Floyd算法Matlab程序

合集下载

matlab的floyd算法

matlab的floyd算法

matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。

它是以发明者之一、罗伯特·弗洛伊德的名字命名的。

这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。

算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。

特别地,当i=j时,dist(i,j)=0。

为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。

则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。

算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。

具体来说,设S={1, 2, ⋯, k},其中k是整数。

Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。

最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。

Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。

这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。

算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。

中国邮递员问题matlab

中国邮递员问题matlab

中国邮递员问题matlab%中国邮递员问题:%step1;%求出奇点之间的距离;%求各个点之间的最短距离;%floyd算法;clear all; clc; A=zeros(9); A(1,2)=3; A(1,4)=1; A(2,4)=7; A(2,5)=4;A(2,6)=9;A(2,3)=2; A(3,6)=2 A(4,7)=2; A(4,8)=3;A(4,5)=5; A(5,6)=8; A(6,9)=1;A(6,8)=6; A(7,8)=2; A(8,9)=2; c=A+A’; c(find(c==0))=inf; m=length(c); Path=zeros(m); for k=1:m for i=1:m for j=1:m if c(i,j)>c(i,k)+c(k,j)c(i,j)=c(i,k)+c(k,j); Path(i,j)=k;end end end end c, Path h1=c(2,4); h2=c(2,6); h3=c(2,5); h4=c(4,6); h5=c(4,5); h6=c(6,5); h=[h1,h2,h3,h4,h5,h6]%step2;%找出以奇点为顶点的完全图的最优匹配;%算法函数Hung_function [Matching,Cost] = Hung_Al(Matrix) Matching = zeros(size(Matrix)); % 找出每行和每列相邻的点数num_y = sum(~isinf(Matrix),1);num_x = sum(~isinf(Matrix),2); % 找出每行和每列的孤立点数x_con = find(num_x~=0);y_con = find(num_y~=0); %将矩阵压缩、重组P_size = max(length(x_con),length(y_con));P_cond = zeros(P_size); P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con);if isempty(P_cond)Cost = 0;return end % 确保存在完美匹配,计算矩阵边集Edge = P_cond; Edge(P_cond~=Inf) = 0; cnum = min_line_cover(Edge); Pmax = max(max(P_cond(P_cond~=Inf)));P_size = length(P_cond)+cnum; P_cond = ones(P_size)*Pmax;P_cond(1:length(x_con),1:length(y_con)) = Matrix(x_con,y_con); %主函数程序,此处将每个步骤用switch命令进行控制调用步骤函数exit_flag = 1; stepnum = 1; while exit_flag switch stepnum case 1 [P_cond,stepnum] = step1(P_cond);case 2 [r_cov,c_cov,M,stepnum] = step2(P_cond); case 3 [c_cov,stepnum] = step3(M,P_size);case 4 [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);case 5 [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);case 6 [P_cond,stepnum] = step6(P_cond,r_cov,c_cov); case 7 exit_flag = 0;end end Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con)); Cost = sum(sum(Matrix(Matching==1))); %下面是6个步骤函数step1~step6 %步骤1:找到包含0最多的行,从该行减去最小值function [P_cond,stepnum] = step1(P_cond) P_size = length(P_cond); for ii = 1:P_size rmin = min(P_cond(ii,:)); P_cond(ii,:) = P_cond(ii,:)-rmin; end stepnum = 2; %步骤2:在P-cond中找一个0,并找出一个以该数0为星型的覆盖function [r_cov,c_cov,M,stepnum] = step2(P_cond) %定义变量r-cov,c-cov分别表示行或列是否被覆盖P_size = length(P_cond); r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);M = zeros(P_size); for ii = 1:P_size for jj = 1:P_size if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0M(ii,jj) = 1; r_cov(ii) = 1;c_cov(jj) = 1;end end end % 重初始化变量r_cov = zeros(P_size,1);c_cov = zeros(P_size,1);stepnum = 3; %步骤3:每列都用一个0构成的星型覆盖,如果每列都存在这样的覆盖,则M为最大匹配function [c_cov,stepnum] = step3(M,P_size) c_cov = sum(M,1); if sum(c_cov) == P_size stepnum = 7; else stepnum = 4; end %步骤4:找一个未被覆盖的0且从这出发点搜寻星型0覆盖。

