高等数学(下册)数学实验报告

合集下载

《高等数学实验》实验报告

《高等数学实验》实验报告

精品文档高等数学实验报告实验四:微分方程实验五:空间解析几何实验六:多元函数微积分班级:姓名:学号:指导教师:李老师实验成绩:完成日期: 2010 年 4 月 27 日实验四微分方程一、实验目的1.理解常微分方程解的概念;2.掌握求微分方程及方程组解的常用命令和方法。

二、实验类型验证型。

三、必做实验四、选做实验实验五空间解析几何一、实验目的1.掌握绘制空间曲面和曲线的方法;2.熟悉常用空间曲线和空间曲面的图形特征,提高空间想像能力; 3.深入理解二次曲面方程及其图形。

二、实验类型验证型。

三、必做实验>> > t=0:pi/50:10*pi;>> plot3(cos(t),sin(t),t)>> xlabel('x');ylabel('y');zlabel('z');grid onxyz> t=0:0.05:100;>> x=t;y=sin(t);z=sin(2*t); >> plot3(x,y,z)>> xlabel('x');ylabel('y');zlabel('z')xyzezsurf('f')>> ezsurf('-cos(2*x)*sin(3*y)',[-3,3])-1-0.50.51x-cos(2 x) sin(3 y)yezsurf('sin(pi*(x^2+y^2)^(1/2))')-1-0.50.51xsin( (x 2+y 2)1/2)yezsurf('(x*y)/(x^2+y^2)',[-2,2])x(x y)/(x 2+y 2)y> ezsurf('(3+cos(u))*cos(v)','(3+cos(u))*sin(v)','sin(u)',[0,2*pi])-1-0.500.51xx = (3+cos(u)) cos(v), y = (3+cos(u)) sin(v), z = sin(u)yzezsurf('u*cos(v)','u*sin(v)','v/3',[-1,1],[0,8])0.511.522.53xx = u cos(v), y = u sin(v), z = v/3yz>> ezsurf('cos(u)','sin(u)','v') >> hold on>> ezsurf('cos(u)','v','sin(u)')-1-0.500.51z实验六 多元函数微积分一、实验目的1.掌握计算多元函数偏导数和全微分的方法; 2.掌握计算二重积分与三重积分的方法;3.提高应用重积分和曲线、曲面积分解决各种问题的能力。

高等数学下实验报告

高等数学下实验报告

高等数学实验报告实验人员:院(系)化学化工学院 学号19013302 姓名 黄天宇实验地点:计算机中心机房实验七:空间曲线与曲面的绘制一、 实验目的1、利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

2、学会用Mathematica 绘制空间立体图形。

二、实验题目利用参数方程作图,做出由下列曲面所围成的立体图形:(1)x y x y x z =+--=2222,1及xOy 平面; (2) 01,=-+=y x xy z 及.0=z三、实验原理空间曲面的绘制作参数方程],[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈⎪⎩⎪⎨⎧===所确定的曲面图形的Mathematica 命令为:ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax}, {v,vmin,vmax},选项]四、程序设计及运行(1)(2)六、结果的讨论和分析1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。

2、可以通过mathematica 软件作出多重积分的积分区域,使积分能够较直观的被观察。

3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。

4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是xy z =,下底面的方程是z=0,右边的平面是01=-+y x 。

实验八 无穷级数与函数逼近一、 实验目的(1) 用Mathematica 显示级数部分和的变化趋势; (2) 展示Fourier 级数对周期函数的逼近情况;(3) 学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。

二、实验题目(1)、观察级数∑∞=1!n nn n 的部分和序列的变化趋势,并求和。

(2)、改变例2中m 及x 0的数值来求函数的幂级数及观察其幂级数逼近函数的情况(3)、观察函数⎩⎨⎧<≤<≤--=ππx x x x f 0,10,)(展成的Fourier 级数的部分和逼近)(x f 的情况。

东南大学高等数学下册实验报告

东南大学高等数学下册实验报告

高等数学实验报告姓名: 学院: 学号14B11226:试验一、改变例2中m 及的数值来求函数的幂级数及观察其幂级数的逼近函数的情况。

将函数 ()()1mf x x =+ 展开为x 的幂级数,并利用图形考察幂级数的部分和逼近函数的情况。

解:根据幂级数的展开公式,若()f x 能展开成x 的幂级数,其展开式为()()()10!n n f f x n ∞==∑因此首先定义函数,再计算0x =点的n 阶导数,最后构成和式。

