三角形一边的平行线判定定理

合集下载

沪教版(上海)初中数学九年级第一学期 24.3 三角形一边的平行线判定定理 教案

沪教版(上海)初中数学九年级第一学期 24.3 三角形一边的平行线判定定理 教案

三角形一边的平行线判定定理教材分析本节课是九年级第一学期第二十四章《相似三角形》中《三角形一边的平行线》的第3课时内容。

第二十四章主要学习相似三角形的概念、判定和性质,而为了研究相似形,需要有比例线段及其性质、三角形一边平行线的性质与判定以及平行线分线段成比例定理作铺垫,因此本节课的内容是后续学习相似三角形内容的知识和技能基础之一。

如上图所示,本节课的重点是导出三角形一边的平行线判定定理及其推论,并进行初步运用,是建立在学习了“三角形一边平行线的性质定理”的基础上的,从学生已有的认知基础(三角形一边平行线的性质定理及其推论)和学习经验(三角形面积比与线段之比的转化方法、同一法、构造A型图或X型图的方法)出发进行数学的理性分析。

首先,提出“三角形一边的平行线性质定理的逆定理是否正确”的问题,引导学生进行探究讨论,对思维对象(即问题是否成立)进行肯定或否定的判断,并能够简单地说明判断的标准或依据(有特殊到一般进行判断,凭感觉进行判断等等)。

以此使学生掌握判断的标准,关注判断的合理性及能够正确地表达判断。

然后,再通过构造A型图、X型图、分割三角形等手段,运用“同一法”、“面积法”、“构造平行四边形”等方法证明得到三角形一边的平行线判定定理。

这一学习过程中不仅体现了“判断”的三要素,也体现了论证几何注重演绎推理的特点,可充分培养学生判断和演绎推理的思维形式。

学生在学习的过程中,有了发挥和展示个人生思维的独特性和新颖性,以此培养和提高学生思维的深刻性。

同时学生在此学习过程中,锻炼了个人知识迁移的能力,以此培养和提高学生思维的灵活性。

证明“三角形一边平行线的判定定理”的方法有“通过构建平行四边”、“同一法”和“面积法”,证明的过程都十分的简捷,但添置辅助线是教学的一个难点,需引导学生根据所要研究的结论联想构造平行四边形,或运用“同一法”和“面积法”,结合已知条件和图形的特征考虑构造“X 型图”或“A 型图”或“分割三角形”,形成证明思路。

三角形一边平行线性质

三角形一边平行线性质

初三数学备课组教师班级学生日期上课时间主课题:三角形一边的平行线教学内容知识要点1.三角形一边得平行线性质定理及推论定理:平行于三角形一边得直线截其它两边所在的直线,截得得对应线段成比例.推论:平行于三角形一边得直线截其它两边所在的直线,截得的三角形三边与原三角形的三边对应成比例.1、如图,在ABC AB=10AC=8.V中,,(1)已知点D在边AB上,过点D作DE//BC交边AC于点E。

若BD=4,求AE的长;(2)已知点D在直线AB上,过点D作DE//BC,交直线AC于点E。

若BD=4,求AE的长。

2、如图所示,已知:在平行四边形ABCD的对角线AC上取一点G,过G做一直线分别交AB的延长线、BC和AD及CD的延长线于P、Q、E、S.求证:GP GQ GE GS=.3、如图所示,//DE BC,//EF AB,则下列比例式中不成立的是()A.BF AE ADFC EC DB== B.BF AE ADBC AC AB==C.AD AE DEEF EC FC== D.AD AE DEAB AC FC==CBABA DCGPSQ4、如图,路灯A 的高度为7米,在距离路灯正下方点B20米处有一堵墙CD ,且CD BD ⊥。

有一身高为1.6米的学生EF 站立在线段BD 上(,F EF CD EF BD ⊥<垂足为,且),他的影子的总长度为3米。

试求该学生到路灯正下方点B 的距离BF 的长。

5、如图所示,ABC 中,AD 是BC 边上的中线,F 是AD 上一点,且:1:3AF FD =,联接BF ,并延长交AC 于E .求证::6:1CE EA =.6、如下图所示,在ABC 中,BF 为AC 边上中线,D 和E 为BC 边上的三等分点、AD 和AE 分别交BF 于点P 、Q .求::PB PQ QF 的值.2.三角形的重心三角形三条中线的交点叫做三角形的重心.三角形的重心到一个顶点的距离,等于它到这个顶点对应中点的距离的两倍. 7.如上图所示,G 为ABC 重心,则下列关系成立的是( )A.12AG AF GD FB == B.12AG CG GD GF == C.2AG CG GD GF == D.1AE CE AF BF== A BCGFEDA CBFDEBF DE CA Q PDCB A8、如图,在ABC V 中,AD 是中线,G 是AD 上一点,//,//GE AB GF AC ,点E 、F 都在边BC 上,(1)求证: BE=CF (2)如果G 是ABC V 的重心,求EFBC的值。

