高等数学实验报告

合集下载

《高等数学实验》实验报告

《高等数学实验》实验报告

精品文档高等数学实验报告实验四:微分方程实验五:空间解析几何实验六:多元函数微积分班级:姓名:学号:指导教师:李老师实验成绩:完成日期: 2010 年 4 月 27 日实验四微分方程一、实验目的1.理解常微分方程解的概念;2.掌握求微分方程及方程组解的常用命令和方法。

二、实验类型验证型。

三、必做实验四、选做实验实验五空间解析几何一、实验目的1.掌握绘制空间曲面和曲线的方法;2.熟悉常用空间曲线和空间曲面的图形特征,提高空间想像能力; 3.深入理解二次曲面方程及其图形。

二、实验类型验证型。

三、必做实验>> > t=0:pi/50:10*pi;>> plot3(cos(t),sin(t),t)>> xlabel('x');ylabel('y');zlabel('z');grid onxyz> t=0:0.05:100;>> x=t;y=sin(t);z=sin(2*t); >> plot3(x,y,z)>> xlabel('x');ylabel('y');zlabel('z')xyzezsurf('f')>> ezsurf('-cos(2*x)*sin(3*y)',[-3,3])-1-0.50.51x-cos(2 x) sin(3 y)yezsurf('sin(pi*(x^2+y^2)^(1/2))')-1-0.50.51xsin( (x 2+y 2)1/2)yezsurf('(x*y)/(x^2+y^2)',[-2,2])x(x y)/(x 2+y 2)y> ezsurf('(3+cos(u))*cos(v)','(3+cos(u))*sin(v)','sin(u)',[0,2*pi])-1-0.500.51xx = (3+cos(u)) cos(v), y = (3+cos(u)) sin(v), z = sin(u)yzezsurf('u*cos(v)','u*sin(v)','v/3',[-1,1],[0,8])0.511.522.53xx = u cos(v), y = u sin(v), z = v/3yz>> ezsurf('cos(u)','sin(u)','v') >> hold on>> ezsurf('cos(u)','v','sin(u)')-1-0.500.51z实验六 多元函数微积分一、实验目的1.掌握计算多元函数偏导数和全微分的方法; 2.掌握计算二重积分与三重积分的方法;3.提高应用重积分和曲线、曲面积分解决各种问题的能力。

高等数学实验报告

高等数学实验报告

高等数学实验报告实验七:空间曲线与曲面的绘制一、 实验目的1、利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

2、学会用Mathematica 绘制空间立体图形。

二、实验题目利用参数方程作图,做出由下列曲面所围成的立体图形:(1)xy x y x z =+--=2222,1及xOy 平面;(2) 01,=-+=y x xy z 及.0=z三、实验原理空间曲面的绘制作参数方程],[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈⎪⎩⎪⎨⎧===所确定的曲面图形的Mathematica 命令为:ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax}, {v,vmin,vmax},选项]四、程序设计(2)五、程序运行结果(2)六、结果的讨论和分析1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。

2、可以通过mathematica 软件作出多重积分的积分区域,使积分能够较直观的被观察。

3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。

4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是xy z =,下底面的方程是z=0,右边的平面是01=-+y x 。

实验八 无穷级数与函数逼近一、 实验目的(1) 用Mathematica 显示级数部分和的变化趋势; (2) 展示Fourier 级数对周期函数的逼近情况;(3) 学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。

二、实验题目(1)、观察级数∑∞=1!n nnn 的部分和序列的变化趋势,并求和。

(2)、观察函数⎩⎨⎧<≤<≤--=ππx x x x f 0,10,)(展成的Fourier 级数的部分和逼近)(x f 的情况。

高数实验报告 (2)

高数实验报告 (2)

数学实验报告学号: , 姓名: , 得分:实验1实验内容:通过作图,观察重要极限:lim (1+1/n)n=e.实验目的:1.通过编写小程序,学会应用mathmatica软件的基本功能。