不妨设2m =-输入如下命令:m=-2;f[x_]:=(1+x)^m;x0=1; g[n_,x0_]:=D[f[x],{x,n}]/.x x0;s[n_,x_]:=Sum[g[k,x0]/k!*(x-x0)^k,{k,0,n}]; t=Table[s[n,x],{n,20}];p1=Plot[Evaluate[t],{x,-1/2,1/2}];p2=Plot[(1+x)^m,{x,-1/2,1/2},PlotStyle RGBColor[0,0,1]]; Show[p1,p2] 运行结果为:0x由上图形可知当n 越大时,幂级数越逼近函数。

实验二、观察二次曲面族22z x y kxy =++的图形。

特别注意确定k 的这样一些值,当k 经过这些值时,曲面从一种类型变成了另一种类型。

解:在Mathematica 输入以下命令:p =ParametricPlot3D [{Cos [t ],Sin [t ],k ∗Cos [t ]∗Sin [t ]},{t,0,2∗Pi },{k,−2,2}]执行得到:分别令k取-2到2之间的整数值:当k=2时:p=ParametricPlot3D[{Cos[t],Sin[t],2∗Cos[t]∗Sin[t]},{t,0,2∗Pi}]0.51.01.00.51.01.00.5当k=1时:p=ParametricPlot3D[{Cos[t],Sin[t],Cos[t]∗Sin[t]},{t,0,2∗Pi}]0.51.00.50.51.0当k=0时:p=ParametricPlot3D[{Cos[t],Sin[t],0},{t,0,2∗Pi}]0.51.01.00.51.01.00.5当k=-1时:p=ParametricPlot3D[{Cos[t],Sin[t],−1Cos[t]∗Sin[t]},{t,0,2∗Pi}]0.51.00.50.51.0当k=-2时:p=ParametricPlot3D[{Cos[t],Sin[t],−2Cos[t]∗Sin[t]},{t,0,2∗Pi}]0.51.01.00.51.01.00.5从上述五幅图中可以观察到当k值发生变化时,图形也随之发生改变。

高数实验报告 (2)

高数实验报告 (2)

数学实验报告学号: , 姓名: , 得分:实验1实验内容:通过作图,观察重要极限:lim (1+1/n)n=e.实验目的:1.通过编写小程序,学会应用mathmatica软件的基本功能。

2.学会掌握用mathmatica的图形观察极限。

计算公式:data=Table[(1+1/i)^i,{i,300}];ListPlot[data,PlotRange {0, },PlotStyle PointSize[0.0018]]程序运行结果:结果的讨论与分析:当i设定在不同值的时候,图形的长度在变化,当总体趋势没有变化,总是取向e。

实验2实验内容:设数列{Xn}由下列递推关系式给出:x1=1/2,xn+1=xn2+xn(n=1,2………)观察数列1/(x1+1)+ 1/(x2+1) +…….+1/(xn+1)的极限。

实验目的和意义:1:掌握mathmatica数学实验的基本用法。

2:学会利用mathmatica 编程求数列极限。

3:了解函数与数列的关系。

计算公式:f[x_]:=x^2+x;xn=0.5;g[x_,y_]:=y+1/(1+x);y n=0;For[n=1,n 15,n++,xN=xn;yN=yn;xn=N[f[x N]];yn=N[g[xN,yN]]];Print[" y30=",yn]程序运行结果:y30= 2.结果与讨论:这个实验,当yn中n趋向无穷大的时候,能够更加接近极限,当取30以上时候,2就是极限值。

实验3实验内容:已知函数:f(x)=1/(x2+2x+c)(-5<=x<=4),作出并比较当c 取不同的值的时候(-1,0,1,2,3),并从图上观察出极值点,驻点,单调区间,凹凸区间和渐进线。

实验目的:1.通过实验掌握如何用mathmatica作图。

2.学会观察图像来求函数的相关数据。

计算公式:f[x_]=1/(x2+2 x+(-1))Plot[f[x],{x,-5,4},GridLines Automatic,Frame True,PlotStyle RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(0))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(2))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(3))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(3))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]程序运行结果:结果的讨论与分析:不同的c,函数的形态有较大的不同,也就是原方程=0什么情况下有解的问题,根据图像很容易的得到驻点,拐点,等相关信息。

高等数学数学实验报告(两篇)

高等数学数学实验报告(两篇)

引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。

本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。

在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。

通过本次实验,我们可以更好地理解高等数学的概念和应用。

正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。

高等数学实验报告(下)

高等数学实验报告(下)

高等数学数学实验报告实验人员:院(系)学号: 姓名:实验一 空间曲线与曲面的绘制一、 实验题目做出几个标准二次曲面的图形二、实验目的和意义本实验的目的是利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