三角形一边平行线判定

三角形一边平行线判定
初中数学备课组
教师张老师
班级
学生
日期
上课时间
主课题:三角形一边的平行线2
教学内容
知Байду номын сангаас精要
1.三角形一边的平行线判定定理及推论
判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么,这条直线平行于三角形的第三边.
推论:如果一条直线截三角形两边的延长线
(这两边的延长线在第三边的同侧)所得的对应线段
A、DE=1,BC=7 B、DE=2,BC=6
C、DE=3,BC=5 D、DE=2,BC=8
3.如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ∶BC=().
A、1∶3 B、1∶4 C、1∶5 D、1∶6
4.如图, ∥ , ,BC=4CD,若 ,则 =().
A、 B、2 C、 D、4
三.计算题
1.如图,在梯形ABCD中,AD∥BC,EF∥BC,且AE:EB=5:3,
DC=16厘米,求FC的长.
2.一直线截ΔABC三边AB、AC、BC或其延长线于D、E、F,求证: .
3.如图, 分别为 的中点, , ,联结 .
求证:
4.如图,已知点 在 的边 上,且 ,以 为一边作 ,延长 交于点 ,联结 .求证:
5.如图, 是线段 上一点, 是等边三角形, , ,交 ,联结 .求证:(1) (2)
6.如图,在梯形 中, 分别是 的中点, 交 于 , 交 于 ,求 的长。
7.已知: 和 分别是 两边上的点且 .
求证:
8.已知:如图, 平分 ,若 .求 关于 的函数关系式,并写出定义域.
9.已知:如图, , ,
2.平行线分线段成比例定理:两条直线被三条平行线所截,截得的对应线段成比例

三角形一边的平行线知识讲解

三角形一边的平行线知识讲解

三角形一边的平行线 知识讲解责编:常春芳【学习目标】1、掌握三角形一边的平行线性质定理及推论;判定定理及推论;以及平行线分线段成比例定理的推导与应用;2、了解三角形的重心的意义和性质并能应用它解题;3、经历运用分类思想针对图形运动的不同位置分别探究的过程,初步领略运用运动观点、化归和分类讨论等思想进行数学思考的策略.【要点梳理】要点一、三角形一边的平行线性质定理及推论1.性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.要点诠释:(1)主要的基本图形:分A 型和X 型;A 型 X 型(2)常用的比例式:,,AD AE AD AE DB EC DB EC AB AC AB AC=== 3.三角形的重心:三角形三条中线的交点叫做三角形的重心.要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.(2)重心的画法:两条中线的交点.要点二、三角形一边的平行线判定定理及推论1.判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.要点诠释:判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).要点三、平行线分线段成比例定理1.性质定理:两条直线被三条平行的直线所截,截得的对应线段成比例.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例;(2)平行线分线段成比例没有逆定理;(3) 由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.【典型例题】类型一、三角形一边的平行线性质定理1. 如图已知直线截△ABC 三边所在的直线分别于E 、F 、D 三点且AD=BE.求证:EF:FD=CA :CB.【答案与解析】过D 作DK ∥AB 交EC 于K 点.则,,即 又∵AD=BE ,∴.【总结升华】运用三角形一边的平行线性质定理,即只要有平行线就可推出对应线段成比例.举一反三【变式】如图,在⊿ABC, DG ∥EC, EG ∥BC,求证:2AE AB AD =⋅ 【答案】∵DG ∥EC,∴AD AG AE AC=, ∵EG ∥BC,∴AE AG AB AC =, ADEG∴AD AE AE AB=, 即2AE AB AD =⋅.2.已知,△ABC 中,G 是三角形的重心, AG ⊥GC ,AG=3,GC=4,求BG 的长.【答案与解析】延长BG 交AC 于点D,∵G 是三角形的重心,∴点D 是线段AC 的中点,又∵AG ⊥GC ,AG=3,GC=4,∴AC=5,即DG=,∵BG:GD=2:1.∴BG=5.【总结升华】三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.类型二、三角形一边的平行线判定定理3. 如图,AM 是△ABC 的中线,P 是AM 上任意一点,BP 、CP 的延长线分别交AC 、AB 于E 、D 两点.求证:DE ∥BC.【答案与解析】延长AM 到H ,使HM=MP ,连接BH 、CH∵BM=MC∴四边形BPCH 是平行四边形GBCA∵BH∥CD,CH∥BE在△ABH和△ACH中,有,∴DE∥BC【总结升华】平行线所截得的对应线段成比例,而两条平行线中的线段与所截得的线段不成比例.举一反三【变式】如图,在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP BD CP CE=.【答案】过点C作CF∥AB交DP于点F, ∵CF∥AB,∴∠ADE=∠EFC∵AD=AE,∴∠ADE=∠AED=∠FEC∴∠EFC=∠FEC∴CF=CE∵CF∥AB∴BP BD CP CF=,即BP BD CP CE=.类型三、平行线分线段成比例定理4. 如图,已知点D、F在△ABC的边AB上,点E在边AC上,且DE∥BC,,求证:EF∥DC.【答案与解析】证明:∵DE∥BC,∴=,∵=,∴=,∴=,∴EF∥DC.【总结升华】本题考查了平行线分线段成比例.注意找准对应关系,以防错解.举一反三【变式】如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.12B. 2C.25D.35【答案】D提示:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,。

