废水处理技术翻译

合集下载

污水处理厂 外文文献

污水处理厂 外文文献

ENVIRONMENTAL BIOTECHNOLOGYOne-stage partial nitritation/anammox at15°Con pretreated sewage:feasibility demonstration at lab-scale Haydée De Clippeleir&Siegfried E.Vlaeminck&Fabian De Wilde&Katrien Daeninck&Mariela Mosquera&Pascal Boeckx&Willy Verstraete&Nico BoonReceived:26November2012/Revised:28January2013/Accepted:30January2013#Springer-Verlag Berlin Heidelberg2013Abstract Energy-positive sewage treatment can beachieved by implementation of oxygen-limited autotrophicnitrification/denitrification(OLAND)in the main water line,as the latter does not require organic carbon and thereforeallows maximum energy recovery through anaerobic diges-tion of organics.To test the feasibility of mainstreamOLAND,the effect of a gradual temperature decrease from29to15°C and a chemical oxygen demand(COD)/Nincrease from0to2was tested in an OLAND rotatingbiological contactor operating at55–60mg NH4+–NL−1 and a hydraulic retention time of1h.Moreover,the effectof the operational conditions and feeding strategies on thereactor cycle balances,including NO and N2O emissionswere studied in detail.This study showed for the first timethat total nitrogen removal rates of0.5g NL−1day−1can bemaintained when decreasing the temperature from29to15°Cand when low nitrogen concentration and moderate CODlevels are treated.Nitrite accumulation together with elevatedNO and N2O emissions(5%of N load)were needed to favoranammox compared with nitratation at low free ammonia(<0.25mg NL−1),low free nitrous acid(<0.9μg NL−1),and higher DO levels(3–4mg O2L−1).Although the total nitrogen removal rates showed potential,the accumulation of nitrite and nitrate resulted in lower nitrogen removal efficiencies (around40%),which should be improved in the future. Moreover,a balance should be found in the future between the increased NO and N2O emissions and a decreased energy consumption to justify OLAND mainstream treatment. Keywords Energyself-sufficient.Nitrospira.Nitricoxide. Nitrous oxide.DeammonificationIntroductionCurrently,around40full-scale one-stage partial nitrita-tion/anammox plants are implemented to treat highly loaded nitrogen streams devoid in carbon(Vlaeminck et al.2012). This process,known under the acronyms oxygen-limited autotrophic nitrification/denitrification(OLAND)(Kuai and Verstraete1998),deammonification(Wett2006),com-pletely autotrophic nitrogen removal over nitrite(Third et al. 2001),etc.,showed highly efficient and stable performance when treating digestates from sewage sludge treatment plants and industrial wastewaters(Wett2006;Abma et al. 2010;Jeanningros et al.2010).For clarity,one-stage partial nitritiation/anammox processes will be referred to as OLAND in this work.From an energy point of view,the implementation of the OLAND process for the treatment of sewage sludge digestate decreased the net energy consump-tion of a municipal wastewater treatment plant(WWTP)by 50%,with a combination of a lower aeration cost in the side stream and the opportunity to recover more organics from the mainstream(Siegrist et al.2008).Moreover,when co-digestion of kitchen waste was applied,an energyneutral Electronic supplementary material The online version of this article(doi:10.1007/s00253-013-4744-x)contains supplementary material,which is available to authorized users.H.De Clippeleir:S.E.Vlaeminck:F.De Wilde:K.Daeninck:M.Mosquera:W.Verstraete:N.Boon(*)Laboratory for Microbial Ecology and Technology(LabMET),Ghent University,Coupure Links653,9000Gent,Belgiume-mail:Nico.Boon@UGent.beP.BoeckxLaboratory of Applied Physical Chemistry(ISOFYS),Ghent University,Coupure Links653,9000Gent,BelgiumAppl Microbiol BiotechnolDOI10.1007/s00253-013-4744-xWWTP was achieved(Wett et al.2007).To fully recover the potential energy present in wastewater,a first idea of a new sustainable wastewater treatment concept was reported (Jetten et al.1997).Recently,a“ZeroWasteWater”concept was proposed which replaces the conventional activated sludge system by a highly loaded activated sludge step (A-step),bringing as much as organic carbon(chemical oxygen demand(COD))as possible to the solid fraction, and a second biological step(B-step)removing the residual nitrogen and COD with a minimal energy demand (Verstraete and Vlaeminck2011).Subsequently,energy is recovered via anaerobic digestion of the primary and sec-ondary sludge.For the B-step in the main line,OLAND would potentially be the best choice as this process can work at a low COD/N ratio,allowing maximum recovery of COD in the A-step.Moreover,it was calculated that if OLAND is implemented in the main water treatment line and a maximum COD recovery takes place in the A-step,a net energy gain of the WWTP of10Wh inhabitant equivalent (IE)−1day−1is feasible(De Clippeleir et al.2013).To allow this energy-positive sewage treatment,OLAND has to face some challenges compared with the treatment of highly loaded nitrogen streams(>250mg NL−1).A first difference is the lower nitrogen concentration to be removed by OLAND.Domestic wastewater after advanced concen-tration will still contain around30–100mg NL−1and113–300mg CODL−1(Metcalf and Eddy2003;Tchobanoglous et al.2003;Henze et al.2008).High nitrogen conversion rates(around400mg NL−1day−1)by the OLAND process can be obtained at nitrogen concentrations of30–60mg N L−1and at low hydraulic retention times(HRT)of1–2h(De Clippeleir et al.2011).A second challenge is the low tem-perature at which OLAND should be operated(10–15°C compared with34°C).Several studies already described the effect of temperature on the activity of the separate micro-bial groups(Dosta et al.2008;Guo et al.2010;Hendrickx et al.2012).Only a few studies showed the long-term effect of a temperature decrease below20°C on the microbial bal-ances of anoxic and aerobic ammonium-oxidizing bacteria (AnAOB and AerAOB)and nitrite-oxidizing bacteria (NOB)at nitrogen concentrations above100mg NL−1 (Vazquez-Padin et al.2011;Winkler et al.2011).However, the combination of low temperature and low nitrogen con-centration was never tested on a co-culture of AerAOB, AnAOB,and NOB before.At temperatures around15°C, maintaining the balance between NOB and AnAOB and the balance between NOB and AerAOB will get more challeng-ing since the growth rate of NOB will become higher than the growth rate of AerAOB(Hellinga et al.1998). Therefore,it will not be possible to wash out NOB based on overall or even selective sludge retention.The third and main challenge in this application will therefore be the suppression of NOB at temperature ranges of10–20°C and at nitrogen concentration ranges of30–60mg NL−1 (low free ammonia and low nitrous acid),which was not shown before.A final fourth challenge will include the higher input of organics at moderate levels of90–240mg biodegradable CODL−1in the wastewater.Depending on the raw sewage strength,COD/N ratios between2and3are expected after the concentration step,which is on the edge of the described limit for successful OLAND(Lackner et al. 2008).The presence of organics could result in an extra competition of heterotrophic denitrifiers with AerAOB for oxygen or with AnAOB for nitrite or organics,since certain AnAOB can denitrify consuming organic acids (Kartal et al.2007).In this study,the challenges2to4,were evaluated in an OLAND rotating biological contactor(RBC).This reactor at 29°C was gradually adapted over24,22,and17to15°C under synthetic wastewater conditions(60mg N L−1, COD/N of0).Additionally,the COD/N ratio of the influent was increased to2by supplementing NH4+to diluted sewage to simulate pretreated sewage.The effect of the operational conditions and feeding strategies on the reactor cycle balan-ces,including gas emissions and microbial activities were studied in detail.An alternative strategy to inhibit NOB activity and as a consequence increase AnAOB activity at low temperatures based on NO production was proposed. Materials and methodsOLAND RBCThe lab-scale RBC described by De Clippeleir et al.(2011) was further optimized at29°C by an increase in the influent nitrogen concentration from30to60mg NL−1and a limitation of the oxygen input through the atmosphere by covering the reactor before this test was started.The reactor was based on an air washer LW14(Venta,Weingarten, Germany)with a rotor consisting of40discs interspaced at 3mm,resulting in a disc contact surface of1.32m2.The reactor had a liquid volume of2.5L,immersing the discs for 55%.The latter was varied over the time of the experiment. The reactor was placed in a temperature-controlled room. The DO concentration was not directly controlled.In this work,continuous rotation was applied at a constant rotation speed of3rpm,which allowed mixing of the water phase. RBC operationThe RBC was fed with synthetic wastewater during phases I to VII.From phase VIII onwards,the COD/N was gradually increased(phases VIII–X)to2(phases XI–XIII).The syn-thetic influent of an OLAND RBC,consisted of(NH4)2SO4 (55–60mg NL−1),NaHCO3(16mg NaHCO3mg−1N),andAppl Microbiol BiotechnolKH2PO4(10mg PL−1).Pretreated sewage was simulated by diluting raw sewage of the communal WWTP of Gent, Belgium(Aquafin).The raw wastewater after storage at 4°C and settlement contained23–46mg NH4+–NL−1, 0.2–0.4mg NO2−–NL−1,0.4–2.7mg NO3−–NL−1,23–46mgKjeldahl–NL−1,3.8–3.9mg PO43−–PL-1,26–27mg SO42−–S L−1,141–303mg COD tot L−1,and74–145mg COD sol L−1.The raw sewage was diluted by factors2–3to obtain COD values around110mg COD tot L−1and by addition of(NH4)2SO4to obtain final COD/N values around2.The reactor was fed in a semi-continuous mode:two periods of around10min/h for phases I–XI and one period of20min/h for phases XII and XIII.The influent flow range varied from47to65Lday−1and the reactor volume from3.7to2.5L(during78and55% submersion,respectively).Corresponding HRTare displayed in Tables1and2.Reactor pH,DO,and temperature were daily monitored and influent and effluent samples were taken at least thrice a week for ammonium,nitrite,nitrate,and COD analyses. Detection of AerAOB,NOB,and AnAOB with FISHand qPCRFor NOB and AnAOB,a first genus screening among the most commonly present organisms was performed by fluo-rescent in-situ hybridization(FISH)on biomass of days1 (high temperature)and435(low temperature and COD presence).A paraformaldehyde(4%)solution was used for biofilm fixation,and FISH was performed according to Amann et al.(1990).The Sca1309and Amx820probes were used for the detection of Cand.Scalindua and Cand. Kuenenia&Brocadia,respectively,and the NIT3and Ntspa662probes and their competitors for Nitrobacter and Nitrospira,respectively(Loy et al.2003).This showed the absence of Nitrobacter and Scalindua(Table S1in the Electronic supplementary material(ESM)).Biomass sam-ples(approximately5g)for nucleic acid analysis were taken from the OLAND RBC at days1,60,174,202,306,385, 399,and413of the operation.DNA was extracted using FastDNA®SPIN Kit for Soil(MP Biomedicals,LLC), according to the manufacturer’s instructions.The obtained DNA was purified with the Wizard®DNA Clean-up System (Promega,USA)and its final concentration was measured spectrophotometrically using a NanoDrop ND-1000spec-trophotometer(Nanodrop Technologies).The SYBR Green assay(Power SyBr Green,Applied Biosystems)was used to quantify the16S rRNA of AnAOB and Nitrospira sp.and the functional amoA gene for AerAOB.The primers for quantitative polymerase chain reactions(qPCR)for detection of AerAOB,NOB,and AnAOB were amoA-1F–amoA-2R (Rotthauwe et al.1997),NSR1113f–NSR1264r(Dionisi et al. 2002),and Amx818f–Amx1066r(Tsushima et al.2007),re-spectively.For bacterial amoA gene,PCR conditions were: 40cycles of94°C for1min,55°C for1min,and60°C for 2min.For the amplification of Nitrospira sp.16S rRNA gene, 40cycles of95°C for1min,50°C for1min,and60°C for 1min were used while for AnAOB16S rRNA the PCR temperature program was performed by40cycles of15s at 94°C and1min at60°C.Plasmid DNAs carrying NitrospiraTable1Effect of temperature decrease on the operational conditions and performance of OLAND RBC reactorPhase I II III IV V VI VIIPeriod(days)1–2122–3536–6162–210210–263263–274275–306 Immersion level(%)78787878557855 Temperature(°C)29±224±122±0.617±1.216±0.915±0.814±0.4 Operational conditionsDO(mg O2L−1) 1.1±0.2 1.3±0.2 1.4±0.1 1.7±0.3 2.8±0.4 2.4±0.2 3.1±0.2 pH(−)7.5±0.17.5±0.17.5±0.17.6±0.17.7±0.17.7±0.17.8±0.1 HRT(h) 1.85±0.04 1.84±0.09 1.73±0.04 1.86±0.11 1.09±0.02 1.57±0.02 1.09±0.02 FA(mg NL−1)0.35±0.180.36±0.180.34±0.140.36±0.130.25±0.160.33±0.170.13±0.04 FNA(μg NL−1)0.3±0.10.3±0.20.4±0.20.4±0.10.9±0.40.6±0.10.9±0.2 PerformanceTotal N removal efficiency(%)54±552±549±934±936±936±942±4 Relative NO3−prod(%of NH4+cons a)7±17±17±114±618±916±321±4 Relative NO2−accum(%of NH4+cons)2±43±45±515±530±826±631±5 AerAOB activity(mg NH4+–NL−1day−1)267±38267±49260±52260±53811±229460±44986±71 NOB activity(mg NO2–NL−1day−1)0±00±00±09±1260±9420±585±25 AnAOB activity(mg N tot L−1day−1)412±38403±37368±76248±67448±117305±74529±75DO dissolved oxygen,HRT hydraulic retention time,F A free ammonia,FNA free nitrous acid,cons consumption,prod production,accum accumulation,tot totala NH4+consumption is corrected for nitrite accumulationAppl Microbiol Biotechnoland AnAOB16S rRNA gene and AerAOB functional AmoA gene,respectively,were used as standards for qPCR.All the amplification reactions had a high correlation coefficient (R2>0.98)and slopes between−3.0and−3.3.Detailed reactor cycle balancesFor the measurements of the total nitrogen balance,including the NO and N2O emissions,the OLAND RBC was placed in a vessel(34L)which had a small opening at the top(5cm2).In this vessel,a constant upward air flow(around1ms−1or0.5L s-1)was generated to allow calculations of emission rates.On the top of the vessel(air outlet),the NO and N2O concentra-tion was measured,off-and online,respectively.NH3emis-sions were negligible in a RBC operated at about2mg NH3–NL−1(Pynaert et al.2003).Since FA levels in the currentstudy are about ten times lower,NH3emissions were not