三、计算公式空间曲面的绘制作一般式方程),(y x f z =所确定的曲面图形的Mathematica 命令为:Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax},选项]作参数方程],[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈⎪⎩⎪⎨⎧===所确定的曲面图形的Mathematica 命令为:ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax},{v,vmin,vmax},选项]四、程序设计 1.双曲抛物面 实验程序: t4ParametricPlot3Du ,v,2u^23v^2,u,4,4,v,4,4,PlotPoints 30,Axes False,Boxed False,AspectRatio1;Show t42. 圆锥面 实验程序: t5ParametricPlot3Du Cos v ,u Sin v ,u ,u,5,5,v,0,2Pi ,PlotPoints 30,Boxed False,AxesFalse,AspectRatio 1;Show t53. 椭圆抛物面实验程序:t6ParametricPlot3D2u Sin v,u Cos v,u^2,u,0,4,v,0,2Pi,PlotPoints30,Axes False,Boxed False;Show t6五、程序运行结果1.双曲抛物面2.圆锥面3.椭圆抛物面六、结果的讨论和分析采用参数方程的方法绘制双曲抛物面,圆锥面,椭圆抛物面的图形,因为参数方程已知,所以编程更简洁且准确率高。

高数实验报告doc(两篇)

高数实验报告doc(两篇)

高数实验报告引言:高等数学是大学理工科专业中必修的一门基础课程,通过实验可以帮助学生更好地理解和应用数学知识。

本实验报告旨在介绍高等数学实验的目的、原理和实验结果,以及对实验过程的详细阐述。

通过实验,学生可以深入了解高等数学的概念和方法,并提高其数学建模和问题解决的能力。

概述:一、数列与数学归纳法:1.数列的概念和性质2.等差数列和等比数列的求和公式3.斐波那契数列4.数学归纳法的原理和应用5.数学归纳法在证明数学命题中的应用二、函数与导数:1.函数的概念和分类2.复合函数的求导法则3.高阶导数与泰勒展开4.特殊函数的导数求解5.函数与导数在实际问题中的应用三、不定积分与定积分:1.不定积分的定义和性质2.基本初等函数的不定积分3.分部积分和换元积分法4.定积分的概念和性质5.定积分在几何、物理等领域中的应用四、微分方程:1.微分方程的基本概念和分类2.一阶常微分方程的解法3.二阶常微分方程的解法4.高阶常微分方程与常系数线性齐次微分方程5.微分方程在科学和工程领域的应用五、级数与幂级数:1.级数的概念和性质2.级数的收敛与发散3.幂级数的收敛域4.幂级数的求和与展开5.幂级数在数学分析中的应用总结:通过本次高等数学实验,我们对数列与数学归纳法、函数与导数、不定积分与定积分、微分方程以及级数与幂级数等知识进行了深入了解和实践。

