范围之内,叫做局部 水头损失hj 。
颜色水
l
hf
Q
V t
下游阀门再打开一点,管道中流速增大
红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散至全管, 使管中水流变成红色水。 这一现象表明:液体质点运动中会形成涡体,各涡体相 互混掺。
Q
V t
颜色水
l
hf
Q
水流半径R
R A

粘性流体的两种流态
4.2.1 雷诺实验
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业 1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
两个过水断面的湿周相同,形状不同,过水断面 面积一般不相同,水头损失也就不同。 因此,仅靠湿周也不能表征断面几何形状的影响。
由于两个因素都不能完全反映横向边界对水头损失
的影响,因此,将过水断面的面积和湿周结合起来,全
面反映横向边界对水头损失影响。
水流半径R:
R
A

水力学第四章层流、紊流,液流阻力和水头损失

水力学第四章层流、紊流,液流阻力和水头损失

3.7d
结论2:
•紊流光滑区水流沿程水头损失系数只取决于雷诺数,粗糙度不 起作用。容易得出光滑区紊流沿程损失与流速的1.75次方成正 比。 •紊流粗糙区水流沿程水头损失系数只取决于粗糙度,由于粗糙 高度进入流速对数区,阻力大大增加,这是不难理解的。容易 得出粗糙区紊流沿程损失与流速的2.0次方成正比。 •在紊流光滑区与粗糙区之间存在紊流过渡粗糙区,此时沿 程损失系数与雷诺数和粗糙度都有关。 •尼古拉兹试验反映了圆管流动的全部情况,在其试验结果图上 能划分出层流区,过渡区、紊流光滑区、紊流过渡粗糙区,紊 流粗糙区。紊流粗糙区通常也叫做‘阻力平方区’。
ro gJ 2 2 gJ 4 1 4 gJ 4 Q (ro r )2 rdr (ro ro ) d 0 4v 4v 2 128v
上式为哈根——泊肃叶定律:圆管均匀层流的流量Q与管径d 的四次方成比例。 3、断面平均流速: V
Q gJ 2 1 ro umax A 8 2
1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 1
1 1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 10
层流时,

64 Re
f (Re)
1 1 1 1 1 1 , , , , 及 30 61.2 120 252 507 1014
1 u u x x dt 0 T0
2、紊流的切应力 由相邻两流层间时均流速相对运动
所产生的粘滞切应力
紊流产生附加切应力
du l t v Re
t v Re 2
纯粹由脉动流速所产生 的附加切应力
dy ( du 2 ) dy
普朗特 混合长 Re 与 du 有关,根据质点脉动引起动量交换(传递),又称为动量传递理论 dy 理论

第四章水头损失(环境)

第四章水头损失(环境)
2.在直线Ⅱ与直线Ⅲ之间的区域为光滑管过渡到粗 糙管的过渡区。
3.直线Ⅲ以右的区域,λ与 有关,而与Re无关 r ,属粗糙管区。
30
f ( 、Re ) r
1.圆管紊流过渡区的沿程摩阻系数: (a)与雷诺数 Re有关;
(b)与管壁相对粗糙 / d有关;
(c)与Re 及 / d 有关; (d)与 R 和 l 管长有关。
23
二、重力——重力: G Al
三、摩擦阻力: T l 0
因为均匀流没有加速度,所以
P 1P 2 G sin T 0

Ap1 Ap2 Al sin a l 0 0
z1 z 2 sin l
l 0 ( z1 ) ( z2 ) w p1 p2
20
第三节
恒定均匀流沿程水头损失与切应力的关系



21




均匀流时无局部水头损失,非均匀渐变流时局部水 头损失可忽略不计,非均匀急变流时两种水头损失都有 。
22
在管道或明渠均匀流中,任意取出一段总流来
分析,作用在该总流段上有下列各力。
一、动水压力
1-1断面 P 1 Ap 1 2-2断面 P2 Ap2
h=0.1m,实测断面平均流速为0.1m/s,T=20℃,判断 槽内水流的流态,并求在水深不变时,保持紊流状态 的最小流速。
第四节 沿程水头损失
一 达西公式 绝对粗糙度Δ:固体壁粗糙突出的平均高度。
l v2 均匀流沿程水头损失的达西公式: h f 4R 2 g
λ为沿程阻力系数,
Δ f Re, R