3-三角形一边平行线性质定理

3-三角形一边平行线性质定理
三、练习
(一)选择题
1.如图,在 中, ∥ ,下列各式中错误的是( )
A. B. C. D.
2.如图, ∥ , 和 相交于点 , , =3,则 为( )
A.6 B.9 C.12 D.15
3、如图,已知在 中, ∥ , ∥ ,那么下列线段的比中与 相等的有( )个。
A.0 B.1 C.2 D.3
(二)填空题
1、已知:在 中, ∥ ,若 , 厘米,则 =厘米。
2、如图,已知: ∥ , 与 相交于点 ,若 , ,则 。
3、 如图,四边形 为菱形, , ,则菱形的周长是。
(三)解答题
1、如图, 在⊿ABC中,DE∥BC, S⊿BCD:S⊿ABC=1:4,若AC=2,求EC的长.
2、如图,已知,AB∥CD∥EF,OA=14,AC=16,CE=8,BD=12,求OB、DF的长.
二、例题解析
1.在 中, ∥ , 与 相交于 ,与 相交于 。
(1)已知 ,求 的长.
(2)已知Leabharlann 求 的长.(3)已知 3:2, ,求 的长.
2.如图1,在 中, 是 的中点,过 的一条直线交 于 , ∥ 交 于 点。
求证:
3.如图所示, 为平行四边形 边 延长线上一点,连接 交 于点 。求证:
4.如图所示, 于点 , 于点 ,连接 、 ,它们交于点 , 于点 。求证:
3、如图,在⊿ABC,DG∥EC,EG∥BC,求证: =AB· AD.
4.已知,△ABC中,∠C= ,G是三角形的重心,AB=8,
求:①GC的长;②过点G的直线MN∥AB,交AC于M,BC于N,求MN的长.
5. 如图, 在⊿ABC中,DE∥BC, S⊿BCD:S⊿ABC=1:4,若AC=2,求EC的长.

三角形一边平行线性质定理题型+答案详解

三角形一边平行线性质定理题型+答案详解

基础知识点三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在直线,截得的对应线段成比例。

如图(1),若DE//BC ,则AD AE DB EC =或AD AE AB AC =或DB CEAB AC =如图(2),若DE//BC ,则AB AC AE AD =或AB AC EB DC =或EA DAEB DC=EDE(2)(1)CBADC BA三角形一边的平行线性质定理推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例。

如图(1)已知:△ABC 中,点D 、E 分别在AB 、AC 上,且DE//BC ,则AD DE AEAB BC AC==; 如图(2)已知:△ABC 中,点D 、E 分别在CA 、BA 的延长线上,且DE//BC ,则AB BC ACAE DE AD==. EDE(2)(1)CBADC BA同高(或等高)的两个三角形的面积之比等于对应底边的比(2)(1)DCBADCBA如图(1):ABD ADCS BDSDC =如图(2):若AD//BC,则ADC ABCS ADSBC=三角形重心(三中线交点):三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍。

1、三角形三条中线交于一点,三角形三条中线的交点叫做三角形的重心。

2、三角形的重心到一个顶点的距离,等于它到这个顶点对边中点距离的两倍。

例题解析如图,在ABC ∆中,DE //BC ,下列各式中错误的是( ). A.AD AB AE AC = B.BD EC AD AE = C.AD DE DB BC = D.AE DEAC BC =答案:C变式:如图,已知在ABC ∆中,DE //BC ,EF //CD ,那么下列线段的比中与AEAC相等的有( )个。

①AF AB②AF AD ③FD FB④ADABA.0B.1C.2D.3答案:C,①和④例题讲解:在△ABC 中,DE//BC ,DE 与AB 相交于D ,与AC 相交于E 。