included.In the water phase,ammonium,nitrite,nitrate,hy-droxylamine(NH2OH),N2O,and COD concentrations were measured.Moreover,DO concentration and pH values were monitored.The air flow was measured with Testo425hand probe(Testo,Ternat,Belgium).Chemical analysesAmmonium(Nessler method)was determined according to standard methods(Greenberg et al.1992).Nitrite and nitrate were determined on a761compact ion chromatograph equipped with a conductivity detector(Metrohm,Zofingen, Switzerland).Hydroxylamine was measured spectrophoto-metrically(Frear and Burrell1955).The COD was determined with NANOCOLOR®COD1500en NANOCOLOR®COD 160kits(Macherey-Nagel,Düren,Germany).The volumetric nitrogen conversion rates by AerAOB,NOB,and AnAOB were calculated based on the measured influent and effluent compositions and the described stoichiometries,underestimat-ing the activity of AnAOB by assuming that all COD removed was anoxically converted with nitrate to nitrogen gas (Vlaeminck et al.2012).DO and pH were measured with respectively,a HQ30d DO meter(Hach Lange,Düsseldorf, Germany)and an electrode installed on a C833meter (Consort,Turnhout,Belgium).Gaseous N2O concentrations were measured online at a time interval of3min with a photo-acoustic infrared multi-gas monitor(Brüel&Kjær, Model1302,Nærem,Denmark).Gas grab samples were taken during the detailed cycle balance tests for NO detec-tion using Eco Physics CLD77AM(Eco Physics AG, Duernten,Switzerland),which is based on the principle of chemiluminescence.For dissolved N2O measurements,a1-mL filtered(0.45μm)sample was brought into a7-mL vacutainer(−900hPa)and measured afterwards by pressure adjustment with He and immediate injection at21°C in a gas chromatograph equipped with an electron capture detector (Shimadzu GC-14B,Japan).Table2Effect of COD/N increase on the operational conditions and performance of OLAND RBC reactorPhase VIII IX X XI XII XIIIPeriod(days)355–361362–369370–374375–406407–421422–435 Immersion level(%)555555555555COD/N(-)0.51 1.5222 Feeding regime(pulsesh−1)222211 Operational conditionsDO(mg O2L−1) 2.9±0.3 2.5±0.6 2.4±0.3 3.0±0.7 3.6±0.3 3.2±0.3 pH(−)7.8±0.027.7±0.17.6±0.027.6±0.17.6±0.27.6±0.1 HRT(h) 1.06±0.11 1.03±0.020.92±0.020.94±0.05 1.10±0.05 1.06±0.2 FA(mg NL−1)0.10±0.050.04±0.050.15±0.050.21±0.100.23±0.120.04±0.02 FNA(μg NL−1)0.4±0.10.2±0.20.2±0.010.3±0.10.2±0.10.6±0.2 PerformanceTotal N removal efficiency(%)36±545±1823±328±623±1342±3 Relative NO3−prod(%of NH4+cons a)42±543±1263±250±662±1846±6 Relative NO2−accum(%of NH4+cons)20±410±105±18±37±413±6 AerAOB activity(mg NH4+–NL−1day−1)592±15446±31238±28352±73289±138600±204 NOB activity(mg NO2−–NL−1day−1)257±19294±81465±60352±84427±115394±76 AnAOB activity(mg N tot L−1day−1)385±86452±205262±39355±73281±159481±73COD removal rates were negligible in all phasesDO dissolved oxygen,HRT hydraulic retention time,F A free ammonia,FNA free nitrous acid,cons consumption,prod production,accum accumulation,tot totala NH4+consumption is corrected for nitrite accumulationAppl Microbiol BiotechnolResultsEffect of temperature decreaseDuring the reference period (29°C),a well-balanced OLAND performance (Fig.1;Table 1)was reached with minimal nitrite accumulation (2%)and minimal nitrate production (7%).This was reflected in an AerAOB/AnAOB activity ratio of 0.6(Table 1,phase I).The total nitrogen removal rate was on average 470mg N L −1day −1or 1314mg Nm −2day −1,and the total nitrogen removal efficiency was 54%.Decreasing the temperature from 29to 24°C and further to 22°C over the following 40days,did not result in anysignificant changes of the operational conditions (Table 1;phases I –III),performance of the reactor (Fig.1)or abun-dance of the bacterial groups (qPCR;Fig.S1in the ESM ).However at 17°C,a decrease in total nitrogen removal efficiency was observed (Table 1;phase IV).An imbalance between the AerAOB and the AnAOB was apparent from a stable AerAOB activity yet a declining AnAOB activity.Moreover,NOB activity was for the first time detected in spite of free ammonia (FA)and free nitrous acid (FNA)con-centrations did not change (Table 1;phase IV).Moreover,no significant differences in abundance of NOB,AerAOB,and AnAOB could be detected with qPCR (Fig.S1in the ESM ).However,DO concentrations started to increase during that period from 1.4to 1.7mg O 2L −1.As the availabilityofFig.1Phases I –VII:effect of temperature decrease on the volumetric rates (top )and nitrogen concentrations (bottom )Appl Microbiol Biotechnoloxygen through the liquid phase did not seem to be satisfac-tory to counteract the decrease in ammonium removal effi-ciency,the immersion level was lowered to55%to increase the availability of oxygen through more air-biofilm contact surface.Consequently,the volumetric loading rate increased (factor1.7)due to the decrease in reactor volume(day210, Fig.1).This action allowed higher ammonium removal effi-ciencies due to higher AerAOB activities(factor3).AnAOB activity increased with a similar factor as the volumetric loading rate(1.8compared with1.7)consequently resulting in an increased imbalance between these two groups of bac-teria(Table1;phase V).Moreover,although the FNA in-creased with a factor2,the NOB activity increased with a factor7,resulting in a relative nitrate production of30% (Table1;phase V).As NOB activity prevented good total nitrogen removal efficiencies,the immersion level was in-creased again to78%(day263;Fig.1).This resulted indeed in a lower NOB activity(Table1;phase VI).However,also the AerAOB activity decreased with the same factor,due to the lower availability of atmospheric oxygen.Therefore,the reactor was subsequently operated again at the lower immer-sion level(55%)to allow sufficient aerobic ammonium conversion.The latter allowed a stable removal efficiency of 42%.The AnAOB activity gradually increased to a stable anoxic ammonium conversion rate of529mg NL−1day−1. During the synthetic phase,no changes in AerAOB, AnAOB,and NOB abundance were measured with qPCR (Fig.S1in the ESM).The effluent quality was however not optimal as still high nitrite(around15mg NL−1)and nitrate (around13mg NL−1)levels were detected.Effect of COD/N increaseThe synthetic feed was gradually changed into pretreated sewage by diluting raw sewage and adding additional nitro-gen to obtain a certain COD/N ratio.During the first3weeks of this period(Fig.2),the COD/N ratio was gradually increased from0.5to2.Due to the short adaptation periods (1week per COD/N regime),the performance was unstable (Fig.2;Table2,phases VIII–XI).Compared with the end of the synthetic period(phase VII),operation at a COD/N ratio of2(phase XI)resulted in a sharp decrease in nitrite accu-mulation(Fig.2)and an increase in the ammonium and nitrate levels.This indicated increased NOB activity(factor 4),decreased AerAOB(factor3)and decreased AnAOB (factor2)activity(Tables1and2).To allow higher nitrogen removal rates,the HRT was increased from0.94to1.1h,by decreasing the influent flow rate.Moreover,the feeding regime was changed from two pulses of10min in1h to one period of20min/h.These actions did not significantly decrease the effluent nitrogen concentration(Fig.2)and did not influence the microbial activities(Table2,phase XII). Therefore the loading rate was again increased to the levels before phase XII.However,the single-pulse feeding wasmaintained.This resulted in high ammonium removal effi-ciencies and therefore low ammonium effluent concentra-tion around dischargeable level(4±1mg NH4+–NL−1; Fig.2).Nitrate and nitrite accumulation were not counter-acted by denitrification as only0.02mg CODL−1day−1wasremoved.Therefore,nitrite and nitrate levels were still toohigh to allow effluent discharge.The total nitrogen removalefficiency(42%)and rate(549±83mg NL−1day−1or1,098±106mgNm−2day−1)at COD/N ratios of2wassimilar as during the synthetic period(phase VII).Comparedwith the reference period at29°C,the total nitrogen removalrate did not changed significantly(470±43versus549±83mgNL−1day−1at high and low temperatures,respectively).The22%lowered removal efficiency was merely due to anincreased nitrogen loading rate.Nitratation and NO/N2O emissionsAt the end of the synthetic phase(phase VII)and the end ofthe experiment(phase XIII),the total nitrogen balance of thereactor was measured.A total nitrogen balance was obtainedby measuring all nitrogen species(NH4+,NO2−,NO3−,NH2OH,and N2O)in the liquid phase and N2O and NO inthe gas phase.A constant air flow,diluting the emitted N2Oand NO concentrations was created over the reactor tomeasure gas fluxes over time.The effect of the loading rate,feeding pattern,and concentration of nitrite and ammoniumon the total nitrogen balance in the reactor were tested(Table3).NH2OH measurements showed low concentra-tions(<0.2mg NL−1)in all tests,making it difficult to linkthe profiles with the N2O emission.Lowering the loading rate by increasing the HRT(Table3,test B)increased the DO values and allowed higherDO fluctuations over time at synthetic conditions.Moreover,NOB activity increased significantly resultingin lower total nitrogen removal efficiencies and high levelsof nitrate in the effluent(Table3,test B).The relative N2Oemissions did not change and were relatively high(6%of Nload).However,the concentration of N2O in the liquid andin the gas phase decreased with a factor2(Table3).When pretreated sewage was fed to the reactor,theOLAND RBC was operated at lower nitrite concentration,while similar ammonium and nitrate concentrations wereobtained(Table3,test C).The lower nitrite concentrationshowever did not result in lower N2O emission rates.Whenthe feeding regime was changed to a more continuous-likeoperation(4pulses/h),the N2O emission increased signifi-cantly,while NO emission remained constant(Table3,testD).Due to the lower ammonium removal efficiency(65compared with81%),but similar relative nitrite and nitrateaccumulation rate,the total nitrogen removal efficiencydecreased.Appl Microbiol BiotechnolWhen a nitrite pulse was added just after feeding,about 20mg NO 2−–NL −1was obtained in the reactor.This did increase the NO and N 2O emissions significantly (p <0.05)compared with the same feeding pattern (Table 3,tests C –E).Although similar constant total nitrogen removal efficien-cies were obtained during this operation,a significant (p <0.05)decrease in the relative nitrate production was observed.The latter was mainly caused by a global increase in AnAOB activity.In the last test (F),the influent ammo-nium concentration was doubled,leading to higher ammo-nium and also FA concentrations (1±0.4mg N L −1compared with 0.1±0.4mg NL −1).Due to overloading of the system,the total nitrogen removal efficiency decreased.However,at these conditions a lower relative nitrate pro-duction was obtained;due to a decrease in NOB and in-crease in AnAOB activity (Table 3,test F).Together with this,increased NO and N 2O emissions were observed.As the influence of the nitrogen loading and DO concentration could be considered minor in this test range (Fig.S2in the ESM ),these tests show a relation between increased NO emissions and decreased relative nitrate productions (Table 3).When the activity during the feeding cycle was studied in more detail,it could be concluded that the highest nitrogen conversion rates took place during the feeding period,which was characterized by a high substrate availability and high turbulence (Fig.3).As the HRT is only 1h,the reactor volume is exchanged in 20min.During this phase,ammo-nium increased,while nitrite and nitrate concentrations de-creased due to dilution (Figs.S3,S4,and S5in the ESM ).The NOB/AnAOB ratio was around 1,which means that NOB were able to take twice as much nitrite thanAnAOBFig.2Phases VIII –XIII:effect of COD/N increase on the volumetric rates (top )and nitrogen concentrations (bottom ).Data during the N balance tests (days 424–431)were not incorporated in the figure but are shown in Table 3Appl Microbiol BiotechnolTable 3Operational parameters and nitrogen conversion rates during the six different RBC operations which differ from feeding composition and feeding regime (volume at 2.5L and 50%immersion of the discs,days 307–309for synthetic feed,and days 424–431)Reactor phaseVII (synthetic)XIII (pretreated sewage)Test A a B C a D E -F Additive––––NO 2−NH 4+Feeding regime (pulses/h)221411Total N loading rate (mg NL −1day −1)1,1695851,3401,5541,7372,718Temperature water (°C)15±0.316±0.2*14±0.415±0.1*16±0.1*15±0.4DO (mg O 2L −1) 2.9±0.1 3.7±0.6* 4.0±0.1 3.2±0.1* 3.3±0.1* 3.2±0.1*pH (-)7.6±0.067.6±0.057.6±0.047.6±0.017.6±0.027.8±0.02*Ammonium out (mg NL −1)9±1 1.4±1*11±319±3*12±158±4*Nitrite out (mg NL −1)14±213±16±16±0.418±2*9±0.3*Nitrate out (mg NL −1)17±337±6*18±216±1*18±0.420±0.4NH 4+oxidation rate (mg NL −1day −1)895±22509±2*1,051±73957±891,053±161,285±93*Relative nitrite accumulation (%)25±320±1*14±315±18±4*15±1Relative nitrate production (%)36±876±6*48±147±342±2*34±3*Total efficiency (%)38±417±4*35±328±4*32±227±4*AerAOB activity (mg NH 4+–NL −1day −1)658±88469±17*827±44781±57795±30938±46*NOB activity (mg NO 2−–NL −1day −1)174±59299±28*375±38342±24*362±13277±18*AnAOB activity (mg N tot L −1day −1)205±3849±13*234±20218±29263±15*354±49*N 2O in liquid (μg NL −1)64±4630±22*78±12104±29*61±1374±4NO emission (mg Nday −1)0.53±0.03n.d.0.66±0.060.74±0.08 1.65±0.18*0.82±0.1*N 2O emission (mg Nday −1)151±2893±23*170±19179±6*274±37*202±18*%N 2O emission on loading5.1±1.06.4±1.6*5.0±0.64.5±0.2*6.2±0.8*3.0±0.3*aReference period for synthetic and pretreated sewage*p <0.05,significant differences compared with referenceperiod Fig.3Detailed NO/N 2Omonitoring during the reference test (Table 3,test C)and when nitrite was pulsed (Table 3,test E)and effect on AerAOB,AnAOB,and NOB activity during the different phases of the feeding cycle.Significant differences in AerAOB,AnAOB,NOB,and NO/N 2O concentration compared with the reference period areindicated with asterisks ,circles ,double quotation mark ,and plus sign ,respectivelyAppl Microbiol Biotechnol。

