基于单片机的数字温度计设计课程设计
基于单片机的数字温度计课程设计

标题:基于单片机的数字温度计课程设计一、概述在现代电子科技飞速发展的今天,单片机技术已经渗透到各行各业。
而在电子课程设计中,基于单片机的数字温度计课程设计是一项常见而且具有挑战性的任务。
本文将探讨基于单片机的数字温度计课程设计的相关内容。
二、课程设计目标1、理解单片机的工作原理和基本架构;2、掌握温度传感器的工作原理和应用;3、设计并实现一个数字温度计系统;4、对系统进行实验验证并调试。
三、课程设计内容1、单片机基础知识的学习通过学习单片机的基本原理、指令系统、编程语言等内容,理解单片机的工作方式及其在数字温度计设计中的应用。
2、温度传感器的选型和原理学习选择并了解适合数字温度计设计的温度传感器,掌握其工作原理和接口特性,为后续的系统设计奠定基础。
3、数字温度计系统设计根据所学知识,设计数字温度计系统的硬件和软件部分。
硬件设计包括电路连接和元器件选取,软件设计包括程序编写和逻辑控制。
4、系统调试和优化对设计好的数字温度计系统进行实验验证,检查并解决可能存在的问题,优化系统的性能和稳定性。
四、课程设计实施步骤1、学习单片机基础知识可以通过课堂教学、实验操作和参考书籍资料等方式进行学习。
要求学生掌握单片机的基本原理和编程方法。
2、温度传感器的选型和原理学习在实验室或者实际应用中选择适合的温度传感器,并深入了解其工作原理和使用要求。
3、数字温度计系统设计学生按照课程要求,独立或者分组设计数字温度计系统的硬件和软件部分,包括原理图设计、程序编写、电路连接等。
4、系统调试和优化学生在实验室进行系统调试,检查系统的功能是否符合设计要求,发现问题并解决。
优化系统的性能和稳定性。
五、课程设计评价1、设计方案的完整性和可行性对学生提交的设计方案进行评价,要求其具有一定的完整性和可行性,考察学生的设计能力和实际应用能力。
2、实验结果的准确性和稳定性对学生进行实验验证,检查实验结果的准确性和系统的稳定性,考察学生的实验操作能力和问题解决能力。
基于单片机的数字温度计设计_课程设计(仿真+C程序))

基于单片机的数字温度计设计_课程设计(仿真+C程序))前言科技发展到今天,人们的生活中涌现出各种各样的科技产品,各种各样的电子产品更是花样百出、遍及人们生活中的每一部分,现在人们更是感觉到了科技给人们带来的巨大发展,科学技术作为第一生产力在人类社会的发展中起了很大的推动作用,人类从原始向先进的发展都伴随着科学的发展。
当今微型计算机技术发展形成两大分支,一是以微处理器(Micro Processor Unit)为核心所构成的通用微机系统,主要用于科学计算、数据处理、图形图像处理、数据库管理、人工智能、数字模拟与仿真等领域。
另一分支是为控制器( Micro Controller Unit),俗称单片机。
单片机主要用于工业测控,如家用电器、计算机外围设备、工业智能化仪表、机器人、生产过程的自动控制、农业、化工、军事、航空航天等领域。
单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU 表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。
摘要:单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
基于单片机的数字温度计的课程设计

基于单片机的数字温度计的课程设计随着科技发展,单片机技术受到了广泛的应用,并得到了广泛的重视。
本设计以现有单片机ADUC7024系统为基础,设计和实现了一款基于单片机的数字温度计,旨在解决过热或者过冷的问题,通过温度检测器在给定的温度范围内确定温度,并控制过热和过冷的情况。
(一)设计的概述本设计的主要内容是分析ADUC7024硬件,对硬件进行器件选型,完成系统模块的设计,以及ADUC7024以现有程序设计语言完成控制程序设计,最后采用ADUC7024作为控制器,与温度检测器、LED等模块进行硬件联通,完成一个简单的温度检测控制系统。
1、器件选型:本设计采用ADUC7024作为系统的控制器,采取温度传感器采用的是DS18B20温度芯片芯片,显示采用的是LED系列的指示灯,系统开关采用的是两个按键作为上升按钮和下降按钮。
2、硬件模块:本次设计以ADUC7024硬件为主框架,以温度检测器连接ADUC7024控制器,可以实现温度范围内数字检测,LED显示屏以温度为参数,可根据设定的温度范围指示异常温度;系统开关采用按键开关来控制,多出的端口可实现报警功能。
本设计采用ADUC7024系统控制器,设计一款基于单片机的温度检测控制系统的电路,主要包括:外部中断、输入输出口、充电输出和按键检测电路,电路图如下图1所示:1、主程序:本次设计采用C语言编写,主程序负责实现温度检测、控制操作功能。
主程序中采用外部中断和充电输出实现数据的获取和操作的控制,采用按键输入调节温度,并且可以把某一温度范围内的上下限定值写入EEPROM,控制系统会及时获取当前温度,比较当前温度与上下限值,如果出现过热或者过冷,则会发出警报。
2、子程序:本次设计还编写了多个子程序,用于实现数据处理、按键检测等功能,并在主程序中进行调用,使程序更加规范。
单片机的温度计的课程设计方案