比例线段与三角形一边的平行线讲解

比例线段与三角形一边的平行线讲解

精锐教育学科辅导讲义学员编号: 年 级:九年级 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师: 张俊授课类型 T 同步课堂C 专题 T 能力提升授课日期及时段 家庭作业教学内容同步课堂一、知识点梳理:1.三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.EDABCAEDCBAC AE AB AD BC DE == 2.三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 三角形重心要掌握三点:1.定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.2.作法:两条中线的交点.3.性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.3、三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.,,AD AE AD AE DB EC DB EC AB AC AB AC===ABCDE三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.AEDCB4、平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.FED CB A用符号语言表示: ΘAD ∥BE ∥CF,,,AB DE BC EF AB DEBC EF AC DF AC DF∴===. 平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等.(一)、比例式 比例式:1、设2y -3x =0(y ≠0),则yyx += . 比例中项:1、已知线段a=2,b=8,若线段c 是线段a 与b 的比例中项,则c = . (二)、A 字型1、在△ABC 中,已知点D 、E 分别在边AB 、AC 上,DE ∥BC .如果AD =1cm ,AB =3cm ,DE =4cm ,那么BC = cm .2、已知:在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC .如果AD =4cm ,AB =6cm ,DE =3cm ,那么BC = cm .3、如图,在△ABC 中,DE ∥B C ,DB AD =21, 则BCDE= .AD CEB4、已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,DC AD =31, DE =6,则AB = .(三)、X 型 1、如图,AB//CD ,AD 与BC 交于点O ,若35 OD OC ,则BOAO= .2、如图,E 是平行四边形ABCD 边AD 上一点,且AE ∶ED=1∶2,CE 与BD 交于点O ,则BO :OD= .(四)、中间比1、如图,在△ABC 中,DE ∥BC ,DF ∥AB ,那么下列比例式中正确的是( )(A )EB AE =FC BF ; (B )EB AE =FB CF ;(C )BC DE =DC AD; (D )BC DE =AB DF . (五)、重心1、如果直角三角形的斜边长为18,那么这个直角三角形的重心到直角顶点的距离为 .2、在△ABC 中,∠ACB =90°,AC =3.6,BC =4.8,点G 为△ABC 的重心,则点G 到AB 中点的距离为 .3、如图,BE 、CD 是△ABC 的边AC 、AB 上的中线,且相交于点F .则FCDF= .4、如图,已知点O 是△ABC 的重心,过点O 作EF ∥BC ,分别交AB 、AC 于点E 、F ,若BC =6,则EF = .DACBOE DABC ODBCEFBCDE B CE AF OBAECFD专题一、填空题:1.若():1:2x y y -=,则:x y =___ _. 2.已知线段a ,b ,c 满足关系式a bb c=,且3b =,则ac =_ _. 3.已知345x y z==,且18x y z -+=,则2x y z ++= . 4.如图1-1所示,在△ABC 中,D ,E 分别在AB ,AC 上,且DE ∥BC ,=3AD ,=5AB ,=1CE ,那么=AC .ABCD E1-1A BCDE F1-2ABCDE1-31-4E D CBAF5.如图1-2所示,在△ABC 中,DE ∥BC ,如果12AD DB =,那么EFBF= . 6.如图1-3所示,在△ABC 中,BD 平分ABC ∠,交AC 于D ,DE ∥BC ,交AB 于点E ,若=6AB ,=4DE ,则=BC .7.如图1-4所示,EF 平行BC ,FD 平行AB ,=18AE ,=12BE ,=14CD ,则=BD .A BCDE1-5G1-6FEDCBA1-7F EDCBAABCDEF1-88.如图1-5所示,△ABC 中,DE ∥BC ,4AB =,8AC =,DB AE =,则AE = .9.如图1-6所示,△ABC 中,DE ∥FG ∥BC ,若::=2:5:9DE FG BC ,则::AD DF =FB . 10.如图1-7所示,AB ⊥BC 于B ,EF ⊥BC 于F , DC ⊥BC 于C ,=4AB ,=14DC ,且:=2:3BF FC .则EF 的值为 .11.如图1-8所示,ABCD Y 中,DE 平分ADC ∠,=2AB ,=3AD ,则=DF FE : . 12.如图1-9所示,直角梯形ABCD 中,AD ∥BC ,BC DC ⊥,3=AD ,6=BC ,4=CD ,则=AO . 1-9DCBAO13.如图1-10所示,△ABC 中,DE ∥AC ,FD ∥AB ,则ABDFAC DE +的值为 . 1-10FE DCBAABC DEF1-11A BCDEF1-12O 1-13E DC BA14.在△ABC 中,如果5==AC AB 厘米,8=BC 厘米,那么这个三角形的重心G 到BC 的距离是 . 15.如图1-11所示,E 为ABCD Y 的边AD 延长线上一点,且D 为AE 的黄金分割点,即AE AD 215-=,BE 交DC 于点F ,已知15+=AB ,则CF 的长是 .16.如图1-12所示,梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点O ,过O 点做AD 的平行线交AB 于点E ,交CD 于F ,若3=AD ,5=BC ,则=EF . 