环境工程专业英语翻译(中英对照)

环境工程专业英语翻译(中英对照)

Unit one Environmental Engineering环境工程What is this book about?这本书是关于什么的?The objective of this book is to introduce engineering and science students to the interdisciplinary study of environment problems;their cause,why they are of concern,and how we can control them. The book includes:这本书的目的是使理工科的学生了解跨学科间的研究环境问题;它们的起因,为什么它们受到关注,以及我们怎样控制它们。

这本书包括:●Description of what is meant by environment and environmental systems描述环境和环境系统意味着什么●Information on the basic causes of environmental disturbances关于引起环境干扰基础原因的基本信息●Basic scientific knowledge necessary to understand the nature of environmental problems and to be able toquantify them理解环境问题本质,并能够定量计算它们所必要的基本科学知识●Current state of the technology of environmental control in its application to water,air and pollution problems目前适用于水,空气和环境污染问题的环境控制技术的现状●Considerable gaps in our current scientific knowledge of understanding and controlling many of the complexinteractions between human activities and nature我们目前的科学知识在理解和控制人类活动和自然之间复杂的相互作用的科学知识上存在相当大的缺陷●Many environmental problems which could be eliminated or reduced by the application of current technology,butwhich are not dealt with because of society’s lack of will to do so,or in many instance because of a lack of resources to do so.许多环境问题可以应用现有技术消除或减少,但没有得到处理是因为社会缺乏这样做的意愿,或者像许多例子那样因为缺乏资源。