2.学会掌握用mathmatica的图形观察极限。

计算公式:data=Table[(1+1/i)^i,{i,300}];ListPlot[data,PlotRange {0, },PlotStyle PointSize[0.0018]]程序运行结果:结果的讨论与分析:当i设定在不同值的时候,图形的长度在变化,当总体趋势没有变化,总是取向e。

实验2实验内容:设数列{Xn}由下列递推关系式给出:x1=1/2,xn+1=xn2+xn(n=1,2………)观察数列1/(x1+1)+ 1/(x2+1) +…….+1/(xn+1)的极限。

实验目的和意义:1:掌握mathmatica数学实验的基本用法。

2:学会利用mathmatica 编程求数列极限。

3:了解函数与数列的关系。

计算公式:f[x_]:=x^2+x;xn=0.5;g[x_,y_]:=y+1/(1+x);y n=0;For[n=1,n 15,n++,xN=xn;yN=yn;xn=N[f[x N]];yn=N[g[xN,yN]]];Print[" y30=",yn]程序运行结果:y30= 2.结果与讨论:这个实验,当yn中n趋向无穷大的时候,能够更加接近极限,当取30以上时候,2就是极限值。

实验3实验内容:已知函数:f(x)=1/(x2+2x+c)(-5<=x<=4),作出并比较当c 取不同的值的时候(-1,0,1,2,3),并从图上观察出极值点,驻点,单调区间,凹凸区间和渐进线。

实验目的:1.通过实验掌握如何用mathmatica作图。

2.学会观察图像来求函数的相关数据。

计算公式:f[x_]=1/(x2+2 x+(-1))Plot[f[x],{x,-5,4},GridLines Automatic,Frame True,PlotStyle RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(0))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(2))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(3))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]f[x_]=1/(x2+2 x+(3))Plot[f[x],{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]]程序运行结果:结果的讨论与分析:不同的c,函数的形态有较大的不同,也就是原方程=0什么情况下有解的问题,根据图像很容易的得到驻点,拐点,等相关信息。

高等数学数学实验报告(两篇)

高等数学数学实验报告(两篇)

引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。

本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。

在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。

通过本次实验,我们可以更好地理解高等数学的概念和应用。

正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。

高数 实验报告

高数 实验报告

高数实验报告高数实验报告引言:高等数学是大学数学的一门基础课程,它在培养学生的逻辑思维能力、分析问题的能力以及推理能力方面发挥着重要作用。

在高数课程中,实验是一种重要的教学手段,通过实验可以帮助学生更好地理解和应用数学知识。

本篇实验报告将介绍我参与的一次高数实验,并分享其中的心得体会。

实验目的:本次实验的目的是通过实际操作,加深对数列和级数的理解,并掌握相应的计算方法。

同时,通过实验过程中的观察和分析,培养学生的数学建模能力和解决实际问题的能力。

实验过程:实验开始前,我们小组成员首先进行了讨论,确定了实验的具体内容和步骤。

我们选择了两个具体的数列和级数问题进行研究。

第一个问题是求解一个递推数列的通项公式。

我们首先观察数列的前几项,发现数列中的每一项与前一项之间存在着一定的关系。

通过分析这种关系,我们猜测数列的通项公式,并通过数学归纳法进行验证。

最终,我们成功地找到了数列的通项公式,并通过计算验证了其正确性。

第二个问题是求解一个级数的和。

我们选择了一个著名的几何级数进行研究。

通过观察级数的前几项,我们发现级数中的每一项与前一项之间存在着一定的比例关系。

根据这种关系,我们得出级数的和的公式,并通过计算验证了其正确性。

实验结果:通过实验,我们成功地求解了两个数列和级数的问题,并得到了相应的结果。

这些结果不仅帮助我们更好地理解了数列和级数的概念,还提高了我们的计算能力和问题解决能力。

心得体会:通过参与这次高数实验,我深刻体会到了实践对于学习的重要性。

在实验过程中,我们不仅仅是被动地接受知识,更是主动地去探索和发现。

通过观察、分析和计算,我们能够更加深入地理解数学知识,并将其应用到实际问题中去。

此外,实验还培养了我们的团队合作能力和沟通能力。

在小组讨论中,我们需要相互协作,共同解决问题。

通过合作,我们不仅能够更好地理解和应用数学知识,还能够互相学习和促进成长。

总结:通过这次高数实验,我不仅加深了对数列和级数的理解,还提高了自己的数学建模能力和问题解决能力。

高等数学实验报告(下)