17.如果线段a ,b 满足222350a ab b --=,则ab的值是 .18.平行四边形ABCD 中,对角线BD 的四等分点为1O ,2O ,3O ,1AO 的延长线交BC 于E ,3EO 的延长线交AD 于F ,则:AF FD = .19.如图1-13所示,在△ABC 中,C ∠90=o ,3AC =,D 为BC 上一点,过点D 作DE BC ⊥交AB 于点E ,若1ED =,2BD =.则DC 的长为 .20.如图1-14所示,边长为8的正△ABC ,DE ∥BC ,面积比:1:4BCD ABC S S =△△,则EC = .1-14E D CBAQF1-15EDCB AHF 1-16EDCBA21.若a b c k b c a c a b===+++,则k = . 22.如图1-15所示,四边形ABCD ,EQ ∥CD ,EF ∥AB ,则EF EQAB CD+= . 23.如图1-16所示,E 是△ABC 中BC 边的中点,F 是BC 边上任一点,过F 作FH ∥AE ,交BA 的延长线于点D ,交CA 于点H ,则FD FHAE AE+= .24.已知::2:3:5a b c =,5a b c ++=,求a ,b ,c 的值 . 25.已知31212358a a a b b b ===,则1212a ab b ++= ,1313a a b b ++= . 26.已知23a c b d ==,则44a cb d--= . 27.已知::2:3:4a b c =,则有23a b ca++= .28.2,3,6的第四比例项是 .二、解答题:1.如图1-31所示,B ,C 是△APM 边AP 上的两点,过B 作BN ∥AM 交PM 于N ,过N 作ND ∥MC 交AP 于D . 求证:PA PCPB PD=. N1-31D C B MAP2.如图1-32所示,梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于O ,过O 作AD 的平行线与两腰分别相交于E ,F ,比较OE 与OF 的大小关系,并说明理由.O1-32D CBEA F3.已知线段a ,b ,c 如图1-33所示,求作线段x ,使2bc x a=. c b a 1-334.如图1-34所示,在△ABC 中,12==AC AB ,4=BC ,BD 平分ABC ∠,DE ∥BC . 求△ADE 的周长.1-34E DCBA5.如图1-35所示,已知在△ABC 中,EFCD 是菱形,且3AD =,5=BF .求菱形EFCD 的边长.1-35F E DCBA6.如图1-36所示,平行四边形ABCD 的对角线AC 与BD 相较于点O ,E 是CD 的中点,AE 交BD 与点F . 求FODF的值.DCBEAF1-36O7.如图1-37所示,在△ABC 中,EF ∥BC ,DF ∥EC .求证:AE 是AB AD 与的比例中项.1-37F AE BCD ADEBCF1-388.如图1-38所示,在△ABC 中,AB AD 31=,延长BC 到点F ,使得BC CF 31=.连接DF ,交AC 于点E , 求证:(1)EF DE =;(2)EC AE 2=.9.如图1-39所示,AD ∥EF ∥BC ,5AD =,7BC =,E 是AB 的黄金分割点,BE AE >. 求EF 的长.ADE BCF1-3910.如图1-40所示,已知E 是平行四边形ABCD 的边CD 上的一点,连接AE 并延长交BC 的延长线于点F . 求证:DC DE FB AD ::=.1-40CBED AF11.已知a ,b ,c ,d 四条线段能够成比例,2=a 厘米,3=b 厘米,5=c 厘米.求线段d 的长度.12.如图1-41所示,在ABCD Y 中,E 是AB 的中点,=AF 12DF ,EF 交AC 于点G .求AC AG的值. ADE BCF1-41G13.如图1-42所示,D 为△ABC 中BC 上一点,EF ∥BC 交AD 于点H .求证:EH BD HF CD=. HADEBCF1-4214.如图1-43所示,在△ABC 中,AD BC ⊥于点D ,BE AC ⊥于点E ,H 为AC 上一点,且AH AD =,过点H 作HF ∥BC 交AB 于点F . 求证:FH BE =.HAD EBCF 1-43课后总结:能力提升一、填空题:1.如图1—61所示,梯形ABCD 中,DC ∥AB ,DC =3,AB =5, E 是DA 的黄金分割点,且EF ∥AB 交BC 于点F ,则EF = .1-61D CBE AF B 2A 2C 2A 1B 1C 11-62CBA 1-63DC BEA FE nE 3E 2E 1D nD 3D 21-64D 1CBA2.如图1—62所示,点1A ,2A ,1B ,2B ,1C ,2C 分别是△ABC 的边BC ,CA ,AB 的三等分点,若△ABC 的周长是m ,则六边形1A 2A 1B 2B 1C 2C 的周长是 .3.如图1—63所示,AD ∥EF ∥BC ,AD =12,BC =17,AE :EB =2:3,则EF = .4.△ABC 中,BC =a ,若1D ,1E 分别是BC ,AC 的中点,则1D 1E =12a ;若2D ,2E 分别是1D B ,1E C 的中点,则2D 2E =113()224a a a +=;若3D ,3E 分别是2D B ,2E C 的中点,则3D 3E =137()248a a a +=;…;若n D ,n E 分别是1n D B -,1n E C -的中点,则n n D E = .5.如图1—64所示,△ABC 中,BC =a . (1)若1AD =13AB ,1AE =13AC ,则11D E = ;(2)若12D D =113D B ,12E E =113E C ,则22D E = ;(3)若1n n D D -=113n D B -,1n n E E -=113n E C -,则n n D E = .6.如图1—65所示,已知DE ∥BC ,且BF :EF =3:2,则AC :AE = ,AD :DB = .1-65DC BEAFM1-66DCBEAF 1-67DCBEAFO1-68DCBEAF7.如图1—66所示,四边形ABCD 中,==90A C ∠∠o,M 为BD 上一点,ME AB ⊥于点E ,MF CD ⊥于点F ,则MF MEBC AD+= . 8.如图1—67所示,AF ∥BE ∥CD ,AF =12,BE = 19,CD =28.则FE :ED 的值等于 .9.如图1—68所示,ABCD Y的对角线AC 与BD 相交于点O ,E 是CD 的中点,AE 交BD 于点F .