理科课程英文翻译

理科课程英文翻译
物理化学 Physics Chemistry
有机化学 Organic Chemistry
分析化学 Analytical Chemistry
现代仪器分析 Modern Instrumental Analysis
现代波谱学 Modern Spectroscopy
化学计量学 Chemomtrics
激光与近代光学 Laser and Contemporary Optics
光电子技术 Photoelectronic Technique
微机系统与接口 Micro Computer System and Interface
智能仪器 Intelligent Instruments
高等无机化学 Advanced Inorganic Chemistry
废水处理工程 Technology of Wastewater Treatment
生物与化学传感技术 Biosensors & Chemical Sensors
现代分析化学研究方法 Research Methods of Modern Analytical Chemistry
神经生物学 Neurobiology
动物遗传工程 Animal Genetic Engineering
光纤通信系统 System of Fiber Communications
计算机网络 Computer Networks
光电检测与信号处理 Optoelectronic Detection and Processing
物理光学与光电子技术实验 Experiments for Physical Optics and Op
固体物理 Solid-State Physics

污水专业英语翻译大全

污水专业英语翻译大全

污水处理专业英语翻译大全专有名词病毒细菌Campylobacteria Jejuni 弯曲菌Coliform-group bacteria 大肠菌群Corynebacterium 棒状杆菌属Cryptosporidium 隐孢子虫Escherichia Coli 大肠杆菌Dipterex 敌百虫Giardia 贾第鞭毛虫Legionella 军团菌Methanogenes 产甲烷细菌Norovirus 诺罗病毒Pathogen 病原菌(致病菌)Rydrogenes and acetic aid genes 产氢气乙酸菌自建字库A/A/O法 anaerobic-anoxic-oxic process (厌氧-缺氧-好氧法)A-A-O生物脱氮除磷工艺 A-A-O biological nitrogen and phosphorus removal process Activated sludge process 活性污泥法Adsorption 吸附Aeration 曝气Aerobinen bakteeri 需氧微生物A-O脱氮工艺 A-O nitrogen removal processA-O除磷工艺 A-O phosphorus removal processAB法Adsorption Biodegradation process (吸附生物降解法)ammonia-nitrogen 氨氮ammonium salt 铵盐amino acid 氨基酸Anaerobinen bakteeri 厌氧微生物A/O法(厌氧-好氧法) anaerobic-oxic processBackwater 回用水Biofilm 生物膜法Biological aerated 生物曝气BOD (Biochemical oxygen demand) 生物需氧量Campylobacteria Jejuni 弯曲菌Carrousel Oxidation ditch 卡鲁塞尔氧化沟(荷兰DHV1967研制)CAST回圈式活性污泥法(Cyclic Activated Sludge T echnology,简称CAST) Cesspool 污水池COD(chemical oxygen demand)化学需氧量Colloid 胶体Corrosion腐蚀Cryptosporidium 隐孢子虫Giardia 贾第鞭毛虫Escherichia Coli 大肠杆菌Eutrophication 富营养化Flocculation 絮凝Flotation 悬浮法= flotaatioHBR (high compound biological reactor)高效复合生物反应器Hydrogen sulfide 硫化氢= rikkivetykaasuICEAS间歇循环延时曝气系统(Intermittent Cycle Extended Aeration System)Ion Exchange 离子交换Legionella 军团菌Microbiology 微生物Nitragen氨化反应Norovirus 诺罗病毒Nutrients 营养物Orbal oxidation ditch奥贝尔(Orbal)型氧化沟ozone generator臭氧发生器ozonation process臭氧法ozone disinfection臭氧消毒Pathogen病原菌(致病菌)pathogen microorganism病原微生物primary treatment, 一级处理SBR序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)secondary treatment 二级处理Sedimentation tank 沉淀池Sewage 污水Sewage treatment 污水处理sewage treatment rate 污水处理率Suspended solids 悬浮物Tertiary treatment 三级处理Total a radioactivity总a放射线Unitank好氧生物污水处理法Wastewater 污水B巴登福脱氮除磷工艺Bardenpho nitrogen and phosphorus removal process白水(漂洗废水) white water(bleaching water)板框压滤 plate pressure filtration离心机 centrifugal machine半渗透膜 semi-permeable membrane棒状杆菌属 corynebacterium薄膜式淋水填料 film packing饱和常数(Ks) saturation constant暴雨公式 storm flow formula暴雨径流 storm runoff溢流井 overflow well苯 benzene苯胺 aniline总B放射性 Total B radioactivity泵型叶轮暴气器paddle impeller aerator泵站 pumping stationBMTS型一体化氧化沟 BMTS intrachannel clarifier oxidation ditch 闭路循环closed loop表面冲洗surface washing表面负荷surface load表面过滤surface filtration表面活性剂 surfactant表面活性物质 surface active additive agent表面曝气 surface aeration表面曝气器surface aerator表面淹灌 surface flood irrigation表面冲洗装置 surface washing facility丙烯酸acrylic acid丙烯腈acrylonitrile病毒virus病原菌(致病菌) pathogen病原微生物pathogen microorganismBOD-污泥负荷 BOD-sludge load补充水 make-up water布朗运动 Brownian movementBOD (Biochemical oxygen demand) 生物需氧量Campylobacteria Jejuni 弯曲菌Carrousel Oxidation ditch 卡鲁塞尔氧化沟(荷兰DHV1967研制)Cast活性污泥法之一Cintinuous Loop Reator,简称CLR连续环式反应池COD(chemicaloxygendemand)化学需氧量C财务评价 financial evaluation配水系统 distribution system侧渠型一体化氧化沟 integrated oxidation ditch with side ditch产氢气乙酸菌 Rydrogenes and acetic aid genes产甲烷细菌 methanogenes产率系数 yield coefficient常规给水处理工艺 conventional water treatment processes敞开式循环冷却水系统 opened recirculating cooling water system 超高纯水ultra-high-purify water超过滤 ultrafiltration超过滤膜法ultrafiltration membrane process沉淀 precipitation, sedimentation沉淀池 sedimentation tank沉砂池 grit chamber城市废水 municipal wastewater城市废水处理 municipal wastewater treatment澄清clalification可持续发展sustainable development充满度 degree of fullness重现期 exceedion interval, period of recurrence抽风式机械通风冷却塔 induced draft mechanical cooling tower臭氧发生器 ozone generator臭氧法 ozonation process臭氧消毒 ozone disinfection初次(级)沉淀池 primary clarifier, primary sedimentation tank除水器 drift eliminator除铁除锰 iron and manganese removal除盐水(脱盐水) desalted water,demineralized water除渣 desilication, silica removal除藻 algal removal除氟 algal fluorine穿透曲线 penetration curve活性污泥法 activated sludge process生物脱氮工艺 biological nitrogen removal process船型一体化氧化沟 Boat Type in intrachannel clarifier oxidation ditch 纯(富)氧曝气法 pure-oxygen aeration process磁凝聚 magnetic coagulation磁盘法 magnetic disk process磁过滤法 magnetic fierration process萃取extraction萃取剂 extractantD达西定律Darcy’s law大肠菌群 Coliform-group bacteria大气泡曝气装置 large bubble aerator代谢 metabolism带式过滤 belt press filtration]单级传统消化池 single-stage conventional digester单螺旋式曝气装置 single spiral aerator氮 nitrogen氮循环 nitrogen cycle蛋白质 protein倒虹管 inverted siphon低放射性废物 low-level radio active waste制浆废水 kraft mill wastewater敌百虫dipterex敌敌畏dichlorvos涤纶纤维 polyester fiber地表漫流系统 overland flow system(OF)地表水 surface water地面(表)水环境质量标准 environmental quality standard for surface water 地下滤场 underground filtration field地下渗漏 underground percolation地下渗滤系统 subsurface infiltration system地下水 groundwater人工湿地系统artificial(constructed) wetland再生水回流地下水质标准 water quality standard for recharging parified wastewater water into groundwater aquifer地下水位 underground water level淀粉生产废水starch producing wastewater点滴-薄膜式淋水填料splash-film packing点滴式淋水填料splash packing点污染源 point pollufion source电动电位 electromotance potential电镀废水 electroplating wastewater电极 electrode电解法 electrolytical process电流密度 eletronic density电渗析 electrodialysis电渗析器 electrodialyzer电晕放电 brush discharge动态年成本 dynamic annual cost动植物油 oil and grease对硫磷parathion多层床 multibed多环芳烃 polycyclic hydracarban多氯联苯 polychlorinated biphenyls(PCBs)Dat-Ita 活性污泥法之一Decant 排水E二次(级)沉淀池secondary clarifier, secondary sedimentation tank二级处理secondary tratamentEceas 活性污泥法之一Escherichia Coli 大肠杆菌F乏燃料spent fuel反冲洗black washing反渗透(逆渗透)reverse osmosis反渗透法reverse osmosis process反渗透膜reverse osmosis membrane反硝化,脱氮denitrification防止腐蚀corrosion prevention纺丝spining纺织废水textile wastewater放射性半衰期radioactive half-life放射性废水处理radioactive wastewater treatment放射性排出物radioactive effluent非点源污染(面源污染)non-point source pollution非离子氨non-ionic ammonia废水处理wastewater treatment废水中和neutralization of wastewaters分离separation分流制separate system分流排水系统separated sewer system酚phenol焚烧incineration风吹损失windage loss风筒式冷却塔chimmey cooling tower封闭循环系统closed recirculation system氟化物fluoride辐射流沉淀池radial flow sedimentation tank浮盖式消化池floating-cover digester气浮flotation福斯特利帕除磷工艺Phostrip phosphorus removal process福列德克斯脱氮除磷工艺Phoredox nitrogen and phosphorus removal process 腐蚀corrosion富营养化eutrophication富营养化湖泊、水库eutrophic lake,eutrophic reservoirFlocculant 絮凝Gr射线 gamma rays甘蔗废水 sugarcane wastewater干化 drying干化床 drying bed冷却塔 cooling tower钢铁工业废水 iron and steel mill wastewater高纯水 ultrapure water高放废物 high-level radio active wastes高分子电解质 polymolecular electrolye高分子絮凝剂 polymolecular floc高负荷活性污泥法 high-loading activated sludge method高负荷生物滤池 high loading biological filter高炉煤气洗涤水 wastewater produced from scrubbing blast furnace top gas 高锰酸盐指数 potassium permanganate index高速消化池 high-rate digester高梯度磁分离器(HGMS) high grade magnegic separator高浊度水 high turbidity water格栅 bar screen隔板反应池 baffle reaction tank隔板式混合槽 baffle mixer隔油池 oil separator镉cadmium铬chromium给水泵站 water pumping station给水处理 water treatment给水网管系统 water supply system工业水处理与循环系统industrial water treatment and recirculation system 工业废水 industrial wastewater汞 mercury鼓风曝气 blast aeration鼓风式机械通风冷却塔 forced draft mechanical cooling tower固定螺旋式曝气装置 fixed spiral aerator景观、娱乐水体landscape and recreation waterbody管道接口 conduit joint给水配水系统 water supply piping distribution system 网管平差 balancing netwok罐头生产废水 Cannery wastewater硅藻土 cilicious marH海水淡化 demineralization of sea water含酚废水 phenol contained wastewater含水量moisture content含盐量saline capacity含油废水 oily wastewater旱流污水量(DWF) dry-weather flow好氧生物处理 aerobic biological treatment好氧塘aerobic pond好氧稳定 aerobic stabilization合成洗涤剂 synthetic detergent合成纤维 synthetic fiber合成纤维废水 synthetic fiber wastewater合成橡胶 synthetic rubber合流城市废水 combined municipal wastewater合流制排水系统 combined sewer system水体功能分类 waterbody function classification核能工厂 nuclear power station核燃料循环 nuclear fuel cycle核素nuclide冶金工业废水 metallurgical industry wastewater黑液 black liquor黑液除硅 sillica-elimination from black liquid虹吸滤池 siphon filter化学处理 chemical treatment化学工业 chemical industry化学吸附 chemical adsorption化学纤维 chemical fiber化学需氧量 chemical oxygen demand (COD)环状管网系统 grid pipe network system缓蚀 corrosion inhibition缓蚀剂corrosion inhibitor磺化煤sulfonated coal挥发酚volatile phenol回流比recycle ratio回流污泥率 return sludge ratio汇水面积 catchment area, collection area混合 mixing混合床 miced bed混合液挥发性悬浮固体 mixed liquor volatile suspended solids(MLVSS)混合液悬浮固体 mixed liquor suspended solids(MLSS)混凝 coagulation混凝沉淀 coagulation-sedimentation混凝剂 coagulant浑浊度 tubidity活化产物 activation products硅酸钠 sodium silicate活性剂 activator活性染料 active dye活性炭 activated carbon活性炭的再生 re-generation of activated carbon活性炭吸附 active carbon adsorption活性污泥activated sludge活性污泥法 activated sludge process活性污泥负荷 activated sludge loading活性污泥驯化 acclimation of activated sludgeIdle 闲置Legionella 军团杆菌Oxidation ditch 氧化沟, 又名连续循环曝气池(Continuous loop reactor)Ritilä格栅?SBR(Sequencing Batch Reactor Activated Sludge Process) 序列间歇式活性污泥法Settle 沉淀Unitank活性污泥法之一污水处理技术知识目前,国内外城市污水处理厂处理工艺大都采用一级处理和二级处理。