基于单片机的数字温度计的设计姓名:詹崇武班级:09应电2班学号:2009061601学院:机电工程学院2018-12-7目录1、课程设计目的32、工具/准备工作33、设计步骤及原理5步骤1:方案框图5步骤2:程序设计6步骤3:电路硬件设计及Proteus软件仿真84、设计结果及分析95、总结及心得体会96、对本设计过程及方法、手段的改进建议97、参考文献101、课程设计目的本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。
本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。
2、工具/准备工作原件清单基于STC89C52单片机的数字温度计元件清单如表1所示。
元件名称型号数量/个用途单片机STC89C52 1 控制核心集成块DS18B20 1 测温电路集成块74LS07 1 显示驱动集成块74LS245 1 显示驱动电容30pF 2 晶振电路晶振12MHz 1 晶振电路电解电容10uF/10v 1 复位电路电阻10kΩ 5 复位电路、上拉电阻电阻 4.7 kΩ 1 测温电路按键 1 复位电路数码管4位共阳 1 显示电路ISP接口线1*4 1 下载程序万用板 140脚IC锁紧座 1表1 基于AT89S52单片机的数字温度计元件清单原件介绍1. STC89C52的功能特性STC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
具有以下标准功能: 8K字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。
基于单片机数字温度计课程设计

基于单片机数字温度计课程设计
基于单片机的数字温度计课程设计是一个非常有趣和实用的项目。
首先,我们需要选择合适的单片机,比如常用的Arduino或者STM32等。
然后,我们需要选择合适的温度传感器,比如LM35或者DS18B20等。
接下来,我们可以按照以下步骤进行课程设计:
1. 硬件设计,首先,我们需要将单片机和温度传感器连接起来,这涉及到电路设计和焊接。
我们需要确保电路连接正确,传感器能
够准确地读取温度,并且单片机能够正确地接收并处理传感器的数据。
2. 软件设计,接下来,我们需要编写单片机的程序,以便能够
读取传感器的数据,并将其转换为数字温度值。
我们可以使用C语
言或者Arduino的编程语言来实现这一步骤。
在程序设计中,需要
考虑到温度的单位转换、数据的精度等问题。
3. 显示设计,我们可以选择合适的显示设备来展示温度数值,
比如数码管、液晶显示屏或者OLED屏幕等。
在设计中,我们需要考
虑到显示的清晰度、易读性以及节能等因素。
4. 功能扩展,除了基本的温度显示功能,我们还可以考虑对数
字温度计进行功能扩展,比如添加报警功能、数据存储功能或者远
程监控功能等,这些功能的添加可以提升数字温度计的实用性和趣
味性。
5. 测试与优化,最后,我们需要对设计的数字温度计进行测试,并不断优化,确保其稳定可靠、准确无误地显示温度。
总的来说,基于单片机的数字温度计课程设计涉及到硬件设计、软件设计、显示设计、功能扩展、测试与优化等多个方面,学生可
以通过这样的课程设计项目,全面提升自己的电子设计和编程能力,同时也能够实现一个实用的数字温度计产品。
基于单片机的数字温度计设计课程设计

摘要温度的检测与控制是工业生产过程中比较典型的应用。
本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。
基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。
本系统大部分功能能由软件实现,吸收了硬件软件化的思想。
实际操作时,各功能在开发板上也能完美实现。
本系统实现了要求的基本功能,其余发挥部分也能实现。
关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集目录一.绪论.....................................................................................二.设计目的 .............................................................................. 三.设计要求 .............................................................................. 四.设计思路 .............................................................................. 五.系统的硬件构成及功能 .....................................................5.1主控制器.........................................................................5.2显示电路.........................................................................5.3温度传感器 ..................................................................... 六.系统整体硬件电路............................................................... 七.系统程序设计...................................................................... 八.测量及其结果分析................................................................. 九.设计心得体会 ....................................................................... 十.参考文献 .............................................................................. 附录1 源程序附录2 元件清单及PCB图一.绪论随着时代的发展,控制智能化,仪器小型化,功耗微量化得到广泛关注。
基于单片机数字温度计课程设计word