matlab计算两个区域的最小距离函数

matlab计算两个区域的最小距离函数

一、概述MATLAB是一种流行的数学软件,用于进行数值计算和数据可视化。

在许多科学和工程领域,MATLAB都被广泛地应用。

其中一个非常有用的功能就是计算两个区域的最小距离函数。

这个功能在图像处理、计算几何学和机器人学等领域都有着广泛的应用。

二、MATLAB中的最小距离函数在MATLAB中,可以使用内置函数或编写自定义函数来计算两个区域的最小距离。

下面我们将介绍MATLAB中计算最小距离的几种常见方法。

1. 使用内置函数MATLAB提供了一些内置函数来计算两个区域之间的最小距离,比如pdist2函数和bwdist函数。

pdist2函数可以用来计算两个不同数据集之间的距离,而bwdist函数则可以计算二进制图像中每个像素到最近的非零像素的距离。

这两个函数都是非常高效、准确的计算最小距离的工具。

2. 编写自定义函数除了使用内置函数,我们还可以编写自定义函数来计算两个区域的最小距离。

这种方法可以根据具体的问题需求进行灵活的定制,但是需要一定的编程能力。

通常可以使用广度优先搜索、最短路径算法或者动态规划等方法来编写自定义函数。

三、最小距离函数的应用最小距离函数在许多领域都有着重要的应用。

下面将介绍一些常见的应用场景。

1. 图像处理在图像处理中,最小距离函数可以用来计算图像中不同物体或区域之间的距离。

比如在医学图像中,可以用最小距离函数来计算肿瘤与周围组织的距离,以辅助医生进行诊断。

2. 计算几何学在计算几何学中,最小距离函数可以用来计算两个几何体之间的最短距离,比如计算两个多边形之间的最小距离。

这对于设计和制造工程师来说是非常重要的。

3. 机器人学在机器人学中,最小距离函数可以用来规划机器人的路径,以避免障碍物或与其他机器人发生碰撞。

这对于自动驾驶车辆和工业机器人来说有着重要的意义。

四、总结在MATLAB中,计算两个区域的最小距离函数是非常有用的功能,它可以用来解决许多现实生活中的问题。

通过内置函数或编写自定义函数,我们可以轻松地实现这一功能。

matlab数学实验

matlab数学实验

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。

(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。

【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。

reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。

A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。

节点重要度算法-MATLAB源代码

节点重要度算法-MATLAB源代码

节点收缩算法:function Z=node(a,dy)%a为邻接矩阵a(a==inf)=0;a(~=0)=1;n=size(a,1);%矩阵维数Z=zeros(n,1);%节点重要度向量%由邻接矩阵a得到直接矩阵H%H表示c(i j)H=zeros(size(a));for i=1:nfor j=1:nif j==iH(i,j)=0;elseif a(I,j)==1H(i,j)=1;elseH(i,j)=inf;endendend%用Floyd法计算节点收缩前的最短就离矩阵D D=H;for k=1:nfor i=1:nfor j=1:nIf D(i,k)+D(k,j)<D(iI,j)D(i,j)=D(i,k)+D(k,j);endendendend%计算节点重要度D2=zeros(size(D));for i=1:n%得到与节点i邻接的节点向量II=zeros(1,0);T=0;for j=1:nif a(i,j)=1T=t+1;I=[i,j];endend%计算收缩后最短距离矩阵D2%D2为d’(pq) D为d(pq)for p=1:nfor q=1:nIf p~=1&q~=iIf D(p,i)+D(i,q)==D(p,q)D2(p,q)=D(p,q)-2;elseif D(p,i)+D(i,q)==D(p,q)+1D2(p,q)=D(p,q)-1;elseif D(p,i)+D(i,q)==D(p,q)+2D2(p,q)=D(p,q);endelseif p==i|q==iD2(p,q)=D(p,q)-1;elseD2(p,q)=0;endendendN3=n-t;%收缩后的节点数n3D3=D2;%计算收缩后的最短距离矩阵D3,D3为D D3(I,:)=[];%删除与节点i邻接的节点对应的行D3(:,I)=[];%删除与节点i邻接的节点对应的列%计算节点收缩后的节点重要度s=0;for p=1:n3for q=p:n3s=s+D3(p,q);endendl=s/(n3*(n3-1)/2);%为nZ(i)=1/(n3*l);end===================================节点介数=========================function B=betweenness_node(A,a)%%求网络节点介数,BY QiCheng%%思想:节点i、j间的距离等于节点i、k间距离与节点k、j间距离时,i、j间的最短路径经过k。

实验三:使用matlab求解最小费用最大流算问题

实验三:使用matlab求解最小费用最大流算问题

北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。

二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。

在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。

求解原理。

若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。

为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。

为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。

1.最小费用流算法的框图描述。

图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。

matlab、lingo程序代码1-最短距离

matlab、lingo程序代码1-最短距离

例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。

(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。

clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。

基于Matlab的工程施工关键线路确定

基于Matlab的工程施工关键线路确定

基于Matlab的工程施工关键线路确定作者:芦思文方小杰王惠溧来源:《科技创新与应用》2013年第21期摘要:关键线路法是目前最常用的一种工程项目施工进度计划方法。

文章提出应用matlab确定工程项目施工进度计划网络图中的关键线路及项目总工期,从而有效控制各工作的施工进度。

关键词:双代号网络图;关键线路;总工期;matlab;floyd算法1 确定关键线路的方法关键线路是指网络图中工期最长的线路,位于关键线路上的工作称为关键工作,关键工作的持续时间决定了项目的总工期。

floyd算法是一种求解网络图中任意两点间最短路的方法。

因此,将网络图中的关键线路(即及最长线路)转化为最短线路,应用matlab软件编程实现floyd算法即可求出原施工进度计划图中的关键线路及总工期。

1.1 将网络的关键线路转换为最短线路设G为给定的双代号网络进度计划图,按如下方法将G转换为G′,使G′中的最短线路极为G中的关键线路。

1.1.1 网络图结构不变3 结束语在工程项目管理中,施工过程的进度控制贯穿整个项目过程,及时有效的控制施工进度是项目成功的关键。

本文介绍的方实现了根据项目进度计划图直接输出图中任意两点的关键线路及总工期,为利用关键线路法控制项目进度提供了方便,对于复杂的网络图,该方法更显现出其优势。

通过该程序,项目管理人员可以随时确定项目中的关键工作并对其进行监控,帮助其更有效地进行项目进度管理。

参考文献[1]李海涛,邓樱.MATLAB程序设计教程[M].北京:高等教育出版社,2002.[2]胡运权,郭耀煌.运筹学教程(第三版)[M].北京:清华大学出版社,2007.[3]蒋根谋.建筑施工[D].北京:中国铁道出版,2005.[4]胡小蜂.基于MATA的企业产品研发关键线路分析[J].机电产品开发与创新,2006-6,19(4):73-74.[5]胡桔州.Floyd最短路径算法在配送中心地址中的应用[J].湖南农业大学学报,2004-8,30(4):382-384.[6]杨鹏,罗一新.流程网络图主关键路径确定的MATLAB方法[J].分析与决策,2007,26(3):61-63.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档