SBR的名词解释

SBR的名词解释

SBR的名词解释SBR是混凝土结构中常用的缩写,指代"Sequencing Batch Reactor",翻译为顺序批量式反应器。

它是一种被广泛应用于废水处理、污水处理和水质净化等环境工程领域的技术。

SBR使用分阶段处理水中的有机物、氮和磷等污染物,通过一系列工艺步骤,将废水转化为符合环境标准的清洁水。

1. SBR的工作原理和流程SBR技术基于容器内水处理的原理,是一种批量处理系统。

其工作流程包括四个主要阶段:注水、通氧、滞水和排水。

在注水阶段,污水被泵入SBR反应器中,并通过加入一定量的搅拌,使其充分混合。

接下来是通氧阶段,通过向反应器中注入溶解氧气气泡,促进微生物的生长和代谢。

这些微生物将有机物质分解为二氧化碳和水,从而减少废水中的有机污染物。

滞水阶段是SBR的一个独特特点,它是指暂停加入氧气和搅拌的时期。

在这个阶段,微生物利用储存在自己体内的碳源和氮源,将氮物质转化为氮气,完成水质净化的过程。

最后是排水阶段,其中清洁水被抽出,以便进一步处理或直接释放到环境中。

这些阶段通过先进的自动控制系统实现,确保了整个过程的高度稳定性和灵活性。

2. SBR技术的优点2.1 灵活性:SBR技术适用于不同规模和类型的污水处理,可以用于小型社区、工业园区和城市污水处理厂。

其工作流程可以根据需要进行调整,以适应不同的处理需求。

2.2 高效性:SBR技术采用了分阶段处理废水的方法,使得有机物、氮和磷等污染物的去除效率更高。

这种方法能够更好地控制水处理过程,提高废水处理能力。

2.3 环保:SBR技术相对于传统的活性污泥法更加环保。

它通过控制反应器内氧气和搅拌的操作,减少了能耗和噪音污染。

同时,它也能够有效去除废水中的有害物质和污染物,提高水体的质量。

2.4 低运营成本:相比于其他废水处理技术,SBR技术的运营成本较低。

它的设计简单,易于操作和维护,并且不需要大量的化学药剂。

3. SBR技术在实践中的应用SBR技术广泛应用于国内外的污水处理和水质净化工程中。

纸业专业英语词汇翻译(B4)

纸业专业英语词汇翻译(B4)