实验过程中,我们运用数学原理和方法解决了一系列数学问题,并将理论知识应用到实际问题解决中。

通过实验,我们不仅加深了对高等数学的理解和掌握,也提高了自己的数学建模和问题解决能力。

这次实验为我们的数学学习和应用提供了宝贵的经验和机会。

引言概述本文是一篇关于高数实验的报告,主要探讨了高数实验的意义、目的、实验方法以及实验结果和分析等内容。

高数实验是大学高数课程的重要组成部分,通过实验能够帮助学生更好地理解和应用数学知识,提高解决实际问题的能力。

本文将从实验目的、实验方法和实验结果三个方面进行详细阐述,并对实验进行总结与分析。

高数实验报告

高数实验报告

引言概述:本文是关于高数实验的报告,主要通过引言概述、正文内容、总结等部分对高数实验进行详细阐述。

高数实验是通过实际操作和观察,探索和应用数学中的基本原理和概念。

它有助于加深对高数理论的理解、提高数学思维和解决问题的能力。

正文内容:一、实验目的本次高数实验的目的是通过实际操作,加深对数学概念和原理的理解,并掌握基本数学实验的方法和技巧,提高数学思维和解决问题的能力。

二、实验材料和仪器本次实验所需材料和仪器包括实验记录表、计算器、尺子、直角尺、量角器等。

三、实验一:极限的探究1.设立实验任务:研究函数f(x)在某点a的极限。

2.实验步骤:a.确定函数f(x)和点a的取值范围,并在实验记录表中记录下来。

b.设定x的取值逐渐接近a的过程,并依次计算f(x)的值。

c.绘制出随着x的接近程度增加,f(x)的变化趋势图,并通过图像分析来研究f(x)在点a的极限。

3.实验结果和讨论:a.根据实验数据绘制的图像分析可以看出,当x接近a的时候,f(x)的值逐渐趋近于某一数值,这个数值就是f(x)在点a的极限。

b.实验结果和数学概念相符,证明了极限的定义和性质。

四、实验二:导数的计算1.设立实验任务:求函数f(x)在某点的导数。

2.实验步骤:a.确定函数f(x)和点a的取值范围,并在实验记录表中记录下来。

b.通过逐渐缩小x的取值范围,计算f(x)在点a的导数值。

c.通过实验数据绘制出f(x)在点a处导数的变化趋势图,并通过图像分析来研究f(x)在点a的导数。

3.实验结果和讨论:a.根据实验结果和图像分析可以得出结论,f(x)在点a的导数值表示了函数在该点的斜率。

b.实验结果和导数的定义和性质相符,进一步验证了导数的计算方法和应用。

五、实验三:定积分的求解1.设立实验任务:求函数f(x)在某区间的定积分。

2.实验步骤:a.确定函数f(x)和求解区间的取值范围,并在实验记录表中记录下来。

b.将求解区间分成若干个小区间,计算出每个小区间的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学A(下册)实验报告
院(系): 学号:姓名:
实验一
利用参数方程作图,作出由下列曲面所围成的立体:
(1)
2
2
1Y
X
Z-
-
=

X
Y
X=
+2
2

xOy

·程序设计:
-1, 1},Axe
s2=ParametricPlot3D[{1/2*Cos[u]+1/2,1/2*Sin[u],v},{u,-
s3=ParametricPlot3D[{u,v,0},{u,-1,1},{v,-
DisplayFunction
程序运行结果:
实验二
实验名称:无穷级数与函数逼近
实验目的:观察的部分和序列的变化趋势,并求和
实验内容:
(1)利用级数观察图形的敛散性
当n 从1~400时,输入语句如下:
运行后见下图,可以看出级数收敛,级数和大约为1.87985
(2先输入:
输出:
输出和输入相同,此时应该用近似值法。

输入:
输出: 1.87985
结论:级数大约收敛于1.87985
实验三:
1. 改变例2中m 的值及的数值来求函数的幂级数及观察其幂级数逼近函数的情况
·程序设计:
m 5; f x_:1 x^m;x0 1;
g n_,x0_ :D f x, x, n .x x0;
s n_,x_: Sum g k,x0/k x x0 ^k, k, 0,
t Table s n, x, n, 20;
p1 Plot Evaluate t ,x,1,2,3 2;
p2 Plot 1 x ^m , x,1 2,3 2,
PlotStyle RGBColor 0,0,1;
Show p1,p2
·程序运行结果
实验四
实验名称:最小二乘法
实验目的:测定某种刀具的磨损速度与时间的关系实验内容:
(1) 确定函数的类型
为此,我们将所有数据输入电脑,作出散点图。

输入语句如下:
t={0,1,2,3,4,5,6,7};
y={27.0,26.8,26.5,26.3,26.1,25.7,25.3,24.8}; ty=Table[{t[[i]],y[[i]]},{i,1,8}]
ListPlot[ty,PlotStyle →
PointSize[0.02]]
运行后可得数据表和下图:
{{0,27.},{1,26.8},{2,26.5},{3,26.3},{4,26.1},{5,25.7},{6,25.3},{7,24.8}}
从图中可以看出这些点近似的落在一条直线周围,可以认为x 和y 之间存在线性关系,之所以不完全落在直线上,是因为数据本身存在误差。

下面用最小二乘法球处于这些数据点最接近的直线方程。

(2) 求最小二乘解
设直线方程y=at+b ,其中,a ,b 是待定系数。

输入语句:
x={0,1,2,3,4,5,6,7};
y={27.0,26.8,26.5,26.3,26.1,25.7,25.3,24.8}; xy=Table[{x[[i]],y[[i]]},{i,1,8}];
q[a_,b_]:=Sum[(a*x[[i]]+b-y[[i]])^2,{i,1,8}] Solve[{D[q[a,b],a] 0,D[q[a,b],b] 0},{a,b}]
运行后得:
{{a →-0.303571,b →27.125}}
(3) 比较拟合函数与已知数据点
在同一坐标系下绘出数据点的散点图及拟合函数的图形,输入语句如下:
x={0,1,2,3,4,5,6,7};
y={27.0,26.8,26.5,26.3,26.1,25.7,25.3,24.8}; xy=Table[{x[[i]],y[[i]]},{i,1,8}];
q[a_,b_]:=Sum[(a*x[[i]]+b-y[[i]])^2,{i,1,8}] Solve[{D[q[a,b],a] 0,D[q[a,b],b] 0},{a,b}] t1=ListPlot[xy,PlotStyle →PointSize[0.02]]; f[x_]:=-0.30357*x+27.125; t2=Plot[f[x],{x,0,10}]; Show[t1,t2]
运行结果为:
从图中可以看出,拟合曲线与散点图分布较为吻合,假设成立。

结论:刀具的磨损速度与时间的关系大致为:y=-0.303571x+27.125。

相关文档
最新文档