则DF :FO = .10.如图1-69所示,DC ∥MN ∥PQ ∥AB ,2=DC ,5.3=AB ,PA MP DM ==,则=MN ,=PQ .1-69ABD C Q M P N FABCDE1-701-71MkN A CEFDBL 3L 2L 111.如图1-70所示,在梯形ABCD 中,AB ∥CD ,CD AB 3=,E 为对角线AC 的中点,直线BE 交AD 于点F ,则FD AF :的值等于 .12.如图1-71所示,1L ∥2L ∥3L , 4.2CN =,3AM =,5BM =,12EF =,则=DN ,=EK . 13.如图1-72所示,已知EFDFBC AB =,则1l ∥2l ∥3l ,此命题是 (真、假)命题. 1-72A BCD EF321课后作业:1.如图1-83所示,已知D 是△ABC 中AC 边的中点,过点D 的任意直线交AB 于点E ,交BC 的延长线于点F . 求证:BE CF BF EA ⋅=⋅.1-83EFC BDA2.如图1-84所示,在△ABC 中,D 是AB 的中点,E 是AC 上一点,延长DE 交BC 的延长线于点F .求证:FCBF EC AE =. 1-84F DAB EC3.如图1-85所示,D ,E 是△ABC 的AB ,BC 边上的点,连接DE 并延长交AC 的延长线于点F ,AC AB DE BD ::=.求证:△EFC 是等腰三角形.F D AB EC1-854.如图1-86所示,已知四边形ABCD 是正方形,FG ∥CD .求证:GF BF =.G 1-86CE B A D F5.如图1-87所示,在平行四边形ABCD 中,E 为AB 中点,G 是对角线AC 上一点,且:1:5AG GC =,EG 的延长线交AD 与点F .求:DF FA 的值.G 1-87CEB A D F6.如图1-88所示,D 为△ABC 中AC 边上的一点,E 为CB 延长线上的一点,EB AD =,DE 交AB 于点F .求证:AC DF BC EF ⋅=⋅.1-88AB CDE F7.如图1-89(1)所示,AB ⊥BD ,CD ⊥BD ,垂足分别为点B ,D ,AD 和BC 相交于点E ,EF ⊥BD ,垂足为点F ,我们可以证明111+=AB CD EF成立(不要求证明). 若将图1-89(1)中的垂线改为斜交,如图1-89(2),AB ∥CD ,AD 与BC 相交于点E .过点E 作EF ∥AB ,交BD 于点F .则:(1)111+=AB CD EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由; (2)请找出面积ABD S △,BED S △和BDC S △间的关系式,并给出证明.(2)(1)AD BC F E 1-89EF C BD A8.如图1-91所示,如果M 是△ABC 中BC 边的中点,P 是CM 上任一点,过点P 作PR ∥AM ,交BA 延长线于点Q ,交CA 于点R .求证:BM BC AM PR AM PQ =+. 1-91MRQP C B A9.如图1-90(1)所示,D 是△ABC 的BC 边上的中点,过点D 的一条直线交AC 于点F ,交BA 的延长线于点E ,AG ∥BC 交EF 于点G ,我们可以证明EG DC ⋅=ED ⋅AG 成立(不要求证明). (1)如图l -90(2)所示,若将图1-90(1)中的过点D 的一条直线交AC 于点F ,改为交CA 的延长线于点F ,交BA 的延长线于点E ,改为交BA 于点E ,其他条件不变,则AG ED DC EG ⋅=⋅还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)根据图1-90(2)所示,请你找出EG ,FD ,ED ,FG 四条线段之间的关系,并给出证明;(3)如图l -90(3)所示,若将图1-90(1)中的过点D 的一条直线交AC 于点F ,改为交CA 的反向延长线于点F ,其他条件不变,则(2)得到的结论是否成立?1-90(3)(2)(1)A FG E B D C A G B D C FE EFC DB G A10.如图1-92所示,已知△ABC 中=90ACB ∠o ,以BC 为边向外作正方形BCDE ,连接AE 交BC 于点F ,作FG ∥AC 交AB 于点G .求证:FG FC =.1-92A B CDGFE11.如图1-93所示,△ABC 中,DE ∥BC ,CD ,BE 交于点O ,过点O 作MN ∥BC ,分别交AB ,AC 于点M ,N .求证:MNBC DE 211=+. 1-93N ME O DC B A12.如图1-94所示,以AC ,BC 为底向AB 同侧作两个顶角相等的等腰△ADC ,△CEB ,若AE ,DC 交于点P ,BD ,CE 交于点Q .求证:CQ CP =.AP C DQB E1-9413.如图1-95所示,BD ∥FG ,BE ∥FC .求证:DC ∥EG .1-95G FEDCB A14.如图1-96所示,在平行四边形ABCD 中,E 是边AB 的中点,点F 在边BC 上,且BF CF3=,EF 与BD相交于点G .求证:BG DG 5=.1-96AB C D EF G15.如图1-97所示,在等腰△ABC 中,AC AB =,底边BC 外接正方形BCDE ,AD ,AE 分别交BC 于点F ,G ,过F 点作FH ∥CD 交AC 于H .求证:HF GF =.1-97A B C DE F HG16.如图l -98所示,已知:梯形ABCD ,AB ∥CD ,且7=AB ,4=CD ,延长AD ,BC 交于点E ,过E 作平行于AB 的直线,分别交AC ,BD 的延长线于M ,N .求:MN 的长.1-98A B C DE N M17.如图1-99所示,在平行四边形ABCD 中,EH 交BA ,BC 延长线于E ,H 点,且交AD ,DC 于F ,G ,交BD 于P 点.求证:EP PF PH PG ⋅=⋅.P 1-99EFC BDAG H18.如图1-100所示,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于F ,EG 过F 点且与AB 平行. 求证:2EG EG AB CD+=. 1-100G FEDC BA19.如图1-101所示,△ABC 中,AP 平分BAC ∠,BE AP ⊥,垂足为Q ,BE 交AC 的延长线于E ,M 为BC 的中点,延长AM 交BE 于N ,连结NP .求证:NP ∥AB .QAB CE MN P 1-101。