纸业专业英语词汇翻译(B4)纸业专业英语词汇翻译(B4)纸业专业英语词汇翻译(B4)brown stock 粗浆,未漂浆brown stock chest 漂前浆池,粗浆池brown stock washers 漂前洗浆机browns 褐色包装纸bruise 压溃;分裂;捣碎bruising 挫击;压溃;分裂brush 毛刷brush coating 刷涂布brush dampener 刷式润湿器brush damper 毛刷湿润辊brush doctor 毛刷刮刀brush finish 刷装饰brush glazing 刷磨光brush mark 刷痕(纸病)brush molstening machine 毛刷润湿机brush out (纤维的)分离brush polish(ing) 刷磨光brush polishing machine 毛刷磨光机brush roll 刷辊brush smoothing 刷平辊brush wood 枝桠材;灌木条brushing machine 刷涂机brushless coating 无刷涂布brbble 泡沫;气泡brbble cap absorption tower 泡钟式吸收塔brbble coating 泡沫涂布brbble marks 气泡痕(纸病)brbble scrubber 泡沫洗涤塔brbble test 泡沫测定bubbling 冒泡,沸腾bucket conveycr 斗式提出升机bucket elevator 斗式提出升机buckeye(aesculus) 七叶树属bucking 弯曲,弯折bucking strength 浸渍强度;弯曲强度bud 发芽;接枝buffer 缓冲;缓冲剂;缓冲器buffer action 缓冲作用buffer solution 缓冲溶液buffring agent 缓冲剂buffing machine 磨光机building stone 结构基团,结构基石built-in strain 内部应变built-in stress 内部应力bulge resistance (纸板)抗破裂度bulging 膨胀;渗水bulk 松厚(度)bulk density 松厚密度;体积比重bulk factor 松厚率,松厚因子bulk bandling 散装处理bulk index 松厚指数bulk modulus 体积模数bulk storage 散装贮存bulkiness 松厚(性)bulking pressure 测松厚的压力ulking thickness 体积厚度;堆积厚度bulking value 松度值,松厚值bulky 松厚,庞大bull knotter 圆筒除节机bull screen 粗筛bunch tube flowbox 束管式流浆箱bundle 捆,扎,束bundling press 打包机buoyancy 浮力buret(te) 滴定管;量管,玻璃量杯burlap finish 布面装饰burner 燃烧炉burner gas 炉气burner liner 炉衬burning 燃烧,煅烧;黑煮burning of lime sludge 白泥煅烧burning point 着火点burning shrinkage 煅烧收缩burning zone 燃烧层burnisher 磨光机burnishing 磨光burnt 过干燥;煅烧的burnt chips 黑煮木片burnt cook 黑煮burnt lumber 灼烧木材,火烧木burr 刻石刀,刻石锉轮burr holder 刻石刀架burr lathe 刻石刀床burr number 刻石刀号码burring 刻石burring cycle 刻石周期burring device 刻石装置burring facilities 刻石装置burring schedule 刻石程序burst 破裂(度);耐破度burst factor 耐破因子burst index 耐破指数burst ratio 耐破比值burst tester 耐破度测定仪bursling pressure 耐破压力bursting strain 耐破应变bursting strength 耐破应力bursting test 耐破度测定bursting tester 耐破度测定仪bus 汇流条;导(电)条;总线bus converter 汇流变换器bush roll 刻刀石,锉轮business form 商业表格用纸butadiene 丁二烯butane 丁烷butcher's manila 肉食包装纸butcher's wrap 肉食包纸butt (树木)粗端butt end 平端头butt joint 对接butt swelling 环状润胀butted splice 对缝粘接butter carton 牛油包装纸盒butter wrap(per) 牛油包装纸butterfly nut 蝶形螺母butterfly valve 蝶形阀button 按钮button card 钮扣用卡纸button catycher 钮扣捕集器button specks 钮斑(纸病)button switch 按钮开关button trap 钮扣捕集沟buttonwood(platanus occidentalis l. 美国梧桐buttwood 环形材butvar resin butvar 施胶剂butyl acetate 醋酸(异)丁酯butyl alcohol 丁醇butyl group 丁基butyl rubber 异丁(烯)橡胶butyric acid 丁酸butyrite 丁酸脂butyryl group 丁酰基团by-pass (旁通)旁路;绕行by-pass valve 旁通阀by-product 副产品by-path 旁路,旁通bar coater 刮棒涂布机bead coater 液滴涂布机belflex coaterd belflex 辊式涂布机belt type cast coater 带式涂铸机bent blade coater 韧性(或软)刮刀涂布机blade coater 刮刀涂布机bracewell coater bracewell 喷雾涂布机brush coater 毛刷涂布机brus type double coater 刷式双面涂布机batch cooking 间歇蒸煮bisulfite cooking (酸性)亚硫酸盐法蒸煮bursting strength tester mullen 耐破度测定仪back-lining paper 书籍衬里纸backing paper 裱糊纸bag paper (纸)袋纸bag liner paper 衬里袋纸bagasse paper 蔗渣浆纸bakelite paper 浸渍绝缘纸bakelized paper 浸渍绝缘纸baling paper 单面沥青纸balloon paper 气球用纸bamboo paper 竹浆纸bandage paper 绷带纸bank paper 高级书写纸bank florpost paper 透明薄信纸banknote paper 钞票纸banquet table cover paper 餐桌纸barrier paper 抗渗透纸baryta paper 钡地纸baryta base paper 钡地原纸,照相原纸base paper 原纸bade tracing paper 描图原纸basewad paper (弹筒)装药用纸bast paper 韧皮纸bath paper 高级信纸battery paper 干电池用纸battery separator paper 电池隔膜纸battery pasting paper 蓄电池电极吸水纸battik paper 涂蜡装饰纸beaming paper 曲折纸板beer-filter paper 啤酒过滤纸between-lay paper 夹层纸bible paper 字典纸bibulous paper 吸水性纸张bill paper 帐目纸billboard paper 光泽广告纸billing machine paper 自动记录纸binder's paper 装订用纸biochargeable paper 生物纸biscuit paper 饼干包装纸biscuit cap paper 饼干包装纸bistered paper 蜡笔画纸bituminized paper 防潮纸,沥青纸black album paper 相册黑色衬纸black-bordered paper 黑边纸black line paper 黑线晒图纸black needle paper 黑色包针纸black photo paper 黑色相片纸black positive paper 黑色相片纸black print paper 黑线晒图纸black waterproof paper 防潮纸blackout paper 防空纸blade coated paper 刮刀涂布纸blank book paper 空白书籍纸blanket bag paper 毛毯袋用纸blanking paper 空白书籍纸blasting 弹药用纸blood proof paper 防血纸blotting paper 吸墨纸blue candle wrapping paper 蓝色洋蜡包装纸blue laid paper 蓝色书写纸blueing paper 蓝印纸blueprint paper 晒图纸board paper 扉页纸board glazed paper 单面光扉页纸bobbin paper 纱管纸;盘纸body paper 原纸bogus paper 仿制纸bogus drawing paper 仿图画纸bogus lining paper 仿衬里纸bogus pasting paper 仿裱糊纸bogus saturating paper 仿浸渍加工纸bond paper 证券纸;高级书写纸book paper 书籍纸book backing paper 书籍衬里纸book binder's paper 扉页用纸book cover paper 书皮纸book end paper 书籍扉页用纸book-keeping machine paper 记帐机用纸book lining paper 书籍衬里用纸book-match paper 火柴本用纸book printing paper 书籍纸booking paper 帐薄纸bottle labelling paper 瓶签纸bottle packing paper 瓶包装纸bottle wrapping paper 包瓶纸bowl paper 压光辊用纸box cover paper 纸盒糊面纸box enamel paper 纸盒糊面瓷釉纸brailleprinting) paper 盲文印刷纸bread bag paper 面包袋纸bristel 光泽纸brocade paper 锦纹纸,押印花纸brochure paper 小册子用印刷纸brlken paper 破损纸张bromide paper 溴素纸,照相放大纸bronze paper 金色纸brown print paper 棕色晒图纸brown wood paper 褐色磨木浆制的纸张brown wrapping paper 褐色包装纸brush (coated) paper 刷辊涂布纸brush enamel (led) paper 刷辊涂布纸bubble coated paper 泡沫涂布纸buff(ing) paper (制革用)磨光纸buff drawing paper 暗色绘图纸building paper 建筑用纸bulking (book) paper 松厚书籍纸bulky paper 松厚纸bunt paper 染色加工纸burlap lined paper 布纹纸burnished paper 高光泽纸burnished tin-coated paper 高光泽锡粉涂布纸burnt paper 染色加工纸butcher's paper 包肉纸butter paper 黄油包装纸butter parchment paper 黄油包装纸batch process 间歇方式,间歇方法beating process 打浆过程bersano process 磨浆法billerud process 亚硫酸氢钠两段蒸煮bio-oxidation process (废水处理)生物氧化法bisulfite process 亚硫酸盐法制浆bisulfite-soda process 亚硫酸氢钠法制浆bleaching process 漂白过程bradley process process process process process process process (亚硫酸钠废液)硫化物循环回收法bagasse pulp 蔗渣浆baled pulp 成捆浆板bamboo pulp 竹浆bisulfite pulp 亚硫酸盐纸浆bleachable pulp 易漂浆bleached pulp 漂白浆bleached chemicqal pulp 漂白化学浆bleached dissolving pulp 漂白溶解浆bleached kraft pulp 漂白牛皮浆bleached sulfate pulp 漂白硫酸盐纸浆bleaching pulp 漂白浆brown pulp 未洗硫酸盐浆;粗浆brown mechanical pulp 褐色磨木浆brown wood pulp 褐色磨木浆bisulfite pulping 亚硫酸氢盐法制浆brick 耐火砖bird saveall bird自动启动双鼓白水回收机bathroom tissue 浴巾纸,毛巾纸bct best convential pollutant cotrol technology最常用污染物控制技术的缩写bdmt bone dry metric tons绝干公吨的缩写bme bipolar membrane electro dialysis两极膜电透析的缩写bmp best management practices最优管理实践的缩写bod biochemical oxygen demand生化耗氧量的缩写bp boiling point沸点的缩写bpk bleached papergrade kraft and soda(生产)白纸用硫酸盐和荷性纳法浆的缩写bpt best practicable control technology最佳实用控制技术的缩写btu british thermal unit英热单位的缩写bw basis weight定量的缩写bahia sul 巴西“金鱼”牌漂白硫酸盐阔叶木浆bratsk 俄罗斯“布拉茨克”牌漂白硫酸盐针叶木浆,漂白硫酸盐阔叶木浆baikao 俄罗斯“贝加尔斯克”牌漂白与未漂白硫酸盐针叶木浆、化学溶解浆beiya realson 上海北亚瑞松贸易发展有限公司纸业专业英语词汇翻译(B4) 相关内容:。

环境工程专业英语第二版重点课文翻译及复习

环境工程专业英语第二版重点课文翻译及复习

life expectancy :耐用期限,平均寿命poverty-stricken :贫穷的,贫困的,贫乏的smog-laden air :烟雾弥漫的天空,烟雾缭绕的空气,阴霾天气global conditions :全球状况haves and have-nots :富人和穷人underprivileged :社会地位低下的,相对贫困的,生活水平低下的,弱势的savanna :热带大草原,稀树草原predator :食肉动物,捕食者environmental disruptions :环境破坏,环境失调农药—pesticide / agricultural chemicals (including: pesticide, germicide, herbicide)化肥—chemical fertilizer 有机废物—organic wastes微生物—microorganism / microbe 衰减—attenuation阻滞的—retardant / blocking 稀释—dilution添加剂—additive 合成塑料—synthetic plastic 再生—regenerationUnit 4Precision and accuracy 精确度和准确度bulk collection 大量的搜集matric material 基体材料ananlytical sequence 分析结果Multivariate statistics 多变量的统计interactive effect 相互间的影响insofar 在...的范围overall analytical scheme 整体分析计划灵敏度sensitivity 采样sample collection 真实时间real time样品欲处理pretreatment of the sample 稳定性stability曲线拟合curve-fitting 吸附adsorb adsorption 累积accumulate accumulation 分析评价analytical evaluation 物理分离physical separation因次图dimension graph 标准方差standard varianceUnit 5primary pollutant 一次大气污染物secondary pollutant 二次大气污染物air stagnation 空气流动停滞,大气停滞nitrous oxide 一氧化二氮(N2O)nitric oxide 一氧化氮(NO) nitrogen dioxide 二氧化氮(NO2)soot 煤烟dust 灰尘smog 烟雾ozone 臭氧herbicide 除草剂pesticide 杀虫剂/ 农药正常浓度normal concentration 严重污染的serious polluted / heavily polluted决定因素determining factor 光化学氧化物photochemical oxidant液体微滴liquid droplet 放射性物质radioactive substance不完全氧化incomplete oxidization / incomplete combustion含硫的sulfur-containing 风化wind erosion / weathering 汽车尾气automobile exhaustUnit 7出口outlet 多管高效旋风分离器multitube high-efficiency cyclone合成纤维synthetic fabric 捕集效率collection efficiency机械洗涤mechanical scrubbing 压力降pressure drop焚化炉incinerator 气体离子gas ion捕集板collection surface 碳黑carbon black尾气off-gas 可应用性applicability 工业规模full-scale 土壤床soil bed生物过滤器biofilter 固定资本fixed capital 易生物降解的easily biodegraded VOC 挥发性有机化合物APC 大气污染控制Regulatory program 调整项目Financial support 财政支持Operating cost 操作成本Biodegradation capacity 生物降解能力Environmental media 环境介质Biological 生物学的Technologies 技术、工艺Inorganic air pollutants 无机大气污染物Unit 10treatment facilities 处理设备municipality 市政当局, 自治市population equivalent 人口当量basement flooding 地下室浸水per capita per day 每人每天runoff 排水domestic sewage 生活污水type of terrain 地形种类Unit 12land disposal 掩埋处置fecal coliform 粪大肠菌群stringent effluent requirement 严格的废水排放要求assimilation capacity 同化能力practical outlets 可行的排出途径,现实出路aquatic life 水生生物detrimental to human health 对人体健康有害的endogenous phase 内源〔生长〕期Unit 13flow monitoring 流量监测equipment age and reliability 装备老化及其可靠性mechanistic facilities 机械设备microbial activity 微生物活性activated sludge 活性污泥controlling respiration 控制呼吸oxidation ditches 氧化沟on-line automation 在线自动〔监测〕手动控制operator control/ manual control 最优化minimize the effects微处理器microprocessor 统计分析statistical analysis质量衡算mass balance 动力学dynamics氧化还原oxidation and reduction /redox 停留时间residence time模拟simulation 参数parameter 水解hydrolysis 积分integralUnit 1 环境工程本书的内容:本书的目的是使工科和理科学生对环境问题的跨学科的研究有所了解:环境问题的起因,环境问题受关注的原因,如何控制环境问题。

