刚体的定轴转动 带答案

合集下载

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

大学物理AⅠ刚体定轴转动习题答案及解法

大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。

1环的质量分布均匀。

2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。

长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。

(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。

(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。

(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

刚体的定轴转动(带答案)

刚体的定轴转动(带答案)

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ] (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小。

(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[ D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C )取决于刚体的质量、质量的空间分布和轴的位置。

(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA 可绕通过某一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的 [ A ](A )角速度从小到大,角加速度从大到小。

(B )角速度从小到大,角加速度从小到大。

(C )角速度从大到小,角加速度从大到小。

(D )角速度从大到小,角加速度从小到大。

3. (本题3分)5640一个物体正在绕固定的光滑轴自由转动,则 [ D ] (A ) 它受热或遇冷伸缩时,角速度不变. (B ) 它受热时角速度变大,遇冷时角速度变小. (C ) 它受热或遇冷伸缩时,角速度均变大. (D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

(C )刚体所受的合外力和合外力矩均为零。

(D )刚体的转动惯量和角速度均保持不变。

7、(本题3分)0247如图示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂。

现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ C ] (A )只有机械能守恒。

(B )只有动量守恒。

(C )只有对转轴O 的角动量守恒。

(D )机械能、动量和角动量均守量。

8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,垂直板面撞击方板,并粘在方板上,对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是 [ B ](A )动能 (B )绕木板转轴的角动量 (C )机械能 (D )动量 9、(本题3分)0228质量为m 的小孩站在半径为R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J ,平台和小孩开始时均静止,当小孩突然以相对于地面为v 的速率在平台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 [ A ](A )J mR 2=ω(R V ),顺时针。

(B )J mR 2=ω(RV),逆时针。

(C )22mR J mR +=ω(R V ),顺时针。

(D )22mR J mR +=ω(RV),逆时针。

10、(本题3分)0230一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω [ C ] (A )增大 (B )不变 (C )减少 (D )不能确定 11、(本题3分)0133如图所示,一静止的均匀细棒,长为λ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML 2,一质量为m ,速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V ,则此时棒的角速度应为 [B ](A )ML mv (2)ML mv 23(3))(35L M mv (4)ML mv4712、(本题3分)0772如图示,一水平刚性轻杆,质量不计,杆长ι=20cm ,其上穿有两个小球,初始时,两个小球相对杆中心O 对称放置,与O 的距离d=5cm ,二者之间用细线拉紧,现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动,不考虑转轴和空气的摩擦,当两球都滑至杆端时,杆的角速度为 [ D ](A )ω0 (B )2ω0(C )21ω0 (D )ω0/413、(本题3分)0197一小平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,把人和 圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ C ] (A )动量守恒 。

(D )动量、机械能和角动量都守恒。

(B )机械能守恒。

(E )动量、机械能和角动量都不守恒。

(C )对转轴的角动量守恒。

14、(本题3分)5643有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。

随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ A ](A ) 02ωmR J J+ (B )()02ωR m J J + (C )02ωmR J(D )0ω 二、填空题:(共18分) 1、(本题3分)0290半径为r=的飞轮,初角速度ω0=10rad ·S -1,角加速度β=-5rad ·S -2,则t= 4s 时角位移为零,而此时边缘上点的线速度υ= -15mS -1. 2、(本题3分)0977一个匀质圆盘由静止开始以恒定角加速度绕过中心且垂直于盘面的轴转动,在某一时刻转速为10rev/s ,再转60圈后转速变为15rev/s ,则由静止达到10rev/s 所需时间t= ;由静止到10rev/s 时圆盘所转的圈数N= 48rev 。

3、(本题3分)0302可绕水平轴转动的飞轮,直径为,一条绳子绕在飞轮的外周边缘上,如果从静止开始做匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为 5rad/S 2 。

4、(本题3分)0543如图所示,P 、Q 、R 和S量分别为4m 、3m 、2m 和m 的四个质点,则系统对oo’轴的转动惯量为 50ml 2 。

5、(本题3分)0553一个作定轴转动的物体,对转轴的转动惯量为J ,正以角速度ω0=10rad ·s -1匀速转动,现对物体加一恒定的力矩M=·m ,经过时间t=后,物体停止了转动,物体的转动惯量J= . 。

6.(本题3分) 0164如图所示的匀质大圆盘,质量为M ,半径为R ,对于过圆心O 点且垂直于盘面的转轴的转动惯量为21MR 2,如果在大圆盘中挖去图示的一个小圆盘,其质量为m ,半径为r ,且2r=R ,已知挖去的小圆盘相对于过O 点且垂直于盘面的转轴的转动惯量为23mr 2,则挖去小圆盘后剩余部分对于过O 点且垂直于盘面的转 轴的转动惯量为 。

7、(本题3分)0676一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J=2MR ,在滑轮的边缘绕一细绳,绳的下端挂一物体,绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦,物体下落的加速度为a ,则绳中的张力T= 21ma 。

8、(本题3分)0685如图所示,滑块A ,重物B 和滑轮C 的质量分别为m A 、m B 、和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J=221R m c ,滑块A 与桌面间,滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动,滑块A 的加速度的a= 。

9、(本题3分)0240一飞轮以600re υ/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M= 157N ·m 。

10、(本题3分)0552一个作定轴转动的轮子,对轴的转动惯量J=·m 2,正以角速度ω0匀速转动,现对轮子加一恒定的力矩M=·m ,经过时间t=时轮子的角速度ω=-ω0,则ω0= 。

11、(本题3分)0559一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动,开始时杆与水平成600,处于静止状态,无初转速地释放以后,杆球这一刚体系统绕O 轴转动,系统绕O 轴的转动惯量J= ,释放后,当杆转到水平位置时,刚体受到的合外力矩M=;角加速度β 12、(本题3分)0236质量为m 长为λ的棒、(转动惯量122λm J =)。

开始时棒静止,现有一子弹,质量也是m ,以速率0v ϖ垂直射入棒端并嵌在其中. 则子弹和棒碰后的角速度ω=λ23v 。

13、(本题3分)0683如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转 动惯量为J ,若不计摩擦,飞轮的角加速度β= 。

14、(本题3分)0684半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体,绳的质量可以忽略,绳与定滑轮之间无相对滑动,若物体下落的加速度为a ,则定滑轮对轴的转动惯量J= 。

15、(本题3分)0542质量分别为m 和2m 的两物体(都可视为质点),用一长为ι的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为,质量为m的质点的线速度为υ且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 mvl 。

16、(本题3分)0774判断图示的各种情况下,哪种情况角动量是守恒的,请把序号填在横线上的空白处。

(1),(2),(3)。

(1) 圆锥摆中作水平匀速圆周运动的小球 m ,对竖直轴OO ’的角动量。

(2)绕光滑水平固定轴O 自由摆动的米尺,对轴的O 的角动量。

(3)光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴的角动量。

(4)一细绳绕过有光滑的定滑轮,滑轮的一侧为一重物m ,另一侧为一质量等于m 的人,在人向上爬的过程中,人与重物系统对轴的O 的角动量。

17、(本题3分)0235长为λ、质量为M 的尔质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量的31M λ2,开始时杆竖直下垂,如图所示,有一质量为m 的子弹以水平速度V 0射入杆上A 点, 并嵌在杆中,OA=21/3,则子弹射入后瞬间杆的角速度ω=。

相关文档
最新文档