基于单片机数字温度计课程设计摘要本文提出了关于MCS-51系列单片机的数字温度计的制作电路方法和编程思想。
设计一直灌输着电子电路制作软硬结合,以硬件为主的理念。
采用模块化的设计思想。
硬件模块分为温度的感应模块、时钟模块、控制模块、显示模块。
软件同样采用模块化设计,分为中断模块、温度转化模块、时间调整模块。
控制器采用单片机AT89S51,时钟电路采用万年历芯片DS1302,温度传感器采用DS18B20,用数码管并行传送数据实现温度、时钟的显示。
软硬结合以实现数字温度计对温度的显示、测量。
关键词:数字;温度;传感器;AT89S51AbstractThispaperpresentsadigitalthermom eterMCS-51SeriesMCUontheproductioncircuitmethodandp rogrammingideas.Thedesignhadbeeninstilledintheelect roniccircuitmanufacturewiththehardandsoft,thehardwa reorientedconcept.Adoptstheideaofmodulardesign.Theh ardwaremoduleisdividedintoinductionmodule,clockmodu le,temperaturecontrolmodule,displaymodule.Thesoftwa realsousesthemodulardesign,dividedintointerruptmodule,temperatureconversionmodule,timeadjustmodule.AT8 9S51single-chipcontroller,clockcircuitadoptstheperp etualcalendarchipDS1302,temperaturesensorDS18B20,wi thdigitaldisplaytemperature,clockparalleldatatransm ission.Softandhardcombinedtoachievethedisplay,digit althermometerfortemperaturemeasurement.Keywords:dig ital;temperature;sensor;AT89S51目录摘要1Abstract1第一章、绪论11.1.选题的背景与意义11.2.数字温度计的概述11.3.设计思路1第二章、设计内容及功能要求22.1.工作原理22.2.设计要求2第三章、整体方案系统设计2第四章、系统器件选择34.1.单片机的选择34.2.温度传感器的选择54.3.显示电路6第五章、系统整体硬件电路7第六章、系统程序设计9第七章、测量及其结果分析10第八章、总结11致谢12参考文献13附录源程序14第一章、绪论1.1.选题的背景与意义温度是我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。
基于单片机控制的数字温度计 课程设计