高等数学实验报告(下)

高等数学数学实验报告实验人员:院(系)学号: 姓名:实验一 空间曲线与曲面的绘制一、 实验题目做出几个标准二次曲面的图形二、实验目的和意义本实验的目的是利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

三、计算公式空间曲面的绘制作一般式方程),(y x f z =所确定的曲面图形的Mathematica 命令为:Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax},选项]作参数方程],[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈⎪⎩⎪⎨⎧===所确定的曲面图形的Mathematica 命令为:ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax},{v,vmin,vmax},选项]四、程序设计 1.双曲抛物面 实验程序: t4ParametricPlot3Du ,v,2u^23v^2,u,4,4,v,4,4,PlotPoints 30,Axes False,Boxed False,AspectRatio1;Show t42. 圆锥面 实验程序: t5ParametricPlot3Du Cos v ,u Sin v ,u ,u,5,5,v,0,2Pi ,PlotPoints 30,Boxed False,AxesFalse,AspectRatio 1;Show t53. 椭圆抛物面实验程序:t6ParametricPlot3D2u Sin v,u Cos v,u^2,u,0,4,v,0,2Pi,PlotPoints30,Axes False,Boxed False;Show t6五、程序运行结果1.双曲抛物面2.圆锥面3.椭圆抛物面六、结果的讨论和分析采用参数方程的方法绘制双曲抛物面,圆锥面,椭圆抛物面的图形,因为参数方程已知,所以编程更简洁且准确率高。

高数实验报告doc(两篇)

高数实验报告doc(两篇)

高数实验报告引言:高等数学是大学理工科专业中必修的一门基础课程,通过实验可以帮助学生更好地理解和应用数学知识。

本实验报告旨在介绍高等数学实验的目的、原理和实验结果,以及对实验过程的详细阐述。

通过实验,学生可以深入了解高等数学的概念和方法,并提高其数学建模和问题解决的能力。

概述:一、数列与数学归纳法:1.数列的概念和性质2.等差数列和等比数列的求和公式3.斐波那契数列4.数学归纳法的原理和应用5.数学归纳法在证明数学命题中的应用二、函数与导数:1.函数的概念和分类2.复合函数的求导法则3.高阶导数与泰勒展开4.特殊函数的导数求解5.函数与导数在实际问题中的应用三、不定积分与定积分:1.不定积分的定义和性质2.基本初等函数的不定积分3.分部积分和换元积分法4.定积分的概念和性质5.定积分在几何、物理等领域中的应用四、微分方程:1.微分方程的基本概念和分类2.一阶常微分方程的解法3.二阶常微分方程的解法4.高阶常微分方程与常系数线性齐次微分方程5.微分方程在科学和工程领域的应用五、级数与幂级数:1.级数的概念和性质2.级数的收敛与发散3.幂级数的收敛域4.幂级数的求和与展开5.幂级数在数学分析中的应用总结:通过本次高等数学实验,我们对数列与数学归纳法、函数与导数、不定积分与定积分、微分方程以及级数与幂级数等知识进行了深入了解和实践。

实验过程中,我们运用数学原理和方法解决了一系列数学问题,并将理论知识应用到实际问题解决中。

通过实验,我们不仅加深了对高等数学的理解和掌握,也提高了自己的数学建模和问题解决能力。

这次实验为我们的数学学习和应用提供了宝贵的经验和机会。

引言概述本文是一篇关于高数实验的报告,主要探讨了高数实验的意义、目的、实验方法以及实验结果和分析等内容。

高数实验是大学高数课程的重要组成部分,通过实验能够帮助学生更好地理解和应用数学知识,提高解决实际问题的能力。

本文将从实验目的、实验方法和实验结果三个方面进行详细阐述,并对实验进行总结与分析。

东南大学高数实验报告(大一上)