4-三角形一边平行线判定定理

4-三角形一边平行线判定定理
二、例题解析
1.已知:如图,点D,F在 的边AB上,点E在边AC上,且DE//BC, ,求证:EF∥DC .
2.如图,在平行四边形ABCD中,E是AB的中点,在AD上截取AF=FD,EF交AC于点G.求的值.
3.如图,已知在△ABC中,点D、E、F分别在AB、BC、CA上,且,CF=CE.求证:四边形CFDE是菱形。
三、练习
1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )
(A) (B) (C) (D)
2.如图,AD是△ABC的中线,E是AC边上的三等分点,BE交AD于点F.则AF:FD为( )
3.如图,梯形ABCD的中位线MN与对角线BD、AC分别相交于点E、F,若AD:BC=1:3.则EF:MN等于( ).
一、基础知ቤተ መጻሕፍቲ ባይዱ点
1、三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
如果D ,E分别在AB,AC的延长线上时,或在反向延长线上时,以上结论同样成立.
2、三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4、如图,在△ABC中,点D是AC的中点,3BE=2EC,AE与BD相交于点F.求DF:BF的值.
5.如图4,点O为△ABC的中线AD上任意一点,BO、CO的延长线分别交AC、AB于点E、F,连结EF,且 。求证:EF∥BC.
6、如图,D、E分别为△ABC的AB和AC上的点,且BC的延长线于F点,且求证:DB=EC.
4.如图,BD、CE是△ABC的中线,P、Q分别是BD、EC的中点.则PQ:BC等于( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲:三角形一边的平行线判定定理
一、知识要点:
1、三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:
如图,直线DE 截△ABC 得两边AB 、AC , 若①
AD AE DB EC =,②AD AE AB AC =,③BD EC
AB AC
=
中之一为已知条件,则DE ∥BC 2、三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学表达:
若点D 、E 分别在射线AB 、AC 上,如图(1)或分别在他们的方向延长线上如图(2),且具备上述条件①、②、③之一,则D E ∥BC. 牛刀小试:
1、如图,△ABC 中,点D 、E 分别在边AB 、AC 上。