2 lg(Re ) 0.8 2 lg
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 0 xl
因为是恒定均匀流的总流段,所以各作用力处于平衡状态, 各作用力沿流动方向的平衡方程式为:
P1 P2 G cos T 0
cos
Z1
Z2
, A1
A2
A
( z1
p1
r
)
(z2
p2
r
)
x A
0
hf
x 0 A
0 R
0 RJ
水力坡度 J h f l
R A r0 x2
Re d vd v 4.2.2 两源自流态的判别准则二、临界雷诺数
雷诺数 Re vd
Re cr 2320 ——下临界雷诺数 Recr 13800 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: Re Re cr 不稳定流: Re cr Re Recr 紊 流: Re Recr
4.2 实际流体的两种流态
二、实验现象
2、过渡状态——质点是曲线流动。 将阀门逐渐打开,发现有色液体开始抖动,直线变 为弯曲线。这说明管内一层层的流动受到扰动,流 体质点开始横向运动,直线变得有弯曲形状,但仍 在管中心部位。这是一种过渡状态。
过渡状态
4.2 实际流体的两种流态
二、实验现象
3、紊流——质点是无规则流动。 将圆管出口阀门继续开大,流量增加,管内有色水 线的完整形状消失,流动变得杂乱无章。这说明管 内流体质点有剧烈的横向运动,互相撞击掺混,流 体质点不仅沿着轴向运动而且在纵向也有不规则的 脉动,这种流动状态叫做紊流。
须首先判别流体的流动状态。
O
D
C
B A
vcr v’ v
cr
4.2 实际流体的两种流态
二、实验现象
1、层流——质点是直线流动。
层流
慢慢打开玻璃管出口的阀门,使管内流量很小,然 后开启红色小容器下的阀门。这时管内流速较低, 看到管内有一条很直的红色水线。有色水线呈直线 形状,非常稳定,这表明管内水的流动都是沿着轴 向,流体质点没有横向运动,不互相掺混,从管中 心开始到管壁延伸流动是一层一层的,这种流动状 态叫层流。
4.2.3 沿程损失和平均流速的关系
一、实验装置
hf p g
D
hj
C
B A
O
vcr v’ v
cr
lghf=lgk+nlgv hf kvn
4.2.3 沿程损失和平均流速的关系
二、实验结果
层流: hf v1.0
紊流: hf v1.75~2.0
hj
结论:
沿程损失与流动状态有关,故
计算各种流体通道的沿程损失,必
紊流
4.2 实际流体的两种流态
1、实验发现
v vcr v vcr
流动较稳定 流动不稳定
2、临界流速 vcr ——下临界流速
vcr ——上临界流速
层 流: v vcr
不稳定流: vcr v vcr
紊 流: v vcr
4.2.2 两种流态的判别准则
一、雷诺数
流体的层流和紊流状态不仅和流速有关,还 和流体的性质密度、动力粘度、特征尺寸(这 里指管径D)。
流段长为L,过水断面面积为A,湿周 为X,总流与水平面成
1:动水压力
P1 p1 A1, P2 p2 A2
2:重力
G Al
3:摩擦阻力T
T 0 xl
το το α
因为作用在各流束之间的摩阻力是成对地彼此相等而方向 相反,故不需考虑;仅考虑不能抵消的总流与粘在壁面上 的液体质点之间的摩擦力T。
2V22 2g
το το α
hf
(z1
p1
)
(
z2
)p2
两过水断面间的沿程水头损失;等于两过流断面测压管水头 的差值,即液体用于克服阻力所消耗的能量,全部由势能提 供。
1. 圆管中的恒定层流运动切应力
一、推导: 如图,取出过水断面1-1与2-2的一段均匀流动的总 流。各参数标于图上,作用在该流段上的力有:
叠加。
hw h f h j
hw ——总能量损失。
4.2 实际流体的两种流态
4.2.1 雷诺实验
一、实验装置
4.2 实际流体的两种流态
二、实验现象
1、层流——质点是直线流动。
层流
慢慢打开玻璃管出口的阀门,使管内流量很小,然 后开启红色小容器下的阀门。这时管内流速较低, 看到管内有一条很直的红色水线。有色水线呈直线 形状,非常稳定,这表明管内水的流动都是沿着轴 向,流体质点没有横向运动,不互相掺混,从管中 心开始到管壁延伸流动是一层一层的,这种流动状 态叫层流。
二、局部能量损失
发生在流动状态急剧变化的急变流中的能量损失, 即在管件附近的局部范围内主要由流体微团的碰撞、 流体中产生的漩涡等造成的损失。
hj
v2 2g
h j ——单位重力流体的局部能量损失。
——局部损失系数 v2 ——单位重力流体的动压头(速度水头)。
2g
三、总能量损失 整个管道的能量损失是分段计算出的能量损失的
4.3 圆管中的层流运动
4.3.1 圆管中的恒定层流动力性特性
1. 圆管中的恒定层流运动切应力
如图,以圆管均匀流为例,说明液流自断面1-1流至断面 2-2时的沿程水头损失。
写出断面1-1和2-2的总流能量方程:
z1
p1
1V12 2g
z2
p2
2V22 2g
hf
在均匀流时,有:
1V12 2g
第四章 流动阻力和水头损失
4.1 沿程水头损失和局部水头损失
两大类流动能量损失: 1.沿程能量损失 2.局部能量损失
一、沿程能量损失
发生在缓变流整个流 程中的能量损失,由流体 的粘滞力造成的损失。
hf
l
d
v2 2g
h f ——单位重力流体的沿程能量损失
——沿程损失系数 l ——管道长度 d ——管道内径 v2 ——单位重力流体的动压头(速度水头)。 2g
对于无压均匀流,按上述步骤写出流动方向的力平衡 方程式,同样可得⑴或⑵。且推导过程没有限制流态。 所以方程对有压流和无压流,因此层流和紊流都适用。
二:圆管过流断面上切应力的分布
液流各流层之间均有内摩擦切应力τ存在,在均匀流 中任意取一流速,按上述方法可求得流束的均匀流方 程式:
Re cr 2000
层 流: Re 2000 紊 流: Re 2000
4.2.2 两种流态的判别准则
三、雷诺数物理意义
雷诺数之所以能判别层流和紊流的标准,可根据雷 诺数的物理意义来解释。
雷诺数表示惯性力和黏性力的比值。雷诺数大小表 示了流体在流动过程中惯性力和黏性力哪个起主导作用。 黏性力小,表示黏性力起主导作用,流体指点受黏性的 约束,处于层流状态;雷诺数大表示惯性力起主导作用, 黏性不足以约束流体质点的紊乱运动,流体便处于紊流 状态
相关文档
最新文档