东南大学高数实验报告(大一上)

高等数学数学实验报告
实验题目1:设数列{n x }由下列关系出: ),2,1(,2
1
211 =+==+n x x x x n n n ,观察数列
1
1
111121++
++++n x x x 的极限。

解:根据题意,编写如下程序求出数列的值
运行结果为:
0.66,
1.,
1.6,
1.9,
1.9,
1.9,,
,,,,
,,.
根据观察分析易得出,数列的极限为2.
实验题目2:已知函数)45(21
)(2
≤≤-++=x c
x x x f ,作出并比较当c 分别取-1,0,1,2,3时的图形,并从图上观察极值点、驻点、单调区间、凹凸区间以及渐进线。

解:根据题意,编写如下程序绘制函数
所得图像如下图所示,为c分别取-1,0,1,2,3时的图形:
c的值影响着函数图形上的极值点、驻点、单调区间、凹凸区间以及渐进线,c的值决定了函数图像。

实验题目3:对f(x)=cosx求不同的x处的泰勒展开的表达形式。

解:编写程序如下:
(1)
(2)
(3)
(4)
程序运行结果如下图所示:(1)
(2)
(3)
(4)
由图像可知,函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但对于任意确定的次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程实验报告
专业年级2016级计算机类2班课程名称高等数学
指导教师张文红
学生姓名李发元
学号20160107000215 实验日期2016.12 .21
实验地点勤学楼4-24
实验成绩
教务处制
2016 年9月21 日
实验项
目名称
Matlab软件入门与求连续函数的极限
实验目的
及要求
实验目的:
1.了解Matlab软件的入门知识;
2.掌握Matlab软件计算函数极限的方法;
3.掌握Matlab软件计算函数导数的方法。

实验要求:
1.按照实验要求,在相应位置填写答案;
2.将完成的实验报告,以电子版的形式交给班长, 转交给任课教师,文件名“姓名+
学号”。

实验内容利用Matlab完成下列内容:
1、(1)
2
2
1
lim
471
x
x
x x
→∞
-
-+
;(2)
3
tan sin
lim
x
x x
x

-
;(3)
1
lim
1
x
x
x
x
→∞
-
⎛⎫

+
⎝⎭2、(1)x
x
y ln
2
=,求y';(2)ln(1)
y x
=+,求()n y
实验步骤1.开启MATLAB编辑窗口,键入编写的命令,运行;
2.若出现错误,修改、运行直到输出正确结果;
3.将Matlab输入输出结果,粘贴到该实验报告相应的位置。

第一题
2
2
1
lim
471
x
x
x x
→∞
-
-+
运行编码是
>> syms x
>> limit((x^2-1)/(4x^2x+1),x,inf)
ans =
1/4
第二题3
0tan sin lim x x x x →- >> syms x
>> limit((tanx-sinx)/(x^3),x,0)
ans =
1
第三题1lim 1x
x x x →∞-⎛⎫ ⎪+⎝⎭
>> syms x
>> limit(((x-1)^x)/(x+1),x,inf)
ans =
2
第四题(1)x x y ln 2=,求y ';
>> syms x
>>f(x)=x^2in(x)
f(x)=x^2in(x)
>>diff(f(x)),
ans =
2xinx+x
第五题ln(1)y x =+,求()n y
>> syms x
>>f(x)In(1+x)
f(x)In(1+x)
>>diff(f(x),n),
ans =
实验环境
Windows XP及以上版本,Matlab 7.1及以上版本。

实验结果

分析1.通过此次实验,了解Matlab软件的入门知识;学会了运用Matlab软件计算函数极限的方法和运用Matlab软件计算函数导数的方法。

2.通过实验,巩固了函数极限和函数导数的知识,了解到了学习好高等数学是学好C语言程序设计基础的必要前提。

学习高等数学,能够锻炼我们的程序思维和逻辑思维,这些思维是学习计算机类专业必不可少的。

注:可根据实际情况加页。

相关文档
最新文档