判断在下列条件下能否推出D E ∥BC,为什么?
(1)
2
3
AD DB =,AE=2,AC=3 (2)25AD AB =,25DE BC =
(3)23AD DB =,53
AC CE =
2、△ABC 中,直线DE 交AB 于点D ,交AC 于点E ,那么能推出D E ∥BC 的条件是()
A 、
AB 3=AD 2,EC 1=AE 2B 、AD 2=AB 3,DE 2
=BC 3 C 、
AD 2=DB 3,CE 2=AE 3D 、AD 3=AB 4,AE 3
=EC 4
二、典型例题
例1、如图EF ∥BC ,3
1
=AC AF ,BF=4,FD=2,求证:EF ∥
AD
AD
E
D
C
B
A
EF
BC
例2、如图所示,M 为AB 的中点,EF ∥AB,连接EM 、FM ,分别交AF 、BE 于点C 、D ,连接CD 。

求证:CD ∥AB.
分析:判定两直线平行的方法一般有四种:(1)通过“三线八角”的相等或互补判定两直线平行;(2)通过三角形、梯形中位线定理判定两直线平行;(3)通过平行四边形的判定间接证平行;(4)通过比例线段证平行。

本题运用第(4)种方法,因为它包含了比例线段的几种基本图形。

例3、如图,已知MB ∥ND ,PA PD PB •=2,求证:
NB ∥MA M N
ABDP
例4、作图题:已知线段a 、b 、c 求作线段x ,使a :b =c :x
扩展训练:
例5、如图△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,DEFG 为平行四边形,连BG 、CF 且分别延长交于H ,连AH ,求证:AH ∥DG A DE BC GF H A DE H GF B
三、课堂练习
一、选择题:
1、 如图在ΔABC 中,DE 与AB 、AC 交于D 、E ,由以下比例式能判定DE//BC 的是
()
O
F
E
D C B
A
(A )
AC AE AB AD =(B )BC DE AB AD =(C )AE AD
EC BD =
(D )AE
BD
EC AD =
2、 如图,四边形ABCD 中,取AD 边上一点E ,连结BE 并延长交CD 的延长线于F ,由以下比例式能判定FC//AB 的是() (A )
AE DE AB FD =(B )FB FE FC FD =(C )DE AD FE FB =(D )EA
ED
EB EF =
3、如图,DE 是△ABC 的中位线,F 是DE 的中点,CF 的延长线交AB 于点G ,则AG:GD 等于() A 、2:1B 、3:1C 、3:2D 、4:3
4、已知线段a 、b 、c 求作线段x ,使b
ac
x =,以下作法正确的是() ABCD
5、如图,O 是△ABC 内一点,D 、E 、F 分别在AB 、AO 、AC 上,如果DE ∥BO ,
DF ∥BC ,求证:EF ∥OC A
E D
F O
BC
6、如图,G 为四边形ABCD 的对角线BD 上一点,E 、F 分别是AB 、BC 上的点,满足EG//AD
,FG//CD 。

求证:EF//AC 。

作业:
1、如图,在△ABC 中,如果D E ∥BC ,点且BD=2
5AB ,
那么DE:BC 的比值为() A 、
27B 、38C 、25
D 、35
2、如图,DE ∥FG ∥BC ,如果AD:DF:FB=1:2:3,那么DE:FG:BC 等于() A 、1:2:3B 、1:3:6C 、1:9:36D 、1:8:27
3、已知a
bc
x =
,求作x,则下列作图正确的是() 4、如图已知EG ∥BC ,F 为EG 上任意一点,AF 延长线交BC 于D ,求证:DC
BD
FG EF =
A EFG
G F
E
D
C
B
A
BDC
5、如图已知DE∥BC,求证PG:PB=PH:PC
A
DQE
P
BGHC
6、如图,四边形ABCD中,点E、F、G、H分别在边AD、AB、BC、DC上,且
(1)求证:EFGH为平行四边形
(2)当ABCD的对角线AC与BD有怎样的数量关系时,EFGH为菱形
AED
H
F
BGC
7、如图,E、G、H、F分别是四边形ABCD各边上的点,且AE✍FD=EB✍AF,BG✍HC=GC✍DH,求证:EO✍GO=FO✍HO
D
F
A
EOH
BGC。

相关文档
最新文档