基于单片机控制的数字温度计课程设计单片机原理与应用技术课程设计报告(论文)基于单片机控制的数字温度计专业班级:应教121姓名:董镇玉时间: 2014.1.9指导教师 : 宋长源李晓娟2015年 01 月 0 9 日单片机课程设计项目系列:基于单片机控制的数字温度计一.设计要求(一)基本功能1.测温范围-50℃—110℃2.精度误差不大于0.1℃3.LED数码直读显示(二)扩展功能1.实现语音报数2.可以任意设定温度的上下限报警功能二.计划完成时间三周1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。
2.第二周完成软件的具体设计和硬件的制作。
3.第三周完成软件和硬件的联合调试。
基于单片机控制的数字温度计应教121 董镇玉摘要:数字温度计在我们的日常生活中非常常见,广泛应用于我们的日常生活和工业生产。
随着科技的发展,电子技术也日新月异,18b20芯片就是其中杰作之一。
本设计是基于单片机控制的数字温度计,用18b20温度传感器来检测温度,用AT89s52单片机来控制,最终通过数码管来显示温度。
关键词:18b20 数码管单总线1引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用4位一体共阳极LED 数码管以串口传送数据,实现温度显示,能准确达到以上要求。
2 总体设计方案2.1 设计思路按照设计要求,要用LED数码管直读显示温度。
可以通过单片机的IO口然后通过编码来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要温度的检测与控制是工业生产过程中比较典型的应用。
本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。
基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。
本系统大部分功能能由软件实现,吸收了硬件软件化的思想。
实际操作时,各功能在开发板上也能完美实现。
本系统实现了要求的基本功能,其余发挥部分也能实现。
关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集目录一.绪论 .............................................................................................................二.设计目的..................................................................................................... 三.设计要求..................................................................................................... 四.设计思路..................................................................................................... 五.系统的硬件构成及功能.................................................................5.1主控制器...............................................................................................5.2显示电路...............................................................................................5.3温度传感器.......................................................................................... 六.系统整体硬件电路................................................................................. 七.系统程序设计 .......................................................................................... 八.测量及其结果分析 ................................................................................... 九.设计心得体会............................................................................................ 十.参考文献..................................................................................................... 附录1 源程序附录2 元件清单及PCB图一.绪论随着时代的发展,控制智能化,仪器小型化,功耗微量化得到广泛关注。
单片机控制系统无疑在这些忙面起到了举足轻重的作用。
单片机的应用系统设计业已成为新的技术热点,其中数字温度计就是一个典型的例子。
人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。
测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。
目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。
社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。
该设计控制器使用ATMEL公司的AT89C52单片机,测温传感器使用DALLAS公司DS18B20,用数码管来实现温度显示。
二.设计目的1.掌握单片机的工作原理;2.能够进行单片机简单系统的设计,包括电源模块、复位模块、键盘模块及相应控制模块的设计;3.掌握单片机的指令系统及程序的编制结构,能够对具体的设计要求编写相应的控制程序;4.能够根据相应的控制要求选择外围器件实现控制任务;学习proteus仿真软件三.设计要求利用51单片机设计一数字温度计,要求合适的传感器及相应的AD转换芯片,通过传感器来采集室内温度,并由LED进行显示。
具体要求如下:1.设计单片机工作电源模块及其复位电路;2.设计显示模块:两个LED显示当前温度值;3.设计传感器模块,将选择的传感器与A/D转换芯片相连,并通过单片机采集其数据;4.绘制控制软件流程图;5.编写相应的控制程序;利用proteus进行仿真。
四.设计思路1.根据设计要求,选择AT89C52单片机为核心器件。
2.温度检测器件采用DS18B20数字式温度传感器。
与单片机的接口为P3.6引脚。
3.键盘采用独立式按键,由三个按键组成,分别是:设置键(SET),加一建(+1),确认键(RET)。
SET键(上下限温度设置键):当该键按下时,进入上下限温度设置功能。
通过P3.1引脚接入。
+1键(加一调整键):在输入上下限温度时,该键按下一次,被调整位加一。
通过P3.2引脚接入。
RET键(确认键):当该键按下时,指向下一个要调整的位。
通过P3.3引脚接入。
4.声音报警蜂鸣器通过P1.7引脚接入。
硬件电路设计总体框图为图4.1:图4.1五、系统的硬件构成及功能1.主控制器单片机AT89S52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
很适合便携手持式产品的设计使用。
AT89S52在仿真软件中的图像为图5.1图5.12.显示电路显示电路采用四位共阳LED数码管,从P3口RXD,TXD串口输出段码。
LED数码管在仿真软件中如图5.2图5.23.温度传感器DS18B20是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20的性能特点如下:•独特的单线接口仅需一个端口引脚进行通讯•简单的多点分布应用•无需外部器件•可通过数据线供电•零待机功耗•测温范围-55~+125℃,以0.5℃递增。
华氏器件-67~+2570F,以0.90F 递增•温度以9 位数字量读出•温度数字量转换时间200ms(典型值)•用户可定义的非易失性温度报警设置•报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件。
DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20的管脚排列、各种封装形式如图3.3.1所示,DQ 为数据输入/输出引脚。
开漏单总线接口引脚。
当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。
当工作于寄生电源时,此引脚必须接地。
其电路图如图5.3.1所示.。
图5.3.1 外部封装形式在仿真软件中如图5.3.2所示图5.3.2DS18B20的测温原理如图5.3.3所示,图中低温度系数晶振的振荡频率受温度的影响很小用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温图5.3.3中的斜率累加器用于补偿和修正测温过程中的非线性其输出用,于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
另外,由于DS18B20单线通信功能是分时完成的,有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作必须按协议进行。
操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
图5.3.3在正常测温情况下,DS1820的测温分辨力为0.5℃,可采用下述方法获得高分辨率的温度测量结果:首先用DS1820提供的读暂存器指令(BEH)读出以0.5℃为分辨率的温度测量结果,然后切去测量结果中的最低有效位(LSB),得到所测实际温度的整数部分Tz,然后再用BEH指令取计数器1的计数剩余值Cs和每度计数值CD。
考虑到DS1820测量温度的整数部分以0.25℃、0.75℃为进位界限的关系,实际温度Ts可用下式计算:(+-℃)Ts(=TzCDCs.0)/-CD25表1.部分温度值对应的二进制温度数据。