大学各专业名称英文翻译——理科SCIENCE

大学各专业名称英文翻译——理科SCIENCE

大学各专业名称英文翻译——理科SCIENCE理科 SCIENCE课程中文名称课程英文名称矩阵分析 Matrix Analysis面向对象程序设计方法 Design Methods of Object oriented Program李代数 Lie Algebra代数图论 Algebraic Graph Theory代数几何(I) Algebraic Geometry(I)泛函分析 Functional Analysis论文选读 Study on Selected PapersHoof代数 Hoof Algebra基础代数 Fundamental Algebra交换代数 Commutative Algebra代数几何 Algebraic GeometryHoof代数与代数群量子群 Hoof Algebra , Algebraic Group and Qua numb G roup量子群表示 Representation of Quantum Groups网络算法与复杂性 Network Algorithms and Complexity组合数学 Combinatorial Mathematics代数学 Algebra半群理论 Semigroup Theory计算机图形学 Computer Graphics图的对称性 Graph Symmetry代数拓扑 Algebraic Topology代数几何(II) Algebraic Geometry(II)微分几何 Differential Geometry多复变函数 Analytic Functions of Several Complex Varian les代数曲面 Algebraic Surfaces高维代数簇 Algebraic Varieties of Higher Dimension数理方程 Mathematics and Physical Equation偏微分方程近代方法 The Recent Methods of Partial Differential Equatio ns激波理论 The Theory of Shock Waves非线性双曲型守恒律解的存在性 The Existence of Solutions for Non-linea r Hyperbolic Conservation Laws粘性守恒律解的稳定性 Stability of Solutions for Viscous Conservation Laws微分方程数值解 Numerical Methods for Differential Equations小波理论与应用 Wavelet Theory and Application非线性方程组的数值解法 Numerical Methods for No-linear System s of Eq uations网络算法与复杂性 Network Algorithms and Complexity Graph Theory 60近世代数 Modern Algebra高等量子力学 Advanced Quantum Mechanics统计力学 Statistical Mechanics固体理论 Solid State Theory薄膜物理 Thin Film Physics计算物理学 Computational Physics量子场论 Quantum Field Theory非线性物理导论 Introduction to Nonlinear Physics固体磁性理论 Theory of Magnetism in SolidC语言科学计算方法 Scientific Computation Method in C功能材料原理与技术 Principle and Technology of Functional Materials 超高真空科学与技术 Science and Technology of Ultrahigh Vacuum 60现代表面分析技术 Modern Technology of Surface Analysis现代传感技术 Modern Sensor Technology数学模型与计算机模拟 Mathematical Models and Computer Simulations计算物理谱方法 Spectral Method in Computational Physics蒙特卡罗方法在统计物理中的应用 Applications of the Monte Carlo Method in Statistical Physics理论物理 Theoretical Physics固体物理 Solid-State Physics近代物理实验 Contemporary Physics Experiments计算物理基础 Basics of Computational Physics真空与薄膜技术 Vacuum & Thin Film Technology高等光学 Advanced Optics量子光学与统计光学 Quantum Optics and Statistical Optics光电子学与光电信息技术 Optoelectronics and Optoelectronic Information Technology图像处理与分析 Image Processing and Analysis光纤通信系统 System of Fiber Communications计算机网络 Computer Networks光电检测与信号处理 Optoelectronic Detection and Processing物理光学与光电子技术实验 Experiments for Physical Optics and Optoelec tronic Technology非线性光学 Nonlinear Optics集成光学 Integrated Optics光子学器件原理与技术 Principle and Technology of Photonics Devices 物理光学与信息光子学实验 Physical Optics & Information Photonics Expe riments现代激光医学 Modern Laser Medicine生物医学光子学 Biomedicine Photonics激光医学临床实践 Clinical Practice for Laser Medicine光纤通信网络 Networks of Fiber Communications光接入网技术 Technology of Light Access Network全光通信系统 All-Optical Communication Systems计算机图形学 Computer Graphics信息光学 Information Optics光子学专题 Special Topics on Photonics激光与近代光学 Laser and Contemporary Optics光电子技术 Photo electronic Technique微机系统与接口 Micro Computer System and Interface智能仪器 Intelligent Instruments高等无机化学 Advanced Inorganic Chemistry量子化学(含群论) Quantum Chemistry(including Group Theory)高等分析化学 Advanced Analytical Chemistry高等有机化学 Advanced organic Chemistry现代科学前沿选论 Literature on Frontiers of Modern Science and Techno logy激光化学 Laser Chemistry激光光谱 Laser Spectroscopy稀土化学 Rare Earth Chemistry材料化学 Material Chemistry生物无机化学导论 Bioinorganic Chemistry配位化学 Coordination Chemistry膜模拟化学 Membrane Mimetic Chemistry晶体工程基础 Crystal Engineering催化原理 Principles of Catalysis绿色化学 Green Chemistry现代有机合成 Modern organic Synthesis无机化学 Inorganic Chemistry物理化学 Physics Chemistry有机化学 organic Chemistry分析化学 Analytical Chemistry现代仪器分析 Modern Instrumental Analysis现代波谱学 Modern Spectroscopy化学计量学 Chemistries现代食品分析 Modern Methods of Food Analysis天然产物化学 Natural Product Chemistry天然药物化学 Natural Pharmaceutical Chemistry现代环境分析与监测 Analysis and Monitoring of Environment Pollution 现代科学前沿选论 Literature on Frontiers of Modern Science and Techno logy计算机在分析化学的应用 Computer Application in Analytical Chemistry 现代仪器分析技术 Modern Instrument Analytical Technique分离科学 Separation Science高等环境微生物 Advanced Environmental Microorganism海洋资源利用与开发 Utilization & Development of Ocean Resources立体化学 Stereochemistry高等发光分析 Advanced Luminescence Analysis激光光谱分析 Laser Spectroscopy Analysis保健食品监督评价 Evaluation and Supervision on Health Food s生物电化学 Bioelectrochemistry现代技术与中药 Modern Technology and Traditional Chinese Medicine高等有机化学 Advanced organic Chemistry中药新药研究与开发 Study and Exploitation of Traditional Chinese Medi cine药物化学研究方法 Pharmaceutical Chemical Research Methods废水处理工程 Technology of Wastewater Treatment生物与化学传感技术 Biosensors & Chemical Sensors现代分析化学研究方法 Research Methods of Modern Analytical Chemistry 神经生物学 Neurobiology动物遗传工程 Animal Genetic Engineering动物免疫学 Animal Immunology动物病害学基础 Basis of Animal Disease受体生物化学 Receptor Biochemistry动物生理与分子生物学 Animal Physiology and Molecular Biochemistry分析生物化学 Analytical Biochemistry学科前沿讲座 Lectures on Frontiers of the Discipline微生物学 Microbiology细胞生物学 Cell Biology生理学 Physiology电生理技术基础 Basics of Electrophysiological Technology 生理学 Physiology生物化学 Biochemistry高级水生生物学 Advanced Aquatic Biology藻类生理生态学 Ecological Physiology in Algae水生动物生理生态学 Physiological Ecology of Aquatic Animal 水域生态学 Aquatic Ecology水生态毒理学 Aquatic Ecotoxicology水生生物学研究进展 Advance on Aquatic Biology水环境生态学模型 Models of Water Quality藻类生态学 Ecology in Algae生物数学 Biological Mathematics植物生理生化 Plant Biochemistry水质分析方法 Water Quality Analysis水产养殖学 Aquaculture环境生物学 Environmental Biology专业文献综述 Review on Special Information分子生物学 Molecular Biology学科前沿讲座 Lectures on Frontiers of the Discipline植物学 Botany动物学 Zoology普通生态学 General Ecology生物统计学 Biological Statistics分子遗传学 Molecular Genetics基因工程原理 Principles of Gene Engineering高级生物化学 Advanced Biochemistry基因工程技术 Technique for Gene Engineering基因诊断 Gene Diagnosis基因组学 Genomics医学遗传学 Medical Genetics免疫遗传学 Immunogenetics基因工程药物学 Pharmacology of Gene Engineering 高级生化技术 Advanced Biochemical Technique基因治疗 Gene Therapy肿瘤免疫学 Tumor Immunology免疫学 Immunology免疫化学技术 Methods for Immunological Chemistry 毒理遗传学 Toxicological Genetics分子病毒学 Molecular Virology分子生物学技术 Protocols in Molecular Biology神经免疫调节 Neuroimmunology普通生物学 Biology生物化学技术 Biochemical Technique分子生物学 Molecular Biology生殖生理与生殖内分泌 Reproductive Physiology & Reproductive Endocrino logy生殖免疫学 Reproductive Immunology发育生物学原理与实验技术 Principle and Experimental Technology of Dev elopment免疫学 Immunology蛋白质生物化学技术 Biochemical Technology of Protein受精的分子生物学 Molecular Biology of Fertilization免疫化学技术 Immunochemical Technology低温生物学原理与应用 Principle & Application of Cryobiology不育症的病因学 Etiology of Infertility分子生物学 Molecular Biology生物化学 Biochemistry分析生物化学 Analytical Biochemistry医学生物化学 Medical Biochemistry医学分子生物学 Medical Molecular Biology医学生物化学技术 Techniques of Medical Biochemistry生化与分子生物学进展 Progresses in Biochemistry and Molecular Biology 高级植物生理生化 Advanced Plant Physiology and Biochemistry拟南芥—结构与发育 Arabidopsis-Structure and Development开花的艺术 Art of Flowering蛋白质结构基础 Principle of Protein Structure文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水处理技术卡伦德登/约旦,琼斯和古尔丁摘要在应对新的污水严格限制,一些亚特兰大地区污水处理设施升级或采用先进的处理工艺。

作为一个结果,亚特兰大地区维护该地区的饮用水供应超过60%的主要湖泊和河流。

除了供水,这些资源用于发电,防洪,渔业和其他娱乐。

本文将讨论几种不同的治疗方法正在使用,以满足这些限制的方法。

“本文将比较和对照这些过程中使用的设施,这表明不同的治疗使用方法可以达到同样严格的排放要求。

如驾驶动机土地的可用性,可靠性,成本的考虑,和时间表将被用来比较的替代品。

如污水限制越来越严格,这是重要的是了解业主和顾问替代治疗处理,以及如何选择一个合适的。

关键词先进的处理,三级处理,大专院校化学澄清,除磷,膜,膜生物反应器,过滤。

引言在过去的五年中,在亚特兰大地区的污水排放限制已成为明显限制。

佐治亚州环境保护部(下称“环保署”)实行了被称为什么“地铁限制”这些污水处理厂(污水处理厂)的拉尼尔湖和履行Chattahoochee河,这两者作为饮用水供应和休闲区北格鲁吉亚。

环保署现正评估硝酸盐氮或全氮是否应纳入地铁限制。

下面的表1给出了地铁限制。

表1拉尼尔湖和查塔胡奇河流域放电地铁限制参数值cBOD 52.9mg/lTSS 5mg/l有机氮 1.5mg/lNH3-N 0.5mg/l总磷0.13或0.30mg/l浊度 3.0台大PH 6-9粪大肠菌群23MPN/100mg(集合平均数)溶解氧7.0mg/l1目前正在讨论。

20.13 mg / L的限制将适用于拉尼尔湖的污水排放和Chattahoochee河的支流。

0.30 mg / L的限制将适用于直接排放到Chattahoochee河。

目前实行这些限制时,工厂正在扩大,而不是继续在植物施加方法各直辖市,兴建或正在兴建新的污水处理厂或升级现有的污水处理厂,以满足表1中的污水限制。

进行了一项非正式调查,以确定整个地区正在使用的技术。

表2总结的结果。

表2处理技术,用于满足城域界限10.76-MGD 的设施,目前正在进行扩大至1.1百万加仑,使用相同的技术。

20.9-MGD 的设施0.3 MGD 目前安装的膜。

15 MGD 的设施是在规划阶段。

下文将详细讨论这些处理技术。

讨论第三化工澄清和深床过滤整个亚特兰大地区使用的一种治疗技术,以满足低的污水限制是大专其次是深床过滤化学澄清。

在这种替代金属的盐,通常铁添加氯,硫酸亚铁或硫酸铝,在下列次要的快速混合区澄清,以进一步减少orthophosphorus (OP )的浓度。

快速混合,絮凝和用于废水澄清,以减少固体浓度和总颗粒形式磷和5日生化需氧量(BOD5)。

深床过滤,在形式常规下流或连续反冲洗过滤器,用于去除进一步固体。

第三通常是在与其他化学和生物化学澄清除磷二级处理。

根据金属盐剂量,碱度和pH 值调整化学品,如氢氧化钠,可能需要。

三级化学处理和过滤是利于最直辖市有经验的经营这些传统的治疗过程。

与膜的替代品,这些治疗处理仍受到固体结转这可能会影响许可证的情况。

三级化学澄清深床过滤的结果,在一个更大的厂房占地面积可能不适合受限或困难网站。

无论从建设成本和运营和维护成本的增加,可能会产生(的O &M )的角度来看,因为需要额外的单位进程的数目。

在亚特兰大地区的设施在使用这种治疗技术的例子包括: 处理技术19号设施 生产的能力 笔记 三级化学澄清深床过滤6 6-20MGD 大多较大,绿地设施化学处理和过滤 4 0.76-3MGD1 主要是神额共计或改装较小现有的设施膜生物反应器 8 0.9-15MGD2 主要是新建设施公共和私用企业三级膜过滤 1 60MGN 目前没有被广泛使用1,盖恩斯维尔平河废水回收设施的市(WRF模式)。

这10.2万加仑的每天(百万加仑)常规处理设施,目前正在升级到12百万加仑。

第三快速混合,絮凝,澄清使用Infilco 得利满DensaDeg过程不断,反冲洗过滤将被添加在扩大。

WRF的排放平平小河随后放电拉尼尔湖。

2, Douglasville的道格拉斯县南环污水处理厂。

一个新的6 MGD的绿地设施目前正在设计使用传统的二级处理,三级的快速混合,絮凝,澄清,并连续反冲洗过滤器。

3,迪卡尔布县北极大桥WPCP的。

这20 MGD的设施使用高等教育的快速混合,絮凝,澄清,并快速重力过滤,以满足总磷限值为0.3毫克每升(毫克/升)。

已进行了全面测试,显示工厂的能力,以满足总限制磷0.13毫克/升4,切罗基县玫瑰河污水处理厂。

这10 MGD的设施有0.14总磷限制mg / L和由序批式反应器(SBR)的治疗,高等教育快速混合,絮凝,使用板定居,并不断的反冲洗过滤澄清。

化学除发生除磷SBR和快速混合罐中。

5,切诺基县菲茨杰拉德河污水处理厂。

这家工厂,6 MGD的和可扩展到12额定MGD 的,采用相同待遇列车罗斯河污水处理厂。

6, Gwinnett郡楼韦恩山水再生中心(WRC)。

第一阶段,20 MGD的新工厂使用两的阶段recarbonation和传统的高pH值澄清下流深床过滤器,在其他进程中,实现地铁限制。

这家工厂是目前正在扩大到60-MGD使用大专膜处理(见后续一节)。

中学化学处理和过滤第三澄清替代类似,许多城市都加入化学功能除磷二级处理,以满足地铁限制。

然而,与上述设施,不提供额外的三级絮凝和澄清过程。

过滤,通常在形式磁盘过滤器或行桥过滤器,提供下游的辅助治疗。

一些设施也有规定,允许为金属盐除了上游的过滤过程。

使用辅助化学处理和过滤除磷是不使用化学可靠澄清和深床过滤膜处理。

用更少的和强大的固体障碍清除的能力,以实现低固体含量,这是必要的,以满足出水BOD5的和总磷限制,是高风险。

虽然在此不产生一个单独的化学污泥流替代方案,所有的化学物返回到二级处理,这可能会影响生物过程能力。

为了弥补更大的颗粒磷浓度污水设施过高剂量的化学生物过程和可能抑制,减少生物量增长磷低于那些需要使用作为营养素的水平.虽然不太可靠,中学的化学处理和过滤是有利的,现有污水处理厂可改装相对容易和廉价实现地铁限制。

这是有吸引力的直辖市,可能没有资金来建造一个新的污水处理厂或升级现有的污水处理厂与一些更复杂的单位进程。

中学化学处理和过滤通常可以使用大部分设施鈥现有厂区。

在亚特兰大地区的污水处理设施,在使用这种治疗技术的例子包括:1,达洛尼加WPCP的市。

测试正在进行中使用化学除磷的SBR处理,以满足0.13 mg / L的总磷限制。

用于行桥过滤器额外的固体去除。

额定功率为1.4百万加仑的工厂。

2,卡明污水处理厂的城市。

此3.0-MGD的设施,采用活性污泥工艺和磁盘过滤器要定期实现污水总磷0.13毫克/升.3,斯托克布里奇斯蒂芬D. Peurifoy WPCP的城市达到0.1毫克/升的污水总磷SBR 工艺中采用化学除磷随后前往桥过滤器。

该工厂目前的每日平均流量为1.5百万加仑。

4,迪克河WRF模式。

污水从这个0.76百万加仑的工厂正在重用,但设施正在发生1.1 MGD的扩容和升级,以满足点源排放限制。

SBR法将被修改,将完成化学除磷磁盘过滤器的上游。

膜生物反应器在膜生物反应器(MBR)工艺,膜,而不是澄清,用于分离混合酒。

MBR的过程通常是在污泥浓度范围从8000 - 12,000经营毫克/升超滤和微滤膜,孔大小不等,从0.04 - 0.4微米,分别位于曝气储罐或专用膜坦克,都沉浸在混合酒。

吸气压力,通过机械手段或重力,用于绘制经处理的污水通过膜孔。

有些膜生物反应器装置使用混合液回流到移动物远离从膜表面;使用额外的空气或混合酒冲刷,以减少污垢。

额外的化学清洗,如backpulse清洗和扩展化学浸泡,用来减少跨膜压力(TMP)和延长膜的使用寿命。

建议或细筛所需的膜区上游的膜,以防止损坏。

化学磷通常用于清除MBR工艺orthophosphorus以微粒形式的转换。

膜生物反应器是有效地满足污水限制非常低,因为他们实现总固体分离。

因此,BOD5和磷的限制,可满足针对解散成分。

由于混合液在使用过程中的高浓度,更多的生物量是目前的一个较小的厂房占地面积对于一个给定的能力可以利用。

由于MBR工艺的规模相对较小,它可以是有利的美学是一个问题。

膜还提供额外的屏障,病原体,可用于在反渗透(RO)的应用程序的前处理。

MBR工艺通常是更昂贵的比大专化学澄清和深床过滤。

然而,MBR 可以是一个更经济的选择如果现场条件非常艰苦,该网站的限制,或气味控制是必需的。

由于数量结构是有限的,MBR工艺替代项目交付方法是频繁的候选人,如快车道或设计/建造。

在MBR工艺用于在亚特兰大地区的污水处理设施的例子包括:1,盖恩斯维尔市林伍德WRF模式。

5.0 MGD的设施正在建设中,这将使用化学除磷放电拉尼尔湖和MBR工艺。

新工厂将取代现有的0.5百万加仑的生物滤池厂。

2,罗克代尔水资源奎格科污水处理厂。

一个2.0百万加仑的MBR设施已设计在周围的工业客户提供可靠,高品质的再生水社区。

3,创新的水处理解决方案科利河WRF模式。

这家工厂采用MBR工艺最近扩大2.5百万加仑5.0百万加仑。

科利河WRF模式,它把富尔顿县的污水,同时拥有土地应用(灌溉重用)和点源燃放许可证。

5.0 MGD的WRF模式将利用强化生物除磷化学除磷作为备份。

4,汉普顿河WRF模式。

这0.9百万加仑的工厂使用的化学除磷和MBR周边社区提供回用水的过程。

这家工厂是一家私人拥有坐落在中高档细分建设。

5,市伍德斯托克Rubes小河污水处理厂。

这现有的0.5-MGD的丁苯橡胶设施扩大到1.2 MGD和与沉浸膜改造。

由于流量增加,额外的膜将安装达到1.5百万加仑的工厂的生产能力。

6, Forsyth县福勒WRF模式。

此MBR厂再生水的生产和使用不目前还没有一个污水总磷限制。

7, Paulding县水和的下水道Pumpkinvine溪WRF模式。

这家工厂目前拥有0.5百万加仑计划新增1.0 MGD的额外膜安装膜。

8,富尔顿县约翰斯河水环境校园。

这15 MGD的设施将利用MBR工艺和使用的设计/建造方法,将采购。

三级膜处理大专膜处理涉及利用二次澄清膜的下游。

此外,一些设施纳入高等教育化学澄清,以进一步提高质量给水膜。

细筛,范围在0.5 - 1.0毫米(mm),通常是提供的保护膜。

通常用于超滤和微滤膜位于应用和专用膜坦克。

大专膜处理是有利的,在一个非常高的出水水质能够可靠生产。

加之上游澄清工艺的膜提供多重障碍固体。

此外,膜消毒结合治疗提供多重障碍病原体。

类似的MBR工艺,大专膜处理是足够的前处理允许在未来的RO安装。

由于膜的给水是更高质量在此替代,膜通量通常可以增加相对MBR工艺。

因此,的膜膜的要求和成本的数量减少。

然而,膜的成本可节省治疗膜上游成本的单位额外进程所否定。